In order to maintain their proficiency with various types of firearms, military personnel, law enforcement officers, and hunters frequently engage in target practice. Target practice is often performed at a shooting range with 300 or more cartridges being fired at each practice session. In the sport of hunting, marksmanship is practiced so that a shot can be carefully placed to ensure a quick, clean and humane kill. For military personnel, good marksmanship may make the difference between victory and defeat in battlefield situations.
Many firearms, including pistols and rifles, are designed to utilize a removable magazine that holds ammunition cartridges. The use of a magazine allows a plurality of cartridges to be easily loaded into the firearm by inserting a single magazine into the firearm. After each cartridge is fired, a manually or automatically operated mechanism moves the bolt of the firearm backward and then forward again. The upper most cartridge in the magazine is pulled off of a stack of cartridges each time the mechanism cycles so that cartridges are fed one-by-one into the firing chamber of the firearm. Each magazine typically has an elongate housing defining a chamber with a spring loaded follower slidably disposed therein. The force of the spring loaded follower urges each cartridge in the magazine toward the upper most position in the where the bolt can push it into the firing chamber. When all of the cartridges have been fired, the empty magazine is removed from the firearm and a new magazine is inserted in its place. The empty magazine may then be refilled with cartridges.
An example magazine loader comprises a body for receiving an upper portion of the magazine and a cap slidingly engaged with the body for loading cartridges in to the magazine received by the body. The body comprises a plurality of wall portions defining a body cavity with a lower opening proximate a bottom end thereof. The body cavity may be configured to receive an upper portion of a magazine to be loaded with cartridges. The body cavity may extend along a magazine insertion axis extending in upward and downward directions. In some embodiments, the plurality of body wall portions comprise a starboard body wall and an opposing port body wall. In some embodiments, the starboard body comprises a starboard ramp and the port body wall comprises a port ramp. The cap comprises a plurality of cap wall portions defining an interior volume. The plurality of cap wall portions comprise a starboard cap wall portion and an opposing port cap wall portion. An upper portion of the body is slidingly received in the interior volume defined by the cap so that the body and the cap slide relative to one another along a sliding axis. The sliding axis may extend in the upward and downward directions and the cap may translate between an upper position and a lower position along the sliding axis.
In some embodiments, the starboard cap wall portion defines a first starboard slot and a second starboard slot. Each starboard slot may extend in the upward and downward directions. In some embodiments, the starboard cap wall portion includes a starboard leaf spring portion disposed between the first starboard slot and the second starboard slot. The starboard leaf spring portion may have a fixed end and a free end. In some embodiments, the starboard leaf spring portion comprises a starboard ramp engaging portion proximate the free end thereof and the starboard ramp engaging portion contacts the starboard ramp of the body. In some embodiments, the port cap wall portion defines a first port slot and a second port slot. Each port slot may extend in the upward and downward directions. In some embodiments, the port cap wall portion includes a port leaf spring portion disposed between the first port slot and the second port slot. The port leaf spring portion may have a fixed end and a free end. In some embodiments, the port leaf spring portion comprises a port ramp engaging portion proximate the free end thereof and the port ramp engaging portion contacts the port ramp of the body. In some embodiments, when the cap is urged to translate downward along the sliding axis each ramp applies a reaction force to each ramp engaging portion. The orientation of each ramp relative to the sliding axis may be such that each reaction force has an outwardly directed component that acts to deflect each leaf spring portion in a cantilevered fashion and an upwardly directed component. The upwardly directed components may urge the cap to translate in the upward direction along the sliding axis toward the upper position.
In some embodiments, the magazine loader further includes a latch member adapted and configured to hold the magazine in position relative to the body of the magazine loader. In some embodiments, the starboard body wall defines a first slit and a second slit. The first slit and the second slit may each extend in the upward and downward directions. The starboard body wall may comprise a cantilevered beam of the latch member disposed between the first slit and the second slit. The cantilevered beam may have a fixed end and a free end. In some embodiments, a blocking member is fixed to the cantilevered beam proximate the free end thereof. In some embodiments, the blocking member comprises a projection extending in a portward direction beyond a portward facing surface of the cantilevered beam.
In some embodiments, the body comprises a starboard flange extending in the upward direction beyond the starboard body wall and a port flange extending in the upward direction beyond the port body wall. In some embodiments, a throat is defined between the starboard flange and the port flange. The throat may be dimensioned and configured to allow sequential passage of a plurality of individual cartridges into the body cavity. The throat may be dimensioned and configured to allow sequential passage of a plurality of individual cartridges into a magazine having an upper portion extending into the body cavity. In some embodiments, the cap comprises a plunger supported by a top panel of the cap. In some embodiments, the plunger extends downward from the top panel into the interior volume defined by the cap.
In some embodiments, the body comprises a first starboard rail and the first starboard rail extending in the upward direction along a first starboard rail axis. In some embodiments, the first starboard rail projects in the starboard direction beyond a starboard facing surface of the starboard flange. In some embodiments, the first starboard rail extends into a first starboard channel defined by the starboard cap wall portion. In some embodiments, the body comprises a second starboard rail and the second starboard rail extending in the upward direction along a second starboard rail axis. In some embodiments, the second starboard rail extends in the upward direction away from the starboard body wall. In some embodiments, the second starboard rail projects in the starboard direction beyond a starboard facing surface of the starboard flange. In some embodiments, the second starboard rail extends into the second starboard channel defined by the starboard cap wall portion. In some embodiments, the body comprises a first port rail and the first port rail extends in the upward direction along a first port rail axis. In some embodiments, the first port rail extends in the upward direction away from the port body wall. In some embodiments, the first port rail projects in the port direction beyond a port facing surface of the port flange. In some embodiments, the first port rail extends into the first port channel defined by the port cap wall portion. In some embodiments, the body comprises a second port rail and the second port rail extends in the upward direction along a second port rail axis. In some embodiments, the second port rail extends in the upward direction away from the port body wall. In some embodiments, the second port rail projects in the port direction beyond a port facing surface of the port flange. In some embodiments, the second port rail extends into the second port channel defined by the port cap wall portion.
In one or more embodiments, a magazine loader for loading cartridges into a magazine may comprise a cap including a starboard shell and a port shell. The shells of the cap cooperating to define an entrance and an interior volume fluidly communicating with the entrance. In one or more embodiments, the entrance faces the downward direction. The cap comprises a starboard shell wall of the starboard shell and a port shell wall of the port shell disposed on opposite sides of the interior volume.
The cap also comprises a top panel extending in a port direction from the starboard shell wall to the port shell wall and extending in a starboard direction from the port shell wall to the starboard shell wall. The top panel comprises a top panel portion of the starboard shell and a top panel part of the port shell. The top panel defines an aperture. The top panel portion of the starboard shell defines a starboard aperture portion and the top panel part of the port shell defines a port aperture portion.
The cap also comprises a front wall extending in the port direction from the starboard shell wall to the port shell wall and extending in the starboard direction from the port shell wall to the starboard shell wall. In one or more embodiments, the front wall may extend in the upward direction from the entrance to the top panel and extends in the downward direction from the top panel to the entrance. The front wall comprises a front wall portion of the starboard shell and a front wall part of the port shell.
In one or more embodiments, the cap may also comprise a rear wall extending in the port direction from the starboard shell wall to the port shell wall and extending in the starboard direction from the port shell wall to the starboard shell wall. In one or more embodiments, the rear wall may extend in the upward direction from the entrance to the top panel and extending in the downward direction from the top panel to the entrance. The rear wall comprises a rear wall portion of the starboard shell and a rear wall part of the port shell.
The starboard shell wall of the starboard shell extends in the forward direction from the rear wall to the front wall and extends in the rearward direction from the front wall to the rear wall. In one or more embodiments, the starboard shell wall may extend in the upward direction from the entrance to the top panel and extending in the downward direction from the top panel to the entrance. The port shell wall of the port shell extends in the forward direction from the rear wall to the front wall and extends in the rearward direction from the front wall to the rear wall. In one or more embodiments, the port shell wall extends in the upward direction from the entrance to the top panel and extends in the downward direction from the top panel to the entrance.
The starboard shell comprises a plurality of starboard ribs. Each starboard rib protrudes in the port direction beyond a port facing inner surface of the starboard shell wall. The starboard ribs define a first starboard channel and a second starboard channel. The port shell comprises a plurality of port ribs. Each port rib protrudes in the starboard direction beyond a starboard facing inner surface of the port shell wall. The port ribs defining a first port channel and a second port channel.
A body of the magazine loader comprises a starboard body wall and a port body wall disposed on opposite sides of a cavity. In one or more embodiments, the cavity extends in upward and downward directions along a magazine insertion and removal axis. The cavity fluidly communicating with a bottom opening and a top opening defined by the body. In one or more embodiments, the top opening faces the upward direction and the bottom opening faces the downward direction. In one or more embodiments, the cavity is dimensioned and adapted to receive an upper portion of the magazine. The body comprises a front body wall extending in the port direction from the starboard body wall to the port body wall and extending in the starboard direction from the port body wall to the starboard body wall. In one or more embodiments, the front body wall extends in the upward direction from the bottom opening to the top opening and extends in the downward direction from the top opening to the bottom opening.
The body comprises a rear body wall extending in the port direction from the starboard body wall to the port body wall and extending in the starboard direction from the port body wall to the starboard body wall. In one or more embodiments, the rear body wall extends in the upward direction from the bottom opening to the top opening and extends in the downward direction from the top opening to the bottom opening. The starboard body wall extends in the forward direction from the rear body wall to the front body wall and extends in the rearward direction from the front body wall to the rear body wall. The port body wall extends in the forward direction from the rear body wall to the front body wall and extends in the rearward direction from the front body wall to the rear body wall.
The body comprises a starboard flange extending in the upward direction beyond the starboard body wall. The body also comprises a first starboard rail. The first starboard rail extending in the upward direction away from the starboard body wall. The first starboard rail also projecting in the starboard direction beyond a starboard facing surface of the starboard flange. The first starboard rail extends into the first starboard channel defined by the starboard ribs. In one or more embodiments, the body also comprises a second starboard rail. The second starboard rail extending in the upward direction away from the starboard body wall. The second starboard rail projecting in the starboard direction beyond a starboard facing surface of the starboard flange. The second starboard rail extends into the second starboard channel defined by the starboard ribs.
The body of the magazine loader comprises a first port rail. The first port rail extends in the upward direction away from the port body wall. The first port rail projecting in the port direction beyond a port facing surface of the port flange. The first port rail extends into the first port channel defined by the port ribs. The body also comprises a second port rail. The second port rail extending in the upward direction away from the port body wall. The second port rail also projecting in the port direction beyond a port facing surface of the port flange. The second port rail extends into the second port channel defined by the port ribs.
The body of the magazine loader also comprises a starboard ramp located upward of the starboard body wall. The starboard ramp has a starboard ramp surface extending in a portward, upward direction beyond an upper end of the starboard body wall. The body includes at least one starboard stop fixed to an upper end of the starboard ramp. The at least one starboard stop comprises a downward facing surface. The body also comprises a port ramp located upward of the port body wall. The port ramp has a port ramp surface extending in a starboard, upward direction beyond an upper end of the port body wall. The body includes at least one port stop fixed to an upper end of the port ramp. The port stop comprises a downward facing side.
The starboard shell wall defines a first starboard slot and a second starboard slot, each of the slots extending in the upward and downward directions. The starboard shell wall includes a starboard leaf spring portion disposed between the first starboard slot and the second starboard slot. The starboard leaf spring portion comprising a ramp engaging portion having a ramp engaging surface. The ramp engaging portion comprises a starboard protrusion. The starboard protrusion extends in a port direction beyond a port facing inner surface of the starboard leaf spring portion. The ramp engaging surface of the ramp engaging portion contacts the starboard ramp surface of the starboard ramp.
The port shell wall defines a first port slot and a second port slot, each slot extending in the upward and downward directions. The port shell wall includes a port leaf spring part disposed between the first port slot and the second port slot. The port leaf spring part comprises a ramp engaging part having a ramp engaging edge. The ramp engaging part comprises a port protrusion. The port protrusion extending in a starboard direction beyond a starboard facing inner surface of the port leaf spring part. The ramp engaging edge of the ramp engaging part contacts the port ramp surface of the port ramp.
In one or more embodiments, the magazine loader comprises a latch member adapted and configured to hold a magazine in position relative to the body of the magazine loader. In one or more embodiments, a selected one of the body walls defines a first slit and a second slit, each slit extending in the upward and downward directions. The selected one of the body walls also comprises a cantilevered beam disposed between the first slit and the second slit. The cantilevered beam has a fixed end and a free end. A blocking member is fixed to the cantilevered beam proximate the free end thereof. In one or more embodiments, a portion of the blocking member is positioned, dimensioned, and adapted to be received in a depression defined by the magazine.
In embodiments, a magazine loader for loading cartridges in a magazine, the magazine being an elongate four sided enclosure with an open interior, an upper end, with an open top, a spring loaded platform movably constrained in the open interior for pushing cartridges in the magazine to the open top for feeding into a firearm, the magazine loader comprising a body for receiving the magazine and a cap slidingly engaged with the body for loading cartridges into the magazine received by the body; wherein the body has a pair of opposing forward and rearward wall portions and a pair of lateral wall portions, together defining a body interior and an open bottom conformingly sized to receive the upper end of the rifle magazine, an upward slot sized for receiving individual cartridges into the interior of the body; wherein the cap is movably attached to the body, the cap having a downwardly extending plunger that is received in the upward slot and that is configured for pushing a cartridge into the open interior of the magazine received by the body; one of the cap and body having a slide guide tapered in a direction away from said one with respect to a vertical axis of said one and the other of the cap and body having a spring member for engaging the slide guide of said one, whereby the cap and body are urged away from each other by the spring member. In such embodiments, one of the cap and body has two slide guides and the other of the cap and body has two spring members. In embodiments, the spring members are a leaf springs. In embodiments, the leaf springs are each defined by two upright slits in a respective lateral wall portion of said one.
In embodiments, of such magazine loaders, the body has an arm extending upwardly from the body, the cap having sliding surfaces for engaging the arm, the arm having a slot for receiving a loading clip with a plurality of cartridges, the cap raiseable on the arm permitting the loading clip with the plurality of cartridges to be inserted on the arm wherein when the cap is pushed downwardly the plunger engages an uppermost cartridge of the plurality of cartridges of the loading clip and there is a magazine in the open bottom of the loader, the plurality of cartridges of the loading clip are urged into the magazine by the plunger.
In embodiments, a magazine loader for loading cartridges in a magazine, the magazine being an elongate four sided enclosure with an open interior, an upper end, with an open top, a spring loaded platform movably constrained in the open interior for pushing cartridges in the magazine to the open top for feeding into a firearm, the magazine loader comprising a body with an arm pivotally attached to the body, and a cap slidingly engaged with the arm. In embodiments, the body has a pair of opposing forward and rearward wall portions and a pair of lateral wall portions, together defining a body interior and an open bottom conformingly sized to receive the upper end of the magazine, an upward slot for sequentially receiving a plurality of cartridges into the interior of the body and into the magazine therein, the arm having an upward position and defining a slot for receiving a loading clip having a plurality of cartridges. In embodiments, the cap has an upper portion, the upper portion having an aperture conforming to the arm, the cap slidable upwardly and downwardly on the arm, the cap further having a plunger extending downwardly from the upper portion, the plunger positioned for pushing the plurality of cartridges of the loading clip downwardly into the upper end of the magazine when the magazine is received by the body. In such embodiments the arm may have an integral locking portion that releasably secures the arm in the upward position.
The above summary is not intended to describe each illustrated embodiment or every implementation of the present disclosure.
The drawings included in the present application are incorporated into, and form part of, the specification. They illustrate embodiments of the present disclosure and, along with the description, serve to explain the principles of the disclosure. The drawings are only illustrative of certain embodiments and do not limit the disclosure.
While embodiments of the disclosure are amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.
Referring, for example, to
In some embodiments, the starboard cap wall portion 222 defines a first starboard slot 238 and a second starboard slot 240. Each starboard slot may extend in the upward and downward directions. In some embodiments, the starboard cap wall portion 222 includes a starboard leaf spring portion 242 disposed between the first starboard slot 238 and the second starboard slot 240. The starboard leaf spring portion 242 may have a fixed end and a free end. In some embodiments, the starboard leaf spring portion 242 comprises a starboard ramp engaging portion 244 proximate the free end thereof and the starboard ramp engaging portion 244 contacts the starboard ramp 428 of the body 140. In some embodiments, the port cap wall portion 322 defines a first port slot 338 and a second port slot 340. Each port slot may extend in the upward and downward directions. In some embodiments, the port cap wall portion 322 includes a port leaf spring portion 342 disposed between the first port slot 338 and the second port slot 340. The port leaf spring portion may have a fixed end and a free end. In some embodiments, the port leaf spring portion 342 comprises a port ramp engaging portion 344 proximate the free end thereof and the port ramp engaging portion 344 contacts the port ramp 528 of the body 140. In some embodiments, when the cap 120 is urged to translate downward along the sliding axis each ramp applies a reaction force to each ramp engaging portion. The orientation of each ramp relative to the sliding axis may be such that each reaction force has an outwardly directed component that acts to deflect each leaf spring portion in a cantilevered fashion and an upwardly directed component. The upwardly directed components may urge the cap to translate in the upward direction along the sliding axis toward the upper position.
In some embodiments, the magazine loader further includes a latch member 180 adapted and configured to hold the magazine in position relative to the body 140 of the magazine loader 100. In some embodiments, the starboard body wall 420 defines a first slit 182 and a second slit 184. The first slit 182 and the second slit 184 may each extend in the upward and downward directions. The starboard body wall 420 may comprise a cantilevered beam 186 of the latch member 180 disposed between the first slit 182 and the second slit 184. The cantilevered beam 186 may have a fixed end and a free end. In some embodiments, a blocking member 188 is fixed to the cantilevered beam 186 proximate the free end thereof. In some embodiments, the blocking member 188 comprises a projection 188 extending in a portward direction beyond a portward facing surface of the cantilevered beam 186.
In some embodiments, the body 140 comprises a starboard flange 522 extending in the upward direction beyond the starboard body wall 420 and a port flange 522 extending in the upward direction beyond the port body wall 520. In some embodiments, a throat 144 is defined between the starboard flange 522 and the port flange 522. The throat 144 may be dimensioned and configured to allow sequential passage of a plurality of individual cartridges into the body cavity 142. The throat 144 may be dimensioned and configured to allow sequential passage of a plurality of individual cartridges into a magazine having an upper portion extending into the body cavity 142. In some embodiments, the cap 120 comprises a plunger 110 supported by a top panel 128 of the cap 120. In some embodiments, the plunger 110 extends downward from the top panel 128 into the interior volume 124 defined by the cap 120.
In some embodiments, the body 140 comprises a first starboard rail 424 and the first starboard rail 424 extending in the upward direction along a first starboard rail axis. In some embodiments, the first starboard rail 424 projects in the starboard direction beyond a starboard facing surface of the starboard flange 522. In some embodiments, the first starboard rail 424 extends into a first starboard channel 234 defined by the starboard cap wall portion 222. In some embodiments, the body 140 comprises a second starboard rail 426 and the second starboard rail 426 extending in the upward direction along a second starboard rail axis. In some embodiments, the second starboard rail 426 extends in the upward direction away from the starboard body wall 420. In some embodiments, the second starboard rail 426 projects in the starboard direction beyond a starboard facing surface of the starboard flange 522. In some embodiments, the second starboard rail 426 extends into the second starboard channel 236 defined by the starboard cap wall portion 222. In some embodiments, the body 140 comprises a first port rail 524 and the first port rail 524 extends in the upward direction along a first port rail axis. In some embodiments, the first port rail 524 extends in the upward direction away from the port body wall 520. In some embodiments, the first port rail 524 projects in the port direction beyond a port facing surface of the port flange 522. In some embodiments, the first port rail 524 extends into the first port channel 334 defined by the port cap wall portion 322. In some embodiments, the body 140 comprises a second port rail and the second port rail 526 extends in the upward direction along a second port rail axis. In some embodiments, the second port rail extends in the upward direction away from the port body wall 520. In some embodiments, the second port rail 526 projects in the port direction beyond a port facing surface of the port flange 522. In some embodiments, the second port rail 526 extends into the second port channel 336 defined by the port cap wall portion 322.
Referring, for example, to
The shells of the cap 120 cooperating to define an entrance 122 and an interior volume 124 fluidly communicating with the entrance 122. In one or more embodiments, the entrance 122 faces the downward direction. The cap 120 comprises a starboard shell wall 222 of the starboard shell 220 and a port shell wall 322 of the port shell 320 disposed on opposite sides of the interior volume 124.
The cap 120 also comprises a top panel 128 extending in a port direction from the starboard shell wall to the port shell wall 322 and extending in a starboard direction from the port shell wall 322 to the starboard shell wall 222. The top panel comprises a top panel portion 224 of the starboard shell 220 and a top panel part 324 of the port shell 320. The top panel 128 defines an aperture 130. The top panel portion 224 of the starboard shell 220 defines a starboard aperture portion 226 and the top panel part 324 of the port shell 320 defines a port aperture portion 326.
The cap 120 also comprises a front wall 132 extending in the port direction from the starboard shell wall 222 to the port shell wall 322 and extending in the starboard direction from the port shell wall 322 to the starboard shell wall 222. In one or more embodiments, the front wall 132 may extend in the upward direction from the entrance 122 to the top panel 128 and extends in the downward direction from the top panel 128 to the entrance 122. The front wall 132 comprises a front wall portion 228 of the starboard shell 220 and a front wall part 328 of the port shell 320.
In one or more embodiments, the cap 120 may also comprise a rear wall 134 extending in the port direction from the starboard shell wall 222 to the port shell wall 322 and extending in the starboard direction from the port shell wall 322 to the starboard shell wall 222. In one or more embodiments, the rear wall 134 may extend in the upward direction from the entrance 122 to the top panel 128 and extending in the downward direction from the top panel 128 to the entrance 122. The rear wall 134 comprises a rear wall portion 230 of the starboard shell 220 and a rear wall part 330 of the port shell.
The starboard shell wall 222 of the starboard shell 220 extends in the forward direction from the rear wall 134 to the front wall 132 and extends in the rearward direction from the front wall 132 to the rear wall 134. In one or more embodiments, the starboard shell wall 222 may extend in the upward direction from the entrance 122 to the top panel 128 and extending in the downward direction from the top panel 128 to the entrance 122. The port shell wall 322 of the port shell 320 extends in the forward direction from the rear wall 134 to the front wall 132 and extends in the rearward direction from the front wall 132 to the rear wall 134. In one or more embodiments, the port shell wall 322 extends in the upward direction from the entrance 122 to the top panel 128 and extends in the downward direction from the top panel 128 to the entrance 122.
The starboard shell 220 comprises a plurality of starboard ribs 232. Each starboard rib 232 protrudes in the port direction beyond a port facing inner surface of the starboard shell wall 222. The starboard ribs 232 define a first starboard channel 234 and a second starboard channel 236. The port shell 320 comprises a plurality of port ribs 332. Each port rib 332 protrudes in the starboard direction beyond a starboard facing inner surface of the port shell wall 322. The port ribs 332 defining a first port channel 334 and a second port channel 336.
A body 140 of the magazine loader comprises a starboard body wall 420 and a port body wall 520 disposed on opposite sides of a cavity 142. In one or more embodiments, the cavity 142 extends in upward and downward directions along a magazine insertion and removal axis 126. The cavity 142 fluidly communicating with a bottom opening 144 and a top opening 146 defined by the body 140. In one or more embodiments, the top opening 146 faces the upward direction and the bottom opening 144 faces the downward direction. In one or more embodiments, the cavity 142 is dimensioned and adapted to receive an upper portion of the magazine. The body 140 comprises a front body wall 148 extending in the port direction from the starboard body wall 420 to the port body wall 520 and extending in the starboard direction from the port body wall 520 to the starboard body wall 420. In one or more embodiments, the front body wall 148 extends in the upward direction from the bottom opening 144 to the top opening 146 and extends in the downward direction from the top opening 146 to the bottom opening 144.
The body 140 comprises a rear body wall 150 extending in the port direction from the starboard body wall 420 to the port body wall 520 and extending in the starboard direction from the port body wall 520 to the starboard body wall 420. In one or more embodiments, the rear body wall 150 extends in the upward direction from the bottom opening 144 to the top opening 146 and extends in the downward direction from the top opening 146 to the bottom opening 144. The starboard body wall 420 extends in the forward direction from the rear body wall 150 to the front body wall 148 and extends in the rearward direction from the front body wall 148 to the rear body wall 150. The port body wall 520 extends in the forward direction from the rear body wall 150 to the front body wall 148 and extends in the rearward direction from the front body wall 148 to the rear body wall 150.
The body 140 comprises a starboard flange 422 extending in the upward direction beyond the starboard body wall 420. The body 140 also comprises a first starboard rail 424. The first starboard rail 424 extending in the upward direction away from the starboard body wall 420. The first starboard rail 424 also projecting in the starboard direction beyond a starboard facing surface of the starboard flange 422. The first starboard rail 424 extends into the first starboard channel 234 defined by the starboard ribs 232. In one or more embodiments, the body 140 also comprises a second starboard rail 426. The second starboard rail 426 extending in the upward direction away from the starboard body wall 420. The second starboard rail 426 projecting in the starboard direction beyond a starboard facing surface of the starboard flange 422. The second starboard rail 426 extends into the second starboard channel 236 defined by the starboard ribs 232.
The body 140 of the magazine loader 100 comprises a first port rail 524. The first port rail 524 extends in the upward direction away from the port body wall 520. The first port rail 524 projecting in the port direction beyond a port facing surface of the port flange 522. The first port rail 524 extends into the first port channel 334 defined by the port ribs 332. The body 140 also comprises a second port rail 526. The second port rail 526 extending in the upward direction away from the port body wall 520. The second port rail 526 also projecting in the port direction beyond a port facing surface of the port flange 522. The second port rail 526 extends into the second port channel 336 defined by the port ribs 332.
The body 140 of the magazine loader also comprises a starboard ramp 428 located upward of the starboard body wall 420. The starboard ramp 428 has a starboard ramp surface 430 extending in a portward, upward direction beyond an upper end of the starboard body wall 420. The body 140 includes at least one starboard stop 432 fixed to an upper end of the starboard ramp 428. The at least one starboard stop 432 comprises a downward facing surface 434. The body 140 also comprises a port ramp 528 located upward of the port body wall 520. The port ramp 528 has a port ramp surface 530 extending in a starboard, upward direction beyond an upper end of the port body wall 520. The body 140 includes at least one port stop 532 fixed to an upper end of the port ramp 528. The port stop 532 comprises a downward facing side 536.
The starboard shell wall 222 defines a first starboard slot 238 and a second starboard slot 240, each of the slots extending in the upward and downward directions. The starboard shell wall 222 includes a starboard leaf spring portion 242 disposed between the first starboard slot 238 and the second starboard slot 240. The starboard leaf spring portion 242 comprising a ramp engaging portion 244 having a ramp engaging surface 248. The ramp engaging portion 244 comprises a starboard protrusion 246. The starboard protrusion 246 extends in a port direction beyond a port facing inner surface of the starboard leaf spring portion 242. The ramp engaging surface 248 of the ramp engaging portion 244 contacts the starboard ramp surface 430 of the starboard ramp 428.
The port shell wall 322 defines a first port slot 338 and a second port slot 340, each slot extending in the upward and downward directions. The port shell wall 322 includes a port leaf spring part 342 disposed between the first port slot 338 and the second port slot 340. The port leaf spring part 342 comprises a ramp engaging part 344 having a ramp engaging edge 348. The ramp engaging part 344 comprises a port protrusion 346. The port protrusion 346 extending in a starboard direction beyond a starboard facing inner surface of the port leaf spring part 342. The ramp engaging edge 348 of the ramp engaging part 344 contacts the port ramp surface 530 of the port ramp 528.
In one or more embodiments, the magazine loader 100 comprises a latch member 180 adapted and configured to hold a magazine in position relative to the body of the magazine loader 100. In one or more embodiments, a selected one of the body walls defines a first slit 182 and a second slit 184, each slit extending in the upward and downward directions. The selected one of the body walls also comprises a cantilevered beam 186 disposed between the first slit 182 and the second slit 184. The cantilevered beam 186 has a fixed end and a free end. A blocking member 188 is fixed to the cantilevered beam 186 proximate the free end thereof. In one or more embodiments, a portion of the blocking member 188 is positioned, dimensioned, and adapted to be received in a depression defined by the magazine.
In one or more embodiments, the magazine loader 100 also comprises an arm 160 having a proximal end 162 and a distal end 164. The arm 160 defines a trough 166 having a mouth 168. The arm 160 being pivotally coupled to the body 140 near the proximal end 162. In one or more embodiments, the arm 160 is rotatable between a first, upward orientation and second, downward orientation. In one or more embodiments, the distal end 164 of the arm 160 is above the proximal end 162 of the arm 160 when the arm is assuming the first, upward orientation and the distal end 164 of the arm 160 is below the proximal end 162 of the arm 160 when the arm 160 is assuming the second, downward orientation.
The arm 160 comprises a starboard arm rail 260 protruding in the starboard direction beyond a starboard facing side surface 262 of the arm 160. The arm 160 also comprises a port arm rail 360 protruding in the port direction beyond a port facing side surface 362 of the arm 160. In one or more embodiments, the starboard arm rail 260 is disposed in alignment with the first starboard rail 424 of the body 140 when the arm 160 is assuming the first, upward orientation and the port arm rail 360 is disposed in alignment with the first port rail 524 of the body 140 when the arm 160 is assuming the first, upward orientation.
In one or more embodiments, the starboard arm rail 260 extends through the first starboard channel 234 defined by the starboard ribs 232 and the starboard aperture portion 226 defined by the starboard shell 220 and the port arm rail 360 extends through the first port channel 334 defined by the port ribs 332 and the port aperture portion 326 defined by the port shell 320 while the arm 160 is in the first upward orientation. In one or more embodiments, the mouth 168 of the trough 166 opens in the forward direction when the arm 160 is assuming the first, upward orientation and the mouth 168 of the trough 166 opens in the rearward direction when the arm 160 is assuming the second, downward orientation. In one or more embodiments, the trough 166 defined by the arm 160 is disposed in fluid communication with the cavity 142 defined by the body 140 when the arm 160 is assuming the first, upward orientation.
In one or more embodiments, the trough 166 is adapted and dimensioned to receive a cartridge clip. In one or more embodiments, the trough 166 is adapted and dimensioned to receive a stack of cartridges held together by a cartridge clip, the cartridge clip being disposed inside the trough 166 and each cartridge extending through the mouth 168 of the trough 166. In one or more embodiments, the starboard flange 422 comprises a rearward portion 460 extending in the rearward direction beyond the rear wall 134 of the body 140. The rearward portion 460 defines a first hole 462. In one or more embodiments, the port flange 522 comprises a rearward part 560 extending in the rearward direction beyond the rear wall 134 of the body 140. The rearward portion 460 defines a second hole 562. In one or more embodiments, a proximal portion 170 of the arm 160 is disposed between the rearward portion 460 of the starboard flange 422 and the rearward part 560 of the port flange 522. In one or more embodiments, the proximal portion 170 of the arm 160 defines an arm bore 172. In one or more embodiments, a fastener assembly 50 extends through the first hole 462 defined by the rearward portion 460 of the starboard flange 422, the arm bore 172, and the second hole 562 defined by the rearward part 560 of the port flange 522 so that the arm 160 and the body 140 pivot relative to one another about the fastener assembly 50. In one or more embodiments, the fastener assembly 50 comprises a female threaded sleeve 54 and a male threaded post 52.
In one or more embodiments, the magazine loader 100 comprises a plunger member 110 having an upper portion and a lower portion. The lower portion of the plunger member 110 extends in the interior volume defined by the cap. A starboard side of the upper portion of the plunger member forms a mechanically interlocking connection with the starboard shell. A port side of the upper portion of the plunger member 110 forms a mechanically interlocking connection with the port shell.
Referring to
Referring to
Referring to
The ramp engaging edge 348 of the port ramp engaging portion 244 can be seen contacting the port ramp surface 530 of the port ramp 528 in
In the embodiment of
The ramp engaging edge of the port leaf spring portion acts on the port ramp surface of the port ramp with a spring force and the port ramp provides a reaction force RP that is equal and opposite the spring force. The reaction force RP acting on the port leaf spring portion is illustrated using an arrow in
Referring, for example, to
In embodiments, of such magazine loaders, the body 140 has an arm 160 extending upwardly from the body 140, the cap 120 having sliding surfaces for engaging the arm 160, the arm 160 having a slot or trough for receiving a loading clip with a plurality of cartridges, the cap 120 raiseable on the arm 160 permitting the loading clip with the plurality of cartridges to be inserted on the arm 160 wherein when the cap 120 is pushed downwardly the plunger 110 engages an uppermost cartridge of the plurality of cartridges of the loading clip and there is a magazine in the open bottom of the loader, the plurality of cartridges of the loading clip are urged into the magazine by the plunger 110.
In embodiments, an example magazine loader 100 comprises a body 140 with an arm 160 pivotally attached to the body 140, and a cap 120 slidingly engaged with the arm 160. In embodiments, the body 140 has a pair of opposing forward and rearward wall portions and a pair of lateral wall portions, together defining a body interior or cavity 142 and an open bottom conformingly sized to receive the upper end of the magazine, an upward slot or throat 144 for sequentially receiving a plurality of cartridges into the interior or cavity 142 of the body 140 and into the magazine therein. In some embodiments, the arm 160 has an upward position and defines a slot or trough for receiving a loading clip having a plurality of cartridges. In embodiments, the cap 120 has an upper portion, the upper portion having an aperture conforming to the arm 160, the cap 120 slidable upwardly and downwardly on the arm 160. In embodiments, the cap 120 further includes a plunger 110 extending downwardly from the upper portion, the plunger positioned for pushing the plurality of cartridges of the loading clip downwardly into the upper end of the magazine when the magazine is received by the body 140. In such embodiments the arm 160 may have an integral locking portion that releasably secures the arm 160 in the upward position.
The following United States patents are hereby incorporated by reference herein: U.S. Pat. No. 4,464,855, U.S. Pat. No. 4,689,909, U.S. Pat. No. 4,719,715, U.S. Pat. No. 4,827,651, U.S. Pat. No. 4,829,693, U.S. Pat. No. 4,888,902, U.S. Pat. No. 4,993,180, U.S. Pat. No. 5,249,386, U.S. Pat. No. 5,355,606, U.S. Pat. No. 5,377,436, U.S. Pat. No. 6,810,616, U.S. Pat. No. 6,178,683, U.S. Pat. No. 6,817,134, U.S. Pat. No. 7,059,077, U.S. Pat. No. 7,257,919, U.S. Pat. No. 7,383,657, U.S. Pat. No. 7,487,613, U.S. 7,503,138, U.S. Pat. No. 7,637,048, U.S. Pat. No. 7,805,874, U.S. Pat. No. 9,212,859, U.S. Pat. No. 9,239,198, U.S. Pat. No. 9,347,722 and U.S. Pat. No. 9,273,917.
The above references in all sections of this application are herein incorporated by references in their entirety for all purposes. Components illustrated in such patents may be utilized with embodiments herein. Incorporation by reference is discussed, for example, in MPEP section 2163.07(B).
All of the features disclosed in this specification (including the references incorporated by reference, including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive.
Each feature disclosed in this specification (including references incorporated by reference, any accompanying claims, abstract and drawings) may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
The invention is not restricted to the details of the foregoing embodiment(s). The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any incorporated by reference references, any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed The above references in all sections of this application are herein incorporated by references in their entirety for all purposes.
Although specific examples have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement calculated to achieve the same purpose could be substituted for the specific examples shown. This application is intended to cover adaptations or variations of the present subject matter. Therefore, it is intended that the invention be defined by the attached claims and their legal equivalents, as well as the following illustrative aspects. The above described aspects embodiments of the invention are merely descriptive of its principles and are not to be considered limiting. Further modifications of the invention herein disclosed will occur to those skilled in the respective arts and all such modifications are deemed to be within the scope of the invention. The inventors of the magazine loaders described herein are associated with Fred Sparks Design of St. Louis, Mo.
This application claims the benefit of U.S. Provisional Application No. 62/396,738, filed Sep. 19, 2016, the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1085125 | Hoagland | Jan 1914 | A |
1786537 | Holek | Dec 1930 | A |
1840477 | Frommer | Jan 1932 | A |
2014177 | Herlach et al. | Sep 1935 | A |
2137491 | Huff | Nov 1938 | A |
2191130 | Ludwig | Feb 1940 | A |
2210931 | Harris | Aug 1940 | A |
2345593 | Garand | Apr 1944 | A |
2362109 | Whitmore | Nov 1944 | A |
2394033 | Wossum | Feb 1946 | A |
2403012 | McPheters | Jul 1946 | A |
2451521 | Uglum | Oct 1948 | A |
2452600 | Pool et al. | Nov 1948 | A |
2462836 | Barker et al. | Mar 1949 | A |
2466017 | Farber | Apr 1949 | A |
2493048 | Wangrow | Jan 1950 | A |
2514277 | Donallan | Jul 1950 | A |
2531387 | Bilodeau | Nov 1950 | A |
2659173 | Capito | Nov 1953 | A |
2783570 | Kunz | Mar 1957 | A |
2803985 | Hull | Aug 1957 | A |
2830498 | Maillard | Apr 1958 | A |
2834137 | Kunz | May 1958 | A |
2856720 | Kunz | Oct 1958 | A |
2862324 | Ball | Dec 1958 | A |
2885811 | Womble, Jr. | May 1959 | A |
2887811 | Johnson, Jr. | May 1959 | A |
3045525 | Stadelmann | Jul 1962 | A |
3263664 | Bauer et al. | Aug 1966 | A |
3292293 | Chiasera et al. | Dec 1966 | A |
3509655 | Wilhelm | May 1970 | A |
3526028 | Winch | Sep 1970 | A |
3710497 | Musgrave | Jan 1973 | A |
3789531 | Kersten | Feb 1974 | A |
3854232 | Musgrave | Dec 1974 | A |
3939590 | Musgrave | Feb 1976 | A |
3991501 | Larsson | Nov 1976 | A |
4152857 | Ketterer | May 1979 | A |
4291483 | Musgrave | Sep 1981 | A |
4304062 | Pepe et al. | Dec 1981 | A |
4352254 | Peter et al. | Oct 1982 | A |
4392321 | Bosworth | Jul 1983 | A |
4425834 | Lohmann | Jan 1984 | A |
4452002 | Musgrave | Jun 1984 | A |
4464855 | Musgrave | Aug 1984 | A |
4488371 | Boyles | Dec 1984 | A |
4538371 | Howard | Sep 1985 | A |
4564125 | Esslinger | Jan 1986 | A |
D282680 | Boyles | Feb 1986 | S |
4570371 | Mears | Feb 1986 | A |
4574511 | Csongor | Mar 1986 | A |
4614052 | Brown et al. | Sep 1986 | A |
4688344 | Kim | Aug 1987 | A |
4689909 | Howard | Sep 1987 | A |
4706402 | Csongor | Nov 1987 | A |
4707941 | Eastman | Nov 1987 | A |
4719715 | Howard | Jan 1988 | A |
4736667 | Kochevar et al. | Apr 1988 | A |
4739572 | Brandenburg | Apr 1988 | A |
4813169 | Calliebe | Mar 1989 | A |
D300549 | Crow | Apr 1989 | S |
4827651 | Conkey | May 1989 | A |
4829693 | Holmes | May 1989 | A |
4872279 | Boat | Oct 1989 | A |
4879829 | Miller | Nov 1989 | A |
4888902 | Knowles | Dec 1989 | A |
4939862 | Brandenburg et al. | Jul 1990 | A |
4949495 | Mari | Aug 1990 | A |
4967723 | Cutrell | Nov 1990 | A |
4970820 | Miller et al. | Nov 1990 | A |
4993180 | Upchurch | Feb 1991 | A |
5074070 | Kuykendall | Dec 1991 | A |
5129173 | Kuykendall | Jul 1992 | A |
5249386 | Switzer | Oct 1993 | A |
5301449 | Jackson | Apr 1994 | A |
5355606 | Origoni | Oct 1994 | A |
5377436 | Switzer | Jan 1995 | A |
5402594 | Switzer | Apr 1995 | A |
5417003 | Claveau | May 1995 | A |
D370518 | Haywood | Jun 1996 | S |
5669171 | Sally | Sep 1997 | A |
D423628 | Smart et al. | Apr 2000 | S |
6178683 | Williams | Jan 2001 | B1 |
6189254 | Steitz | Feb 2001 | B1 |
6219953 | Bentley | Apr 2001 | B1 |
6286243 | Hinton | Sep 2001 | B1 |
D477047 | Springer | Jul 2003 | S |
6678985 | Pikula | Jan 2004 | B2 |
6754987 | Cheng | Jun 2004 | B1 |
6807764 | Phillips | Oct 2004 | B1 |
6810616 | Tal | Nov 2004 | B2 |
6817134 | Newman | Nov 2004 | B2 |
7059077 | Tal et al. | Jun 2006 | B2 |
7257919 | Farley | Aug 2007 | B1 |
7383657 | Pikielny | Jun 2008 | B2 |
7487613 | Taylor | Feb 2009 | B2 |
7503138 | Tal et al. | Mar 2009 | B2 |
D604792 | Stanley | Nov 2009 | S |
7637048 | Tal et al. | Dec 2009 | B2 |
7805874 | Tal | Oct 2010 | B2 |
8065830 | Twardy | Nov 2011 | B2 |
8234810 | Lee, III | Aug 2012 | B2 |
8356441 | Meinel | Jan 2013 | B2 |
8453366 | Gray | Jun 2013 | B2 |
8484874 | Kim | Jul 2013 | B2 |
D697999 | Firment | Jan 2014 | S |
D700266 | Tal et al. | Feb 2014 | S |
8650792 | Overmars | Feb 2014 | B1 |
8726561 | Hampton | May 2014 | B1 |
8915007 | Williams | Dec 2014 | B1 |
8931199 | Cauley, Jr. et al. | Jan 2015 | B1 |
D728065 | Tal et al. | Apr 2015 | S |
9003687 | Cauley, Jr. et al. | Apr 2015 | B2 |
9057570 | Tal et al. | Jun 2015 | B1 |
9091500 | Kim | Jul 2015 | B1 |
9115943 | Jordan | Aug 2015 | B1 |
9182185 | Hatch | Nov 2015 | B2 |
9212859 | Tal | Dec 2015 | B1 |
9239198 | McPhee | Jan 2016 | B2 |
9273917 | Buckner | Mar 2016 | B1 |
D753781 | Cauley, Jr. et al. | Apr 2016 | S |
9303934 | Kazsuk | Apr 2016 | B1 |
D755325 | Cauley, Jr. et al. | May 2016 | S |
9347722 | Morris | May 2016 | B1 |
9459063 | Gatturna | Oct 2016 | B1 |
D770588 | Cauley, Jr. et al. | Nov 2016 | S |
D790030 | Ulbrich et al. | Jun 2017 | S |
9772152 | Niccum | Sep 2017 | B1 |
D799632 | Ulbrich et al. | Oct 2017 | S |
20030046854 | Urchek | Mar 2003 | A1 |
20030226306 | Hines | Dec 2003 | A1 |
20040020096 | Tal | Feb 2004 | A1 |
20040159035 | Newman | Aug 2004 | A1 |
20040159036 | Newman | Aug 2004 | A1 |
20070017140 | Pikielny | Jan 2007 | A1 |
20070137086 | Price | Jun 2007 | A1 |
20080184608 | Tal | Aug 2008 | A1 |
20100175294 | Meinel | Jul 2010 | A1 |
20120152221 | Meggs | Jun 2012 | A1 |
20120192477 | Kim | Aug 2012 | A1 |
20120222343 | Kim | Sep 2012 | A1 |
20130061505 | Faifer | Mar 2013 | A1 |
20130232843 | Bajuelo | Sep 2013 | A1 |
20140033592 | Fiorucci | Feb 2014 | A1 |
20140223792 | Socivoi | Aug 2014 | A1 |
20140298704 | Niccum | Oct 2014 | A1 |
20140311008 | McPhee | Oct 2014 | A1 |
20140317985 | Cauley, Jr. | Oct 2014 | A1 |
20150316341 | Aguilar | Nov 2015 | A1 |
20150377573 | Niccum | Dec 2015 | A1 |
20160025437 | Slocum | Jan 2016 | A1 |
20160102932 | Cobb | Apr 2016 | A1 |
20170051992 | Cottrell | Feb 2017 | A1 |
20170211902 | Mills | Jul 2017 | A1 |
20170328658 | Butler | Nov 2017 | A1 |
20180058785 | Hefer et al. | Mar 2018 | A1 |
20180066907 | Hefer | Mar 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20180094888 A1 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
62396738 | Sep 2016 | US |