This invention relates generally to oil and gas exploration, and in particular to forming and repairing wellbore casings to facilitate oil and gas exploration.
During oil exploration, a wellbore typically traverses a number of zones within a subterranean formation. Wellbore casings are then formed in the wellbore by radially expanding and plastically deforming tubular members that are coupled to one another by threaded connections. Existing methods for radially expanding and plastically deforming tubular members coupled to one another by threaded connections are not always reliable or produce satisfactory results. In particular, the threaded connections can be damaged during the radial expansion process. Furthermore, the threaded connections between adjacent tubular members, whether radially expanded or not, are typically not sufficiently coupled to permit the transmission of energy through the tubular members from the surface to a downhole location.
The present invention is directed to overcoming one or more of the limitations of the existing processes for radially expanding and plastically deforming tubular members coupled to one another by threaded connections.
According to one aspect of the present invention, a method is provided that includes coupling an end of a first tubular member to an end of a tubular sleeve, coupling an end of a second tubular member to another end of the tubular sleeve, coupling the ends of the first and second tubular members, and radially expanding and plastically deforming the first tubular member and the second tubular member.
According to another aspect of the present invention, an apparatus is provided that includes a tubular sleeve, a first tubular member coupled to an end of the tubular sleeve, and a second tubular member coupled to another end of the tubular sleeve and the first tubular member.
According to another aspect of the present invention, a method of extracting geothermal energy from a subterranean source of geothermal energy is provided that includes drilling a borehole that traverses the subterranean source of geothermal energy, positioning a first casing string within the borehole, radially expanding and plastically deforming the first casing string within the borehole, positioning a second casing string within the borehole that traverses the subterranean source of geothermal energy, overlapping a portion of the second casing string with a portion of the first casing string, radially expanding and plastically deforming the second casing string within the borehole, and extracting geothermal energy from the subterranean source of geothermal energy using the first and second casing strings.
According to another aspect of the present invention, an apparatus for extracting geothermal energy from a subterranean source of geothermal energy is provided that includes a borehole that traverses the subterranean source of geothermal energy, a first casing string positioned within the borehole, and a second casing positioned within the borehole that overlaps with the first casing string that traverses the subterranean source of geothermal energy. The first casing string and the second casing string are radially expanded and plastically deformed within the borehole.
According to another aspect of the present invention, a method is provided that includes coupling an end of a first tubular member to an end of a tubular sleeve, coupling an end of a second tubular member to another end of the tubular sleeve, coupling the ends of the first and second tubular members, injecting a pressurized fluid through the first and second tubular members, determining if any of the pressurized fluid leaks through the coupled ends of the first and second tubular members, and if a predetermined amount of the pressurized fluid leaks through the coupled ends of the first and second tubular members, then coupling a tubular sleeve to the ends of the first and second tubular members and radially expanding and plastically deforming only the portions of the first and second tubular members proximate the tubular sleeve.
According to another aspect of the present invention, a method is provided that includes coupling an end of a first tubular member to an end of a tubular sleeve, coupling an end of a second tubular member to another end of the tubular sleeve, coupling the ends of the first and second tubular members, radially expanding and plastically deforming the first tubular member and the second tubular member, and transmitting energy through the first and second tubular members.
According to another aspect of the present invention, a system is provided that includes a source of energy, a borehole formed in the earth, a first tubular member positioned within the borehole operably coupled to the source of energy, a second tubular member positioned within the borehole coupled to the first tubular member, and a tubular sleeve positioned within the borehole coupled to the first and second tubular members. The first tubular member, second tubular member, and the tubular sleeve are plastically deformed into engagement with one another.
According to another aspect of the present invention, a method of operating a well for extracting hydrocarbons from a subterranean formation is provided that includes drilling a borehole into the earth that traverses the subterranean formation, positioning a wellbore casing in the borehole, transmitting energy through the wellbore casing, and extracting hydrocarbons from the subterranean formation.
According to another aspect of the present invention, a method of extracting fluidic materials from first and second producing subterranean formations traversed by a borehole is provided that includes coupling an end of a first tubular member to an end of a tubular sleeve, coupling an end of a second tubular member to another end of the first tubular sleeve, coupling the ends of the first and second tubular members, positioning the coupled first tubular member, second tubular member and first tubular sleeve within the borehole proximate the first producing subterranean formation, radially expanding and plastically deforming the first tubular member, the second tubular member, and the first tubular sleeve within the borehole, coupling an end of a third tubular member to an end of a second tubular sleeve, coupling an end of a fourth tubular member to another end of the second tubular sleeve, coupling the ends of the third and fourth tubular members, positioning the coupled third tubular member, fourth tubular member and second tubular sleeve within the radially expanded and coupled first tubular member, second tubular member, and first tubular sleeve and the borehole proximate the second producing subterranean formation, radially expanding and plastically deforming the third tubular member, the fourth tubular member, and the second tubular sleeve within the borehole, extracting fluidic materials from the first producing subterranean formation through an annular passage defined between the radially expanded and coupled first tubular member, second tubular member, and first tubular sleeve and the radially expanded and coupled third tubular member, fourth tubular member, and second tubular sleeve, and extracting fluidic materials from the second producing subterranean formation through a passage defined within the radially expanded and coupled third tubular member, fourth tubular member, and second tubular sleeve.
According to another aspect of the present invention, a system for extracting fluidic materials from first and second producing subterranean formations traversed by a borehole has been described that includes means for coupling an end of a first tubular member to an end of a tubular sleeve, means for coupling an end of a second tubular member to another end of the first tubular sleeve, means for coupling the ends of the first and second tubular members, means for positioning the coupled first tubular member, second tubular member and first tubular sleeve within the borehole proximate the first producing subterranean formation, means for radially expanding and plastically deforming the first tubular member, the second tubular member, and the first tubular sleeve within the borehole, means for coupling an end of a third tubular member to an end of a second tubular sleeve, means for coupling an end of a fourth tubular member to another end of the second tubular sleeve, means for coupling the ends of the third and fourth tubular members, means for positioning the coupled third tubular member, fourth tubular member and second tubular sleeve within the radially expanded and coupled first tubular member, second tubular member, and first tubular sleeve and the borehole proximate the second producing subterranean formation, means for radially expanding and plastically deforming the third tubular member, the fourth tubular member, and the second tubular sleeve within the borehole, means for extracting fluidic materials from the first producing subterranean formation through an annular passage defined between the radially expanded and coupled first tubular member, second tubular member, and first tubular sleeve and the radially expanded and coupled third tubular member, fourth tubular member, and second tubular sleeve, and means for extracting fluidic materials from the second producing subterranean formation through a passage defined within the radially expanded and coupled third tubular member, fourth tubular member, and second tubular sleeve.
a is a fragmentary cross-sectional illustration of a first tubular member having an internally threaded connection at an end portion.
b is a fragmentary cross-sectional illustration of the placement of a tubular sleeve onto the end portion of the first tubular member of
c is a fragmentary cross-sectional illustration of the coupling of an externally threaded connection at an end portion of a second tubular member to the internally threaded connection at the end portion of the first tubular member of
d is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of the first tubular member of
e is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of a first tubular member having an internally threaded connection at an end portion, an alternative embodiment of a tubular sleeve supported by the end portion of the first tubular member, and a second tubular member having an externally threaded portion coupled to the internally threaded portion of the first tubular member.
b is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of a first tubular member having an internally threaded connection at an end portion, an alternative embodiment of a tubular sleeve supported by the end portion of the first tubular member, and a second tubular member having an externally threaded portion coupled to the internally threaded portion of the first tubular member.
b is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of a first tubular member having an internally threaded connection at an end portion, an alternative embodiment of a tubular sleeve having an external sealing element supported by the end portion of the first tubular member, and a second tubular member having an externally threaded portion coupled to the internally threaded portion of the first tubular member.
b is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of a first tubular member having an internally threaded connection at an end portion, an alternative embodiment of a tubular sleeve supported by the end portion of the first tubular member, and a second tubular member having an externally threaded portion coupled to the internally threaded portion of the first tubular member.
b is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross sectional illustration of an alternative embodiment of a tubular sleeve.
b is a fragmentary cross sectional illustration of an alternative embodiment of a tubular sleeve.
c is a fragmentary cross sectional illustration of an alternative embodiment of a tubular sleeve.
d is a fragmentary cross sectional illustration of an alternative embodiment of a tubular sleeve.
a is a fragmentary cross-sectional illustration of a first tubular member having an internally threaded connection at an end portion.
b is a fragmentary cross-sectional illustration of the placement of an alternative embodiment of a tubular sleeve onto the end portion of the first tubular member of
c is a fragmentary cross-sectional illustration of the coupling of an externally threaded connection at an end portion of a second tubular member to the internally threaded connection at the end portion of the first tubular member of
d is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of the first tubular member of
e is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of a first tubular member having an internally threaded connection at an end portion.
b is a fragmentary cross-sectional illustration of the placement of an alternative embodiment of a tubular sleeve onto the end portion of the first tubular member of
c is a fragmentary cross-sectional illustration of the coupling of the tubular sleeve of
d is a fragmentary cross-sectional illustration of the coupling of an externally threaded connection at an end portion of a second tubular member to the internally threaded connection at the end portion of the first tubular member of
e is a fragmentary cross-sectional illustration of the coupling of the tubular sleeve of
f is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of the first tubular member of
g is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of a first tubular member having an internally threaded connection at an end portion.
b is a fragmentary cross-sectional illustration of the placement of an alternative embodiment of a tubular sleeve onto the end portion of the first tubular member of
c is a fragmentary cross-sectional illustration of the coupling of an externally threaded connection at an end portion of a second tubular member to the internally threaded connection at the end portion of the first tubular member of
d is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of the first tubular member of
e is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of a first tubular member having an internally threaded connection at an end portion.
b is a fragmentary cross-sectional illustration of the placement of an alternative embodiment of a tubular sleeve onto the end portion of the first tubular member of
c is a fragmentary cross-sectional illustration of the coupling of an externally threaded connection at an end portion of a second tubular member to the internally threaded connection at the end portion of the first tubular member of
d is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of the first tubular member of
e is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of a first tubular member having an internally threaded connection at an end portion.
b is a fragmentary cross-sectional illustration of the placement of an alternative embodiment of a tubular sleeve onto the end portion of the first tubular member of
c is a fragmentary cross-sectional illustration of the coupling of an externally threaded connection at an end portion of a second tubular member to the internally threaded connection at the end portion of the first tubular member of
d is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of the first tubular member of
e is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of a first tubular member having an internally threaded connection at an end portion.
b is a fragmentary cross-sectional illustration of the placement of an alternative embodiment of a tubular sleeve onto the end portion of the first tubular member of
c is a fragmentary cross-sectional illustration of the coupling of an externally threaded connection at an end portion of a second tubular member to the internally threaded connection at the end portion of the first tubular member of
d is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of the first tubular member of
e is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of the coupling of an end portion of an alternative embodiment of a tubular sleeve onto the end portion of a first tubular member.
b is a fragmentary cross-sectional illustration of the coupling of an end portion of a second tubular member to the other end portion of the tubular sleeve of
c is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of the first tubular member of
d is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of an end portion of a first tubular member.
b is a fragmentary cross-sectional illustration of the coupling of an end portion of an alternative embodiment of a tubular sleeve onto the end portion of the first tubular member of
c is a fragmentary cross-sectional illustration of the coupling of an end portion of a second tubular member to the other end portion of the tubular sleeve of
d is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of a portion of the first tubular member of
e is a fragmentary cross sectional of the continued radial expansion and plastic deformation of the threaded connection between the first and second tubular members and the tubular sleeve of
a is a fragmentary cross-sectional illustration of the coupling of an internally threaded end portion of a first tubular member to an externally threaded end portion of a second tubular member including a protective sleeve coupled to the end portions of the first and second tubular member.
b is a cross-sectional illustration of the first and second tubular members and the protective sleeve following the radial expansion of the first and second tubulars and the protective sleeve.
c is a fragmentary cross-sectional illustration of an alternative embodiment that includes a metallic foil for amorphously bonding the first and second tubular members of
a is a fragmentary cross-sectional illustration of the coupling of an internally threaded end portion of a first tubular member to an externally threaded end portion of a second tubular member including a protective sleeve coupled to the end portions of the first and second tubular member.
b is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of the threaded portions of the first and second tubular members using an adjustable expansion cone.
c is an enlarged fragmentary cross-sectional illustration of the threaded portions of the first and second tubular members and the protective sleeve prior to the radial expansion and plastic deformation of the threaded portions.
d is an enlarged fragmentary cross-sectional illustration of the threaded portions of the first and second tubular members and the protective sleeve after the radial expansion and plastic deformation of the threaded portions.
a is a fragmentary cross-sectional illustration of the coupling of an internally threaded end portion of a first tubular member to an externally threaded end portion of a second tubular member including a protective sleeve coupled to the end portions of the first and second tubular member.
b is a fragmentary cross-sectional illustration of the radial expansion and plastic deformation of the threaded portions of the first and second tubular members using a rotary expansion tool.
Referring to
In an exemplary embodiment, the internally threaded connection 12 of the end portion 14 of the first tubular member 10 is a box connection, and the externally threaded connection 24 of the end portion 26 of the second tubular member 28 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 16 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members, 10 and 28. In this manner, during the threaded coupling of the first and second tubular members, 10 and 28, fluidic materials within the first and second tubular members may be vented from the tubular members.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 16 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 16 may be maintained in circumferential tension and the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be maintained in circumferential compression.
In several exemplary embodiments, the first and second tubular members, 10 and 28, are radially expanded and plastically deformed using the expansion cone 34 in a conventional manner and/or using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, attorney docket no. 25791.9.02, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No.60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (21) U.S. provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (23) U.S. provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (24) U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (25) U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (26) U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (27) U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, (28) U.S. provisional patent application Ser. No. 60/3318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (29) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (30) U.S. utility patent application Ser. No. 10/016,467, attorney docket no. 25791.70, filed on Dec. 10, 2001; (31) U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001; (32) U.S. provisional patent application Ser. No. 60/346,309, attorney docket no 25791.92, filed on Jan. 7, 2002; (33) U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002; (34) U.S. provisional patent application Ser. No. 60/380,147, attorney docket no. 25791.104, filed on May. 6, 2002; (35) U.S. provisional patent application Ser. No. 60/387,486, attorney docket no. 25791.107, filed on Jun. 10, 2002; (36) U.S. provisional patent application Ser. No. 60/387,961, attorney docket no. 25791.108, filed on Jun. 12, 2002; (37) U.S. provisional patent application Ser. No. 60/391,703, attorney docket no. 25791.90, filed on Jun. 26, 2002; and (38) U.S. provisional patent application Ser. No. 60/397,284, attorney docket no. 25791.106, filed on Jul. 19, 2002, the disclosures of which are incorporated herein by reference.
In several alternative embodiments, the first and second tubular members, 10 and 28, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization and/or roller expansion devices such as, for example, that disclosed in U.S. patent application publication no. US 2001/0045284 A1, the disclosure of which is incorporated herein by reference.
The use of the tubular sleeve 16 during (a) the coupling of the first tubular member 10 to the second tubular member 28, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 16 protects the exterior surfaces of the end portions, 14 and 26, of the first and second tubular members, 10 and 28, during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the end portions, 14 and 26, of the first and second tubular member, 10 and 28, are prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 16 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 28 to the first tubular member 10. In this manner, misalignment that could result in damage to the threaded connections, 12 and 24, of the first and second tubular members, 10 and 28, may be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 16 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 16 can be easily rotated, that would indicate that the first and second tubular members, 10 and 28, are not fully threadably coupled and in intimate contact with the internal flange 18 of the tubular sleeve. Furthermore, the tubular sleeve 16 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 10 and 28. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 14 and 26, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 16 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 14 and 26, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 12 and 24, of the first and second tubular members, 10 and 28, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 16 may be maintained in circumferential tension and the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the tubular sleeve 16 may also increase the collapse strength of the end portions, 14 and 26, of the first and second tubular members, 10 and 28.
Referring to
In an exemplary embodiment, the first and second tubular members, 10 and 28, and the tubular sleeve 110 may then be positioned within the structure 32 and radially expanded and plastically deformed, for example, by moving an expansion cone 34 through the interiors of the first and second tubular members. In an exemplary embodiment, following the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 110 may be maintained in circumferential tension and the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be maintained in circumferential compression.
The use of the tubular sleeve 110 during (a) the coupling of the first tubular member 10 to the second tubular member 28, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 110 protects the exterior surface of the end portion 14 of the first tubular member 10 during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the end portion 14 of the first tubular member 10 is prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 110 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 110 can be easily rotated, that would indicate that the first and second tubular members, 10 and 28, are not fully threadably coupled and in intimate contact with the internal flange 112 of the tubular sleeve. Furthermore, the tubular sleeve 110 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 10 and 28. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 14 and 26, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 110 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surface of the end portion 14 of the first tubular member. In this manner, fluidic materials are prevented from passing through the threaded connections, 12 and 24, of the first and second tubular members, 10 and 28, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 110 may be maintained in circumferential tension and the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve.
Referring to
In an exemplary embodiment, the first and second tubular members, 10 and 28, and the tubular sleeve 210 may then be positioned within the structure 32 and radially expanded and plastically deformed, for example, by moving an expansion cone 34 through the interiors of the first and second tubular members. In an exemplary embodiment, following the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 210 may be maintained in circumferential tension and the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be maintained in circumferential compression.
The use of the tubular sleeve 210 during (a) the coupling of the first tubular member 10 to the second tubular member 28, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 210 protects the exterior surfaces of the end portions, 14 and 26, of the first and second tubular members, 10 and 28, during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the end portions, 14 and 26, of the first and second tubular members, 10 and 28, is prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 210 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 210 can be easily rotated, that would indicate that the first and second tubular members, 10 and 28, are not fully threadably coupled and in intimate contact with the internal flange 212 of the tubular sleeve. Furthermore, the tubular sleeve 210 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 10 and 28. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 210 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 14 and 26, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 12 and 24, of the first and second tubular members, 10 and 28, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 210 may be maintained in circumferential tension and the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the tubular sleeve 210 may also increase the collapse strength of the end portions, 14 and 26, of the first and second tubular members, 10 and 28.
Referring to
In an exemplary embodiment, the first and second tubular members, 10 and 28, and the tubular sleeve 310 may then be positioned within the structure 32 and radially expanded and plastically deformed, for example, by moving an expansion cone 34 through the interiors of the first and second tubular members. In an exemplary embodiment, following the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 310 may be maintained in circumferential tension and the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be maintained in circumferential compression. Furthermore, in an exemplary embodiment, following the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the annular sealing member 318 circumferentially engages the interior surface of the structure 32 thereby preventing the passage of fluidic materials through the annulus between the tubular sleeve 310 and the structure. In this manner, the tubular sleeve 310 may provide an expandable packer element.
The use of the tubular sleeve 310 during (a) the coupling of the first tubular member 10 to the second tubular member 28, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 310 protects the exterior surfaces of the end portions, 14 and 26, of the first and second tubular members, 10 and 28, during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the end portions, 14 and 26, of the first and second tubular members, 10 and 28, is prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 310 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 310 can be easily rotated, that would indicate that the first and second tubular members, 10 and 28, are not fully threadably coupled and in intimate contact with the internal flange 312 of the tubular sleeve. Furthermore, the tubular sleeve 310 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 10 and 28. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 310 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 14 and 26, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 12 and 24, of the first and second tubular members, 10 and 28, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 310 may be maintained in circumferential tension and the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, because, following the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the annular sealing member 318 may circumferentially engage the interior surface of the structure 32, the tubular sleeve 310 may provide an expandable packer element. In addition, the tubular sleeve 318 may also increase the collapse strength of the end portions, 14 and 26, of the first and second tubular members, 10 and 28.
Referring to
In several exemplary embodiments, the tubular sleeve 410 may be plastic, ceramic, elastomeric, composite and/or a frangible material.
In an exemplary embodiment, the first and second tubular members, 10 and 28, and the tubular sleeve 410 may then be positioned within the structure 32 and radially expanded and plastically deformed, for example, by moving an expansion cone 34 through the interiors of the first and second tubular members. In an exemplary embodiment, following the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 410 may be maintained in circumferential tension and the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be maintained in circumferential compression. Furthermore, in an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 310 may be broken off of the first and second tubular members.
The use of the tubular sleeve 410 during (a) the coupling of the first tubular member 10 to the second tubular member 28, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 410 protects the exterior surfaces of the end portions, 14 and 26, of the first and second tubular members, 10 and 28, during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the end portions, 14 and 26, of the first and second tubular members, 10 and 28, is prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 410 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 410 can be easily rotated, that would indicate that the first and second tubular members, 10 and 28, are not fully threadably coupled and in intimate contact with the internal flange 412 of the tubular sleeve. Furthermore, the tubular sleeve 410 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 10 and 28. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 410 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 14 and 26, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 12 and 24, of the first and second tubular members, 10 and 28, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 410 may be maintained in circumferential tension and the end portions, 14 and 26, of the first and second tubular members, 10 and 28, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, because, during the radial expansion and plastic deformation of the first and second tubular members, 10 and 28, the tubular sleeve 410 may be broken off of the first and second tubular members, the final outside diameter of the first and second tubular members may more closely match the inside diameter of the structure 32. In addition, the tubular sleeve 410 may also increase the collapse strength of the end portions, 14 and 26, of the first and second tubular members, 10 and 28.
Referring to
Referring to
Referring to
Referring to
Referring to
As illustrated in
In an exemplary embodiment, the internally threaded connection 912 of the end portion 914 of the first tubular member 910 is a box connection, and the externally threaded connection 934 of the end portion 936 of the second tubular member 938 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 918 is at least approximately 0.020″ greater than the outside diameters of the end portions, 914 and 936, of the first and second tubular members, 910 and 938. In this manner, during the threaded coupling of the first and second tubular members, 910 and 938, fluidic materials within the first and second tubular members may be vented from the tubular members.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 910 and 938, the tubular sleeve 918 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 918 may be maintained in circumferential tension and the end portions, 914 and 936, of the first and second tubular members, 910 and 938, may be maintained in circumferential compression.
The use of the tubular sleeve 918 during (a) the coupling of the first tubular member 910 to the second tubular member 938, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 918 protects the exterior surfaces of the end portions, 914 and 936, of the first and second tubular members, 910 and 938, during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the end portions, 914 and 936, of the first and second tubular member, 910 and 938, are prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 918 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 938 to the first tubular member 910. In this manner, misalignment that could result in damage to the threaded connections, 912 and 934, of the first and second tubular members, 910 and 938, may be avoided. Furthermore, the tubular sleeve 918 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 910 and 938. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 914 and 936, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 910 and 938, the tubular sleeve 918 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 914 and 936, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 912 and 934, of the first and second tubular members, 910 and 938, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 910 and 938, the tubular sleeve 918 may be maintained in circumferential tension and the end portions, 914 and 936, of the first and second tubular members, 910 and 938, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the annular sealing members, 920 and 922, of the tubular sleeve 918 may provide a fluid tight seal between the tubular sleeve and the end portions, 914 and 936, of the first and second tubular members, 910 and 938. Furthermore, the tubular sleeve 918 may also increase the collapse strength of the end portions, 914 and 936, of the first and second tubular members, 910 and 938.
Referring to
As illustrated in
In an exemplary embodiment, the internally threaded connection 1012 of the end portion 1014 of the first tubular member 1010 is a box connection, and the externally threaded connection 1032 of the end portion 1034 of the second tubular member 1036 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 1018 is at least approximately 0.020″ greater than the outside diameters of the end portions, 1014 and 1034, of the first and second tubular members, 1010 and 1036. In this manner, during the threaded coupling of the first and second tubular members, 1010 and 1036, fluidic materials within the first and second tubular members may be vented from the tubular members.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 1010 and 1036, the tubular sleeve 1018 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 1018 may be maintained in circumferential tension and the end portions, 1014 and 1034, of the first and second tubular members, 1010 and 1036, may be maintained in circumferential compression.
The use of the tubular sleeve 1018 during (a) the coupling of the first tubular member 1010 to the second tubular member 1036, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 1018 protects the exterior surfaces of the end portions, 1014 and 1034, of the first and second tubular members, 1010 and 1036, during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the end portions, 1014 and 1034, of the first and second tubular members, 1010 and 1036, are prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 1018 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 1036 to the first tubular member 1010. In this manner, misalignment that could result in damage to the threaded connections, 1012 and 1032, of the first and second tubular members, 1010 and 1036, may be avoided. Furthermore, the tubular sleeve 1018 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 1010 and 1036. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 1014 and 1034, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 1010 and 1036, the tubular sleeve 1018 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 1014 and 1034, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 1012 and 1032, of the first and second tubular members, 1010 and 1036, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 1010 and 1036, the tubular sleeve 1018 may be maintained in circumferential tension and the end portions, 1014 and 1034, of the first and second tubular members, 1010 and 1036, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the annular sealing members, 1020 and 1022, of the tubular sleeve 1018 may provide a fluid tight seal between the tubular sleeve and the end portions, 1014 and 1034, of the first and second tubular members, 1010 and 1036. Furthermore, the tubular sleeve 1018 may also increase the collapse strength of the end portions, 1014 and 1034, of the first and second tubular members, 1010 and 1036.
Referring to
As illustrated in
In an exemplary embodiment, the internally threaded connection 1112 of the end portion 1114 of the first tubular member 1110 is a box connection, and the externally threaded connection 1124 of the end portion 1126 of the second tubular member 1128 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 1116 is at least approximately 0.020″ greater than the outside diameters of the end portions, 1114 and 1126, of the first and second tubular members, 1110 and 1128. In this manner, during the threaded coupling of the first and second tubular members, 1110 and 1128, fluidic materials within the first and second tubular members may be vented from the tubular members.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 1110 and 1128, the tubular sleeve 1116 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 1116 maybe maintained in circumferential tension and the end portions, 1114 and 1126, of the first and second tubular members, 1110 and 1128, may be maintained in circumferential compression.
The use of the tubular sleeve 1116 during (a) the coupling of the first tubular member 1110 to the second tubular member 1128, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 1116 protects the exterior surfaces of the end portions, 1114 and 1126, of the first and second tubular members, 1110 and 1128, during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the end portions, 1114 and 1126, of the first and second tubular members, 1110 and 1128, are prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 1116 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 1128 to the first tubular member 1110. In this manner, misalignment that could result in damage to the threaded connections, 1112 and 1124, of the first and second tubular members, 1110 and 1128, may be avoided. Furthermore, the tubular sleeve 1116 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 1110 and 1128. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 1114 and 1126, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 1110 and 1128, the tubular sleeve 1116 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 1114 and 1128, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 1112 and 1124, of the first and second tubular members, 1110 and 1128, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 1110 and 1128, the tubular sleeve 1116 may be maintained in circumferential tension and the end portions, 1114 and 1126, of the first and second tubular members, 1110 and 1128, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the tubular sleeve 1116 may also increase the collapse strength of the end portions, 1114 and 1126, of the first and second tubular members.
Referring to
As illustrated in
In an exemplary embodiment, the internally threaded connection 1212 of the end portion 1214 of the first tubular member 1210 is a box connection, and the externally threaded connection 1228 of the end portion 1230 of the second tubular member 1232 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 1216 is at least approximately 0.020″ greater than the outside diameters of the end portions, 1214 and 1230, of the first and second tubular members, 1210 and 1232. In this manner, during the threaded coupling of the first and second tubular members, 1210 and 1232, fluidic materials within the first and second tubular members may be vented from the tubular members.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 1210 and 1232, the tubular sleeve 1216 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 1216 maybe maintained in circumferential tension and the end portions, 1214 and 1230, of the first and second tubular members, 1210 and 1232, may be maintained in circumferential compression.
The use of the tubular sleeve 1216 during (a) the coupling of the first tubular member 1210 to the second tubular member 1232, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 1216 protects the exterior surfaces of the end portions, 1214 and 1230, of the first and second tubular members, 1210 and 1232, during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the end portions, 1214 and 1230, of the first and second tubular members, 1210 and 1232, are prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 1216 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 1232 to the first tubular member 1210. In this manner, misalignment that could result in damage to the threaded connections, 1212 and 1228, of the first and second tubular members, 1210 and 1232, may be avoided. Furthermore, the tubular sleeve 1216 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 1210 and 1232. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 1214 and 1230, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 1210 and 1232, the tubular sleeve 1216 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 1214 and 1230, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 1212 and 1228, of the first and second tubular members, 1210 and 1232, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 1210 and 1232, the tubular sleeve 1216 may be maintained in circumferential tension and the end portions, 1214 and 1230, of the first and second tubular members, 1210 and 1232, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the tubular sleeve 1216 may also increase the collapse strength of the end portions, 1214 and 1230, of the first and second tubular members 1210 and 1232.
Referring to
As illustrated in
In an exemplary embodiment, the internally threaded connection 1312 of the end portion 1314 of the first tubular member 1310 is a box connection, and the externally threaded connection 1324 of the end portion 1326 of the second tubular member 1328 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 1316 is at least approximately 0.020″ greater than the outside diameters of the end portions, 1314 and 1326, of the first and second tubular members, 1310 and 1328. In this manner, during the threaded coupling of the first and second tubular members, 1310 and 1328, fluidic materials within the first and second tubular members may be vented from the tubular members.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 1310 and 1328, the tubular sleeve 1316 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 1316 may be maintained in circumferential tension and the end portions, 1314 and 1326, of the first and second tubular members, 1310 and 1328, maybe maintained in circumferential compression.
The use of the tubular sleeve 1316 during (a) the coupling of the first tubular member 1310 to the second tubular member 1328, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 1316 protects the exterior surfaces of the end portions, 1314 and 1326, of the first and second tubular members, 1310 and 1328, during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the end portions, 1314 and 1326, of the first and second tubular members, 1310 and 1328, are prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 1316 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 1328 to the first tubular member 1310. In this manner, misalignment that could result in damage to the threaded connections, 1312 and 1324, of the first and second tubular members, 1310 and 1328, may be avoided. Furthermore, the tubular sleeve 1316 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 1310 and 1328. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 1314 and 1326, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 1310 and 1328, the tubular sleeve 1316 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 1314 and 1326, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 1312 and 1324, of the first and second tubular members, 1310 and 1328, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 1310 and 1328, the tubular sleeve 1316 may be maintained in circumferential tension and the end portions, 1314 and 1326, of the first and second tubular members, 1310 and 1328, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the tubular sleeve 1316 may also increase the collapse strength of the end portions, 1314 and 1326, of the first and second tubular members, 1310 and 1328. [001431 Referring to
In an exemplary embodiment, the internally threaded connection 1412 of the end portion 1414 of the first tubular member 1410 is a box connection, and the externally threaded connection 1426 of the end portion 1428 of the second tubular member 1430 is a pin connection. In an exemplary embodiment, the external diameter of the tubular sleeve 1418 is at least approximately 0.020″ less than the inside diameters of the first and second tubular members, 1410 and 1430. In this manner, during the threaded coupling of the first and second tubular members, 1410 and 1430, fluidic materials within the first and second tubular members may be vented from the tubular members.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 1410 and 1430, the tubular sleeve 1418 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 1418 may be maintained in circumferential compression and the end portions, 1414 and 1428, of the first and second tubular members, 1410 and 1430, may be maintained in circumferential tension.
In several alternative embodiments, the first and second tubular members, 1410 and 1430, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization and/or roller expansion devices.
The use of the tubular sleeve 1418 during (a) the coupling of the first tubular member 1410 to the second tubular member 1430, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 1418 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 1430 to the first tubular member 1410. In this manner, misalignment that could result in damage to the threaded connections, 1412 and 1426, of the first and second tubular members, 1410 and 1430, may be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 1418 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 1418 can be easily rotated, that would indicate that the first and second tubular members, 1410 and 1430, are not fully threadably coupled and in intimate contact with the internal flange 1420 of the tubular sleeve. Furthermore, the tubular sleeve 1418 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 1410 and 1430. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 1414 and 1428, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 1410 and 1430, the tubular sleeve 1418 may provide a fluid tight metal-to-metal seal between the exterior surface of the tubular sleeve and the interior surfaces of the end portions, 1414 and 1428, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 1412 and 1426, of the first and second tubular members, 1410 and 1430, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 1410 and 1430, the tubular sleeve 1418 may be maintained in circumferential compression and the end portions, 1414 and 1428, of the first and second tubular members, 1410 and 1430, may be maintained in circumferential tension, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the tubular sleeve 1418 may also increase the collapse strength of the end portions, 1414 and 1428, of the first and second tubular members, 1410 and 1430.
Referring to
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 1510 and 1516, the tubular sleeve 1512 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 1512 may be maintained in circumferential tension and the ends of the first and second tubular members, 1510 and 1516, may be maintained in circumferential compression.
The use of the tubular sleeve 1512 during (a) the placement of the first and second tubular members, 1510 and 1516, in the structure 32 and (b)the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 1512 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 1510 and 1516. In this manner, failure modes such as, for example, longitudinal cracks in the ends of the first and second tubular members, 1510 and 1516, may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 1510 and 1516, the tubular sleeve 1512 may provide a fluid tight metal-to-metal seal between the exterior surface of the tubular sleeve and the interior surfaces of the end of the first and second tubular members. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 1510 and 1516, the tubular sleeve 1512 may be maintained in circumferential compression and the ends of the first and second tubular members, 1510 and 1516, may be maintained in circumferential tension, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the tubular sleeve 1512 may also increase the collapse strength of the end portions of the first and second tubular members, 1510 and 1516.
Referring to
As illustrated in
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 1610 and 1632, the tubular sleeve 1616 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 1616 may be maintained in circumferential tension and the ends of the first and second tubular members, 1610 and 1632, may be maintained in circumferential compression.
The use of the tubular sleeve 1616 during (a) the placement of the first and second tubular members, 1610 and 1632, in the structure 32, and (b)the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 1616 protects the exterior surfaces of the ends of the first and second tubular members, 1610 and 1632, during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the ends of the first and second tubular member, 1610 and 1632, are prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 1616 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 1610 and 1632. In this manner, failure modes such as, for example, longitudinal cracks in the ends of the first and second tubular members, 1610 and 1632, may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 1610 and 1632, the tubular sleeve 1616 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the ends of the first and second tubular members. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 1610 and 1632, the tubular sleeve 1616 may be maintained in circumferential tension and the ends of the first and second tubular members, 1610 and 1632, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the tubular sleeve 1616 may also increase the collapse strength of the end portions of the first and second tubular members, 1610 and 1632.
Referring to
A tubular sleeve 1732 that defines a passage 1734 for receiving the end portions, 1706 and 1722, of the first and second tubular members, 1700 and 1716, respectively, includes an internal flange 1736 that mates with and is received within an annular recess 1738 that is defined between an end face 1740 of the end portion of the first tubular member and an end face 1742 of the recessed portion 1720 of the end portion of the second tubular member. In this manner, the tubular sleeve 1732 is coupled to the first and second tubular members, 1700 and 1716. The tubular sleeve 1732 further includes first and second internal annular recesses, 1744 and 1746, internal tapered flanges, 1748 and 1750, and external tapered flanges, 1752 and 1754.
Sealing members, 1756 and 1758, are received within and mate with the internal annular recesses, 1744 and 1746, respectively, of the tubular sleeve 1732 that fluidicly seal the interface between the tubular sleeve and the first and second tubular members, 1700 and 1716, respectively. A sealing member 1760 is coupled to the exterior surface of the tubular sleeve 1732 for fluidicly sealing the interface between the tubular sleeve and the interior surface of the preexisting structure 32 following the radial expansion of the first and second tubular members, 1700 and 1716, and the tubular sleeve using the expansion cone 34. In an exemplary embodiment, the sealing members, 1756 and 1758, may be, for example, elastomeric or non-elastomeric sealing members fabricated from nitrile, viton, or Teflon<materials. In an exemplary embodiment, the sealing member 1760 is fabricated from an elastomeric material.
In an exemplary embodiment, during the radial expansion and plastic deformation of the first and second tubular members, 1700 and 1716, the tubular sleeve 1732 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result of the radial expansion, the tubular sleeve 1732 may be maintained in circumferential tension and the end portions, 1706 and 1722, of the first and second tubular members, 1700 and 1716, may be maintained in circumferential compression. Furthermore, in an exemplary embodiment, during and following the radial expansion and plastic deformation of the first and second tubular members, 1700 and 1716, respectively: (a) the sealing members, 1756 and 1758, of the tubular sleeve 1732 engage and fluidicly seal the interface between the tubular sleeve and the end portions, 1706 and 1722, of the first and second tubular members, (b) the internal tapered flanges, 1748 and 1750, of the tubular sleeve engage, and couple the tubular sleeve to, the end portions of the first and second tubular members, (c) the external tapered flanges, 1752 and 1754, of the tubular sleeve engage, and couple the tubular sleeve to, the structure 32, and (d) the sealing member 1760 engages and fluidicly seals the interface between the tubular sleeve and the structure.
In several exemplary embodiments, the first and second tubular members, 1700 and 1716, are radially expanded and plastically deformed using the expansion cone 34 in a conventional manner and/or using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, attorney docket no. 25791.9.02, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (21) U.S. provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (23) U.S. provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (24) U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (25) U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (26) U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (27) U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, (28) U.S. provisional patent application Ser. No. 60/3318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (29) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (30) U.S. utility patent application Ser. No. 10/016,467, attorney docket no. 25791.70, filed on Dec. 10, 2001; (31) U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001; (32) U.S. provisional patent application Ser. No. 60/346,309, attorney docket no 25791.92, filed on Jan. 7, 2002; (33) U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002; (34) U.S. provisional patent application Ser. No. 60/380,147, attorney docket no. 25791.104, filed on May 6, 2002; (35) U.S. provisional patent application Ser. No. 60/387,486, attorney docket no. 25791.107, filed on Jun. 10, 2002; (36) U.S. provisional patent application Ser. No. 60/387,961, attorney docket no. 25791.108, filed on Jun. 12, 2002; (37) U.S. provisional patent application Ser. No. 60/391,703, attorney docket no. 25791.90, filed on Jun. 26, 2002; and (38) U.S. provisional patent application Ser. No. 60/397,284, attorney docket no. 25791.106, filed on Jul. 19, 2002, the disclosures of which are incorporated herein by reference.
In several alternative embodiments, the first and second tubular members, 1700 and 1716, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization and/or roller expansion devices such as, for example, that disclosed in U.S. patent application publication no. US 2001/0045284 A1, the disclosure of which is incorporated herein by reference.
The use of the tubular sleeve 1732 during (a) the threaded coupling of the first tubular member 1700 to the second tubular member 1716, (b) the placement of the first and second tubular members in the structure 32, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 1732 protects the exterior surfaces of the end portions, 1706 and 1722, of the first and second tubular members, 1700 and 1716, during handling and insertion of the tubular members within the structure 32. In this manner, damage to the exterior surfaces of the end portions, 1706 and 1722, of the first and second tubular member, 1700 and 1716, are prevented that could result in stress concentrations that could result in a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 1732 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 1716 to the first tubular member 1700. In this manner, misalignment that could result in damage to the threaded connections, 1712, 1714, 1726, and 1728, of the first and second tubular members, 1700 and 1716, maybe avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 1732 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 1732 can be easily rotated, that would indicate that the first and second tubular members, 1700 and 1716, are not fully threadably coupled and in intimate contact with the internal flange 1736 of the tubular sleeve. Furthermore, the tubular sleeve 1732 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 1700 and 1716. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 1706 and 1722, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 1700 and 1716, the tubular sleeve 16 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve and the exterior surfaces of the end portions, 1706 and 1722, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 1712, 1714, 1726, and 1728, of the first and second tubular members, 1700 and 1716, into the annulus between the first and second tubular members and the structure 32. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 1700 and 1716, the tubular sleeve 1732 may be maintained in circumferential tension and the end portions, 1706 and 1722, of the first and second tubular members, 1700 and 1716, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve. In addition, the tubular sleeve 1732 may also increase the collapse strength of the end portions, 1706 and 1722, of the first and second tubular members, 1700 and 1716.
In an exemplary experimental implementation, following the radial expansion and plastic deformation of the first and second tubular members, 1700 and 1716, and the tubular sleeve 1732, the threads, 1712, 1714, 1726, and 1728, of the end portions, 1706 and 1722, of the first and second tubular members were unexpectedly deformed such that a fluidic seal was unexpectedly formed between and among the threads of the first and second tubular members. In this manner, a fluid tight seal was unexpectedly provided between the first and second tubular member, 1700 and 1716, due to the presence of the tubular sleeve 1732 during the radial expansion and plastic deformation of the end portions, 1706 and 1722, of the first and second tubular members.
In an exemplary embodiment, the rate and degree of radial expansion and plastic deformation of the first and second tubular members, 1700 and 1716, and the tubular sleeve 1732 are adjusted to generate sufficient localized heating to result in amorphous bonding or welding of the threads, 1712, 1714, 1726, and 1728. As a result, the first and second tubular members, 1700 and 1716, may be amorphously bonded resulting a joint between the first and second tubulars that is nearly metallurgically homogeneous.
In an alternative embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, the wellbore casing strings, 1800a-1800h, are radially expanded and plastically deformed in overlapping fashion within the borehole 1802.
For example, the wellbore casing string 1800a is positioned within the borehole 1802 and then radially expanded and plastically deformed. The wellbore casing string 1800b is then positioned within the borehole 1802 in overlapping relation to the wellbore casing string 1800a and then radially expanded and plastically deformed. In this manner, a mono-diameter wellbore casing may be formed that includes the overlapping wellbore casing strings 1800a and 1800b. This process may then be repeated for wellbore casing strings 1800c-1800h. As a result, a mono-diameter wellbore casing may be produced that extends from a surface location to the source 1804 of geothermal energy in which the inside diameter of a passage 1806 defined by the interiors of the wellbore casing strings 1800a-1800h is constant. In this manner, the geothermal energy from the source 1804 may be efficiently and economically extracted. Furthermore, because variations in the inside diameter of the wellbore casing strings 1800 is eliminated by the resulting mono-diameter design, the depth of the borehole 1802 may be virtually limitless. As a result, using the teachings of the present exemplary embodiments, sources of geothermal energy can now be extracted from depths of over 50,000 feet.
In several exemplary embodiments, the wellbore casing strings 1800a-1800h are radially expanded and plastically deformed using the expansion cone 34 using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, attorney docket no. 25791.9.02, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (21) U.S. provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (23) U.S. provisional patent application Ser. No.60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (24) U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (25) U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (26) U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (27) U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, (28) U.S. provisional patent application Ser. No. 60/3318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (29) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (30) U.S. utility patent application Ser. No. 10/016,467, attorney docket no. 25791.70, filed on Dec. 10, 2001; (31) U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001; (32) U.S. provisional patent application Ser. No. 60/346,309, attorney docket no 25791.92, filed on Jan. 7, 2002; (33) U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002; (34) U.S. provisional patent application Ser. No. 60/380,147, attorney docket no. 25791.104, filed on May 6, 2002; (35) U.S. provisional patent application Ser. No. 60/387,486, attorney docket no. 25791.107, filed on Jun. 10, 2002; (36) U.S. provisional patent application Ser. No. 60/387,961, attorney docket no. 25791.108, filed on Jun. 12, 2002; (37) U.S. provisional patent application Ser. No. 60/391,703, attorney docket no. 25791.90, filed on Jun. 26, 2002; and (38) U.S. provisional patent application Ser. No. 60/397,284, attorney docket no. 25791.106, filed on Jul. 19, 2002, the disclosures of which are incorporated herein by reference.
Referring to
A tubular sleeve 1924 that defines a passage 1926 for receiving the end portions, 1906 and 1918, of the first and second tubular members, 1900 and 1912, respectively, includes an internal flange 1928 that mates with and is received within an annular recess 1930 that is defined between an end face 1932 of the end portion of the first tubular member and an end face 1934 of the recessed portion 1916 of the end portion of the second tubular member. In this manner, the tubular sleeve 1924 is coupled to the first and second tubular members, 1900 and 1912.
An adjustable expansion cone 1936 supported by a support member 1938 may then lowered into the first and second tubular members, 1900 and 1912, to a position proximate the vicinity of the threads, 1908, 1910, 1920, and 1922. As illustrated in
After completing the radial expansion and plastic deformation of the portions 1942 of the first and second tubular members, 1900 and 1912, in the vicinity of the threads, 1908, 1910, 1920, and 1922, the expansion cone 1936 may then be controllably reduced in size until the outside circumference of the expansion cone disengages from the portion of the second tubular above the portion of the second tubular member in the vicinity of the threads. In this manner, only the portions 1942 of the first and second tubular members, 1900 and 1912, in the vicinity of the threads, 1908, 1910, 1920, and 1922, are radially expanded and plastically deformed.
In several exemplary embodiments, the portions 1942 of the first and second tubular members, 1900 and 1912, in the vicinity of the threads, 1908, 1910, 1920, are radially expanded and plastically deformed using one or more of the methods and apparatus disclosed in one or more of the following: (1) U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, attorney docket no. 25791.9.02, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (21) U.S. provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (23) U.S. provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (24) U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (25) U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (26) U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (27) U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, (28) U.S. provisional patent application Ser. No. 60/3318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (29) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (30) U.S. utility patent application Ser. No. 10/016,467, attorney docket no. 25791.70, filed on Dec. 10, 2001; (31) U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001; (32) U.S. provisional patent application Ser. No. 60/346,309, attorney docket no 25791.92, filed on Jan. 7, 2002; (33) U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002; (34) U.S. provisional patent application Ser. No. 60/380,147, attorney docket no. 25791.104, filed on May 6, 2002; (35) U.S. provisional patent application Ser. No. 60/387,486, attorney docket no. 25791.107, filed on Jun. 10, 2002; (36) U.S. provisional patent application Ser. No.60/387,961, attorney docket no. 25791.108, filed on Jun. 12, 2002; (37) U.S. provisional patent application Ser. No. 60/391,703, attorney docket no. 25791.90, filed on Jun. 26, 2002; and (38) U.S. provisional patent application Ser. No. 60/397,284, attorney docket no. 25791.106, filed on Jul. 19, 2002, the disclosures of which are incorporated herein by reference.
As illustrated in
In an exemplary experimental implementation, as illustrated in
Furthermore, in an exemplary experimental implementation, following the radial expansion and plastic deformation of the portions 1942 of the first and second tubular members, 1900 and 1912, in the vicinity of the threads, 1908, 1910, 1920, and 1922, a fluid tight seal was also created between the interior circumference of the tubular sleeve 1924 and the exterior circumferences of the first and second tubular members, 1900 and 1912.
Thus, the teachings of the present illustrative embodiments of
More generally, the teachings of the present illustrative embodiments may be used to solve the problem of providing a fluid tight seal between all types of tubular members such as, for example, wellbore casings, pipes, underground pipelines, piping used in the transport of pressurized fluids in a chemical processing plant, or within the heat exchanger tubes of a power plant.
Furthermore, the teachings of the present illustrative embodiments may be used to solve the problem of providing a fluid tight seal between all types of tubular members such as, for example, wellbore casings, chemical processing pipes and underground pipelines, without having to radially expand and plastically deform the entire length of the tubular members. Instead, only those portions of the tubular members proximate the tubular sleeve provided adjacent to the joint between the tubular members needs to be radially expanded and plastically deformed. Furthermore, in an exemplary embodiment, the amount of radial expansion and plastic deformation ranged from less than about one percent to less than about five percent. As a result, the amount of time and resources typically needed to perform the radial expansion and plastic deformation is economical.
More generally, the teachings of the exemplary embodiments may be used to provide an inexpensive and reliable fluid tight seal between tubular members. In this manner, expensive and unreliable methods of providing a fluid tight seal between tubular members such as, for example, those methods utilized in the chemical processing industries and in power plant heat exchangers may be replaced with the teachings of the present illustrative embodiments.
Furthermore, the teachings of the exemplary embodiments provide a method of radially expanding and plastically deforming the ends of adjacent coupled tubular members in which the freedom of movement of the adjacent ends of the coupled tubular members is constrained by the presence of the tubular sleeve. As a result, during the subsequent radial expansion process, the adjacent ends of the coupled tubular members are compressed into the plastic region of the stress-strain curve. Consequently, the material of the adjacent ends of the coupled tubular members such as, for example, the internal and external threads, flow into and fill any gaps or voids that may have existed within the junction of the coupled tubular members thereby providing a fluid tight seal. The creation of the fluid tight seal within the junction of the adjacent tubular members was an unexpected result that was discovered during experimental analysis and testing of the present exemplary embodiments. In fact, also unexpectedly, during a further exemplary analysis and testing of the present exemplary embodiments, a fluid tight seal was maintained within the junction between two adjacent tubulars despite being bent over 60 degrees relative to one another.
Thus the present exemplary embodiments will eliminate the need for expensive high precision threaded connection for tubular members in order to provide a fluid tight seal. Instead, a fluid tight seal can now be provided using a combination of less expensive conventional threaded connection and a tubular sleeve that are then radially expanded to provide a fluid tight seal. Thus, the commercial application of the present exemplary embodiments will dramatically reduce the cost of oil and gas exploration and production. Furthermore, the teachings of the present exemplary embodiments can be extended to provide a fluid tight seal between adjacent tubular members in other applications such as, for example, underground pipelines, piping in chemical processing plants, and piping in power plants, in which conventional, inexpensive, piping with conventional threaded connections can be coupled together with a tubular sleeve and then radially expanded to provide an inexpensive and reliable fluid tight seal between the adjacent pipe sections.
Referring to
As illustrated in
More generally still, as illustrated in
If the amount of fluid leakage through the junctions of the adjacent tubular members exceeds a predetermined amount, then a tubular sleeve may then be coupled to and overlapping the junction between the adjacent tubular members in step 2104. And, finally, in step 2106, the portions of the tubular members proximate the tubular sleeve may then be radially expanded. In this manner, a cost efficient and reliable method for repairing leaks in the junctions between adjacent tubular members may be provided.
Referring to
During operation, electrical, acoustic, and/or thermal energy may then be transmitted through the first and second tubular members, 1900 and 1912, and the tubular sleeve 1924, using the energy source 2202 and controller 2204. In an exemplary embodiment, the first tubular member 1900 may be operably coupled to an earth ground 2206 such as, for example, a subterranean formation. In this manner, the transmission of electrical, acoustic, and/or thermal energy through the tubular members, 1900 and 1912, and the tubular sleeve 1924, may be enhanced. The enhanced coupling of the first and second tubular members, 1900 and 1912, provided by the addition of the tubular sleeve 1924 during the radial expansion process, provides a enhanced conductive pathway for electrical, thermal, and/or acoustic energy.
In an exemplary embodiment, the transmitted electrical, acoustic, and/or thermal energy may be used, for example, to transmit communication signals to downhole tools, heat the first and second tubular members, 1900 and 1912, and tubular sleeve 1924, and/or to inject energy into the surrounding subterranean formation. In this manner, information may be transmitted through the tubular members, 1900 and 1912, and tubular sleeve 1924 to downhole tools. As will be recognized by persons having ordinary skill in the art, the transmission of an electrical current through the first and second tubular members, 1900 and 1912, will cause resistance heating of the tubular members. In this manner, the surrounding subterranean formation may be heated to thereby facilitate the extraction and recovery of hydrocarbons.
More generally, the teachings of the exemplary embodiment of
More generally still, the teachings of
Referring to
In an exemplary embodiment, the first tubular members, 2310 and 2316, maybe any one of the tubular members, 28, 938, 1036, 1128, 1232, 1328, 1430, 1516, 1632, 1716, or 1912, described above with reference to
In an exemplary embodiment, the outer tubing string 2304 is positioned within the borehole 2306, with the lower portion of the outer tubing string positioned above and proximate a producing subterranean zone 2322, and radially expanded and plastically deformed as described above with reference to
During operation of the dual well completion system 2300, fluidic materials within the producing zone 2322 are conveyed out of the borehole 2306 through the annular passage 2326, and fluidic materials within the producing zone 2324 are conveyed out of the borehole through the annular passage 2328. In this manner, the dual well completion system 2300 permits simultaneous and/or separate extraction of fluidic materials from the producing zones, 2322 and 2324. Furthermore, the use of the tubular sleeves, 2314 and 2320, in the inner and outer tubing strings, 2302 and 2304, respectively, permits an increased volumetric flow of fluidic materials through the annular passage 2326 and the passage 2328. In particular, in an exemplary embodiment, the use of the tubular sleeves, 2314 and 2320, in the inner and outer tubing strings, 2302 and 2304, in combination with first and second tubular members, 2310 and 2312 and 2316 and 2318, respectively, having conventional threaded connections, increases the permissible radial clearances between the inner and outer tubing strings thereby increasing the maximum volumetric flow rates through the annular passage 2326 and the passage 2328.
A method of radially expanding and plastically deforming a first tubular member and a second tubular member has been described that includes inserting an end of the first tubular member into an end of a tubular sleeve having an internal flange into abutment with the internal flange, inserting an end of the second tubular member into another end of the tubular sleeve, threadably coupling the ends of the first and second tubular member within the tubular sleeve until both ends of the first and second tubular members abut the internal flange of the tubular sleeve, and displacing an expansion cone through the interiors of the first and second tubular members. In an exemplary embodiment, the internal flange of the tubular sleeve is positioned between the ends of the tubular sleeve. In an exemplary embodiment, the internal flange of the tubular sleeve is positioned at one end of the tubular sleeve. In an exemplary embodiment, the tubular sleeve further includes one or more sealing members for sealing the interface between the tubular sleeve and at least one of the tubular members. In an exemplary embodiment, the method further includes placing the tubular members in another structure, and displacing the expansion cone through the interiors of the first and second tubular members. In an exemplary embodiment, the method further includes radially expanding the tubular sleeve into engagement with the structure. In an exemplary embodiment, the method further includes sealing an annulus between the tubular sleeve and the other structure. In an exemplary embodiment, the other structure comprises a wellbore. In an exemplary embodiment, the other structure comprises a wellbore casing. In an exemplary embodiment, the tubular sleeve further comprises a sealing element coupled to the exterior of the tubular sleeve. In an exemplary embodiment, the tubular sleeve is metallic. In an exemplary embodiment, the tubular sleeve is non-metallic. In an exemplary embodiment, the tubular sleeve is plastic. In an exemplary embodiment, the tubular sleeve is ceramic. In an exemplary embodiment, the method further includes breaking the tubular sleeve. In an exemplary embodiment, the tubular sleeve includes one or more longitudinal slots. In an exemplary embodiment, the tubular sleeve includes one or more radial passages.
A method of radially expanding and plastically deforming a first tubular member and a second tubular member has also been described that includes inserting an end of the first tubular member into an end of a tubular sleeve, coupling the end of the tubular sleeve to the end of the first tubular member, inserting an end of the second tubular member into another end of the tubular sleeve, threadably coupling the ends of the first and second tubular member within the tubular sleeve, coupling the other end of the tubular sleeve to the end of the second tubular member, and displacing an expansion cone through the interiors of the first and second tubular members. In an exemplary embodiment, coupling the ends of the tubular sleeve to the ends of the first and second tubular members includes coupling the ends of the tubular sleeve to the ends of the first and second tubular members using locking rings. In an exemplary embodiment, coupling the ends of the tubular sleeve to the ends of the first and second tubular members using locking rings includes wedging the locking rings between the ends of the tubular sleeve and the ends of the first and second tubular members. In an exemplary embodiment, coupling the ends of the tubular sleeve to the ends of the first and second tubular members using locking rings includes affixing the locking rings to the ends of the first and second tubular members. In an exemplary embodiment, the locking rings are resilient. In an exemplary embodiment, the locking rings are elastomeric. In an exemplary embodiment, coupling the ends of the tubular sleeve to the ends of the first and second tubular members includes crimping the ends of the tubular sleeve onto the ends of the first and second tubular members. In an exemplary embodiment, the tubular sleeve further includes one or more sealing members for sealing the interface between the tubular sleeve and at least one of the tubular members. In an exemplary embodiment, the method further includes placing the tubular members in another structure, and displacing the expansion cone through the interiors of the first and second tubular members. In an exemplary embodiment, the method further includes radially expanding the tubular sleeve into engagement with the structure. In an exemplary embodiment, the method further includes sealing an annulus between the tubular sleeve and the other structure. In an exemplary embodiment, the other structure is a wellbore. In an exemplary embodiment, the other structure is a wellbore casing. In an exemplary embodiment, the tubular sleeve further includes a sealing element coupled to the exterior of the tubular sleeve. In an exemplary embodiment, the tubular sleeve is metallic. In an exemplary embodiment, the tubular sleeve is non-metallic. In an exemplary embodiment, the tubular sleeve is plastic. In an exemplary embodiment, the tubular sleeve is ceramic. In an exemplary embodiment, the method further includes breaking the tubular sleeve. In an exemplary embodiment, the tubular sleeve includes one or more longitudinal slots. In an exemplary embodiment, the tubular sleeve includes one or more radial passages.
A method of radially expanding and plastically deforming a first tubular member and a second tubular member has also been described that includes inserting an end of a tubular sleeve having an external flange into an end of the first tubular member until the external flange abuts the end of the first tubular member, inserting the other end of the tubular sleeve into an end of a second tubular member, threadably coupling the ends of the first and second tubular member within the tubular sleeve until both ends of the first and second tubular members abut the external flange of the tubular sleeve, and displacing an expansion cone through the interiors of the first and second tubular members. In an exemplary embodiment, the external flange of the tubular sleeve is positioned between the ends of the tubular sleeve. In an exemplary embodiment, the external flange of the tubular sleeve is positioned at one end of the tubular sleeve. In an exemplary embodiment, the tubular sleeve further includes one or more sealing members for sealing the interface between the tubular sleeve and at least one of the tubular members. In an exemplary embodiment, the method further includes placing the tubular members in another structure, and displacing the expansion cone through the interiors of the first and second tubular members. In an exemplary embodiment, the other structure comprises a wellbore. In an exemplary embodiment, the other structure comprises a wellbore casing. In an exemplary embodiment, the tubular sleeve is metallic. In an exemplary embodiment, the tubular sleeve is non-metallic. In an exemplary embodiment, the tubular sleeve is plastic. In an exemplary embodiment, the tubular sleeve is ceramic. In an exemplary embodiment, the method further includes breaking the tubular sleeve. In an exemplary embodiment, the tubular sleeve includes one or more longitudinal slots. In an exemplary embodiment, the tubular sleeve includes one or more radial passages.
A method of radially expanding and plastically deforming a first tubular member and a second tubular member has also been described that includes inserting an end of the first tubular member into an end of a tubular sleeve having an internal flange into abutment with the internal flange, inserting an end of the second tubular member into another end of the tubular sleeve into abutment with the internal flange, coupling the ends of the first and second tubular member to the tubular sleeve, and displacing an expansion cone through the interiors of the first and second tubular members. In an exemplary embodiment, the internal flange of the tubular sleeve is positioned between the ends of the tubular sleeve. In an exemplary embodiment, the internal flange of the tubular sleeve is positioned at one end of the tubular sleeve. In an exemplary embodiment, the tubular sleeve further comprises one or more sealing members for sealing the interface between the tubular sleeve and at least one of the tubular members. In an exemplary embodiment, the method further includes placing the tubular members in another structure, and displacing the expansion cone through the interiors of the first and second tubular members. In an exemplary embodiment, the method further includes radially expanding the tubular sleeve into engagement with the structure. In an exemplary embodiment, the method further includes sealing an annulus between the tubular sleeve and the other structure. In an exemplary embodiment, the other structure is a wellbore. In an exemplary embodiment, the other structure is a wellbore casing. In an exemplary embodiment, the tubular sleeve further includes a sealing element coupled to the exterior of the tubular sleeve. In an exemplary embodiment, the tubular sleeve is metallic. In an exemplary embodiment, the tubular sleeve is non-metallic. In an exemplary embodiment, the tubular sleeve is plastic. In an exemplary embodiment, the tubular sleeve is ceramic. In an exemplary embodiment, the method further includes breaking the tubular sleeve. In an exemplary embodiment, the tubular sleeve includes one or more longitudinal slots. In an exemplary embodiment, the tubular sleeve includes one or more radial passages. In an exemplary embodiment, coupling the ends of the first and second tubular member to the tubular sleeve includes heating the tubular sleeve and inserting the ends of the first and second tubular members into the tubular sleeve. In an exemplary embodiment, coupling the ends of the first and second tubular member to the tubular sleeve includes coupling the tubular sleeve to the ends of the first and second tubular members using a locking ring.
A method has been described that includes coupling an end of a first tubular member to an end of a tubular sleeve, coupling an end of a second tubular member to another end of the tubular sleeve, coupling the ends of the first and second tubular members, and radially expanding and plastically deforming the first tubular member and the second tubular member. In an exemplary embodiment, the tubular sleeve includes an internal flange. In an exemplary embodiment, coupling the end of the first tubular member to the end of the tubular sleeve includes inserting the end of the first tubular member into the end of the tubular sleeve into abutment with the internal flange. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes inserting the end of the second tubular member into the other end of the tubular sleeve into abutment with the internal flange. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes inserting the end of the second tubular member into the other end of the tubular sleeve into abutment with the internal flange. In an exemplary embodiment, the tubular sleeve includes an external flange. In an exemplary embodiment, coupling the end of the first tubular member to the end of the tubular sleeve includes inserting the end of the tubular sleeve into the end of the first tubular member until the end of the first tubular member abuts the external flange. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes inserting the other end of the tubular sleeve into the end of the second tubular member until the end of the second tubular member abuts the external flange. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes inserting the other end of the tubular sleeve into the end of the second tubular member until the end of the second tubular member abuts the external flange. In an exemplary embodiment, coupling the end of the first tubular member to the end of the tubular sleeve includes inserting a retaining ring between the end of the first tubular member and the end of the tubular sleeve. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes inserting another retaining ring between the end of the second tubular member and the other end of the tubular sleeve. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes inserting a retaining ring between the end of the first tubular member and the other end of the tubular sleeve. In an exemplary embodiment, the retaining ring is resilient. In an exemplary embodiment, the retaining ring and the other retaining ring are resilient. In an exemplary embodiment, the retaining ring is resilient. In an exemplary embodiment, coupling the end of the first tubular member to the end of the tubular sleeve includes deforming the end of the tubular sleeve. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes deforming the other end of the tubular sleeve. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes deforming the other end of the tubular sleeve. In an exemplary embodiment, coupling the end of the first tubular member to the end of the tubular sleeve includes coupling a retaining ring to the end of the first tubular member. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes coupling another retaining ring to the end of the second tubular member. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes coupling a retaining ring to the end of the second tubular member. In an exemplary embodiment, the retaining ring is resilient. In an exemplary embodiment, the retaining ring and the other retaining ring are resilient. In an exemplary embodiment, the retaining ring is resilient. In an exemplary embodiment, coupling the end of the first tubular member to the end of the tubular sleeve includes heating the end of the tubular sleeve, and inserting the end of the first tubular member into the end of the tubular sleeve. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes heating the other end of the tubular sleeve, and inserting the end of the second tubular member into the other end of the tubular sleeve. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes heating the other end of the tubular sleeve, and inserting the end of the second tubular member into the other end of the tubular sleeve. In an exemplary embodiment, coupling the end of the first tubular member to the end of the tubular sleeve includes inserting the end of the first tubular member into the end of the tubular sleeve, and latching the end of the first tubular member to the end of the tubular sleeve. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes inserting the end of the second tubular member into the end of the tubular sleeve, and latching the end of the second tubular member to the other end of the tubular sleeve. In an exemplary embodiment, coupling the end of the second tubular member to the other end of the tubular sleeve includes inserting the end of the second tubular member into the end of the tubular sleeve, and latching the end of the second tubular member to the other end of the tubular sleeve. In an exemplary embodiment, the tubular sleeve further comprises one or more sealing members for sealing the interface between the tubular sleeve and at least one of the tubular members. In an exemplary embodiment, the method further includes placing the tubular members in another structure, and then radially expanding and plastically deforming the first tubular member and the second tubular member. In an exemplary embodiment, the method further includes radially expanding the tubular sleeve into engagement with the structure. In an exemplary embodiment, the method further includes sealing an annulus between the tubular sleeve and the other structure. In an exemplary embodiment, the other structure is a wellbore. In an exemplary embodiment, the other structure is a wellbore casing. In an exemplary embodiment, the tubular sleeve further includes a sealing element coupled to the exterior of the tubular sleeve. In an exemplary embodiment, the tubular sleeve is metallic. In an exemplary embodiment, the tubular sleeve is non-metallic. In an exemplary embodiment, the tubular sleeve is plastic. In an exemplary embodiment, the tubular sleeve is ceramic. In an exemplary embodiment, the method further includes breaking the tubular sleeve. In an exemplary embodiment, the tubular sleeve includes one or more longitudinal slots. In an exemplary embodiment, the tubular sleeve includes one or more radial passages. In an exemplary embodiment, radially expanding and plastically deforming the first tubular member, the second tubular member, and the tubular sleeve includes displacing an expansion cone within and relative to the first and second tubular members. In an exemplary embodiment, radially expanding and plastically deforming the first tubular member, the second tubular member, and the tubular sleeve includes applying radial pressure to the interior surfaces of the first and second tubular member using a rotating member. In an exemplary embodiment, the method further includes amorphously bonding the first and second tubular members during the radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the method further includes welding the first and second tubular members during the radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the method further includes providing a fluid tight seal within the threaded coupling between the first and second tubular members during the radial expansion and plastic deformation of the first and second tubular members. In an exemplary embodiment, the method further includes placing the tubular sleeve in circumferential tension, placing the end of the first tubular member in circumferential compression, and placing the end of the second tubular member in circumferential compression. In an exemplary embodiment, the method further includes placing the tubular sleeve in circumferential compression, placing the end of the first tubular member in circumferential tension, and placing the end of the second tubular member in circumferential tension. In an exemplary embodiment, radially expanding and plastically deforming the first tubular member and the second tubular member includes radially expanding and plastically deforming only the portions of the first and second members proximate the tubular sleeve. In an exemplary embodiment, the method further includes providing a fluid tight seal between the tubular sleeve and at least one of the first and second tubular members. In an exemplary embodiment, the first tubular member includes internal threads, and the second tubular member includes external threads that engage the internal threads of the first tubular member. In an exemplary embodiment, radially expanding and plastically deforming the first tubular member and the second tubular member includes radially expanding and plastically deforming only the portions of the first and second members proximate the threads of the first and second tubular members. In an exemplary embodiment, the method further includes providing a fluid tight seal between the threads of the first and second tubular members. In an exemplary embodiment, the method further includes providing a fluid tight seal between the tubular sleeve and at least one of the first and second tubular members. In an exemplary embodiment, the first and second tubular members are wellbore casings. In an exemplary embodiment, the first and second tubular members are pipes.
A method has been described that includes providing a tubular sleeve including an internal flange positioned between the ends of the tubular sleeve, inserting an end of a first tubular member into an end of the tubular sleeve into abutment with the internal flange, inserting an end of a second tubular member into another end of the tubular sleeve into abutment the internal flange, threadably coupling the ends of the first and second tubular members, radially expanding and plastically deforming the first tubular member and the second tubular member, placing the tubular sleeve in circumferential tension, placing the end of the first tubular member in circumferential compression, and placing the end of the second tubular member in circumferential compression.
A method has been described that includes providing a tubular sleeve including an external flange positioned between the ends of the tubular sleeve, inserting an end of the tubular sleeve into an end of a first tubular member until the end of the first tubular member abuts with the external flange, inserting another end of the tubular sleeve into an end of the second tubular member until the end of the second tubular member abuts the external flange, threadably coupling the ends of the first and second tubular members, radially expanding and plastically deforming the first tubular member and the second tubular member, placing the tubular sleeve in circumferential compression, placing the end of the first tubular member in circumferential tension, and placing the end of the second tubular member in circumferential tension.
A method has been described that includes providing a tubular sleeve including an internal flange positioned between the ends of the tubular sleeve, inserting an end of a first tubular member into an end of the tubular sleeve into abutment with the internal flange, inserting an end of a second tubular member into another end of the tubular sleeve into abutment the internal flange, threadably coupling the ends of the first and second tubular members, radially expanding and plastically deforming only the portions of the first tubular member and the second tubular member proximate the threads of the first and second tubular members, placing the tubular sleeve in circumferential tension, placing the end of the first tubular member in circumferential compression, and placing the end of the second tubular member in circumferential compression.
A method has been described that includes providing a tubular sleeve including an external flange positioned between the ends of the tubular sleeve, inserting an end of the tubular sleeve into an end of a first tubular member until the end of the first tubular member abuts with the external flange, inserting another end of the tubular sleeve into an end of the second tubular member until the end of the second tubular member abuts the external flange, threadably coupling the ends of the first and second tubular members, radially expanding and plastically deforming only the portions of the first tubular member and the second tubular member proximate the threads of the first and second tubular members, placing the tubular sleeve in circumferential compression, placing the end of the first tubular member in circumferential tension, and placing the end of the second tubular member in circumferential tension.
An apparatus has been described that includes a tubular sleeve, a first tubular member coupled to an end of the tubular sleeve, and a second tubular member coupled to another end of the tubular sleeve. In an exemplary embodiment, the tubular sleeve is in circumferential tension, the end portion of the first tubular member is in circumferential compression, and the end portion of the second tubular member is in circumferential compression. In an exemplary embodiment, the tubular sleeve is in circumferential compression, the end portion of the first tubular member is in circumferential tension, and the end portion of the second tubular member is in circumferential tension. In an exemplary embodiment, the tubular sleeve includes an internal flange. In an exemplary embodiment, the end portion of the first tubular member is received within an end of the tubular sleeve, and the end portion of the second tubular member is received within another end of the tubular sleeve. In an exemplary embodiment, the end portions of the first and second tubular members abut the internal flange of the tubular sleeve. In an exemplary embodiment, the end portion of the first tubular member is received within an end of the tubular sleeve. In an exemplary embodiment, the end portions of the first and second tubular members abut the internal flange of the tubular sleeve. In an exemplary embodiment, the end portion of the second tubular member is received within an end of the tubular sleeve. In an exemplary embodiment, the end portions of the first and second tubular members abut the internal flange of the tubular sleeve. In an exemplary embodiment, the internal flange of the tubular sleeve is positioned between the ends of the tubular sleeve. In an exemplary embodiment, the internal flange of the tubular sleeve is positioned at an end of the tubular sleeve. In an exemplary embodiment, the tubular sleeve includes an external flange. In an exemplary embodiment, an end portion of the tubular sleeve is received within the first tubular member; and another end portion of the tubular sleeve is received within the end portion of the second tubular member. In an exemplary embodiment, the end portions of the first and second tubular members abut the external flange of the tubular sleeve. In an exemplary embodiment, an end portion of the tubular sleeve is received within the end portion of the first tubular member. In an exemplary embodiment, the end portions of the first and second tubular members abut the external flange of the tubular sleeve. In an exemplary embodiment, an end portion of the tubular sleeve is received within the end portion of the second tubular member. In an exemplary embodiment, the end portions of the first and second tubular members abut the external flange of the tubular sleeve. In an exemplary embodiment, the external flange of the tubular sleeve is positioned between the ends of the tubular sleeve. In an exemplary embodiment, the external flange of the tubular sleeve is positioned at an end of the tubular sleeve. In an exemplary embodiment, the tubular sleeve further comprises one or more sealing members for sealing the interface between the tubular sleeve and at least one of the tubular members. In an exemplary embodiment, the apparatus further includes a retaining ring positioned between the end of the first tubular member and the end of the tubular sleeve. In an exemplary embodiment, the apparatus further includes another retaining ring positioned between the end of the second tubular member and the other end of the tubular sleeve. In an exemplary embodiment, the apparatus further includes a retaining ring positioned between the end of the first tubular member and the other end of the tubular sleeve. In an exemplary embodiment, the retaining ring is resilient. In an exemplary embodiment, the retaining ring and the other retaining ring are resilient. In an exemplary embodiment, the retaining ring is resilient. In an exemplary embodiment, the end of the tubular sleeve is deformed onto the end of the first tubular member. In an exemplary embodiment, the other end of the tubular sleeve is deformed onto the end of the second tubular member. In an exemplary embodiment, the other end of the tubular sleeve is deformed onto the end of the second tubular member. In an exemplary embodiment, the apparatus further includes a retaining ring coupled to the end of the first tubular member for retaining the tubular sleeve onto the end of the first tubular member. In an exemplary embodiment, the apparatus further includes another retaining ring coupled to the end of the second tubular member for retaining the other end of the tubular sleeve onto the end of the second tubular member. In an exemplary embodiment, the apparatus further includes a retaining ring coupled to the end of the second tubular member for retaining the other end of the tubular sleeve onto the end of the second tubular member. In an exemplary embodiment, the retaining ring is resilient. In an exemplary embodiment, the retaining ring and the other retaining ring are resilient. In an exemplary embodiment, the retaining ring is resilient. In an exemplary embodiment, the apparatus further includes a locking ring for coupling the end of the first tubular member to the end of the tubular sleeve. In an exemplary embodiment, the apparatus further includes another locking ring for coupling the end of the second tubular member to the other end of the tubular sleeve. In an exemplary embodiment, the apparatus further includes a locking ring for coupling the end of the second tubular member to the other end of the tubular sleeve. In an exemplary embodiment, the apparatus further includes a structure for receiving the first and second tubular members and the tubular sleeve, and the tubular sleeve contacts the interior surface of the structure. In an exemplary embodiment, the tubular sleeve further includes a sealing member for fluidicly sealing the interface between the tubular sleeve and the structure. In an exemplary embodiment, the other structure is a wellbore. In an exemplary embodiment, the other structure is a wellbore casing. In an exemplary embodiment, the tubular sleeve further includes a sealing element coupled to the exterior surface of the tubular sleeve. In an exemplary embodiment, the tubular sleeve is metallic. In an exemplary embodiment, the tubular sleeve is non-metallic. In an exemplary embodiment, the tubular sleeve is plastic. In an exemplary embodiment, the tubular sleeve is ceramic. In an exemplary embodiment, the tubular sleeve is frangible. In an exemplary embodiment, the tubular sleeve includes one or more longitudinal slots. In an exemplary embodiment, the tubular sleeve includes one or more radial passages. In an exemplary embodiment, the first and second tubular members are amorphously bonded. In an exemplary embodiment, the first and second tubular members are welded. In an exemplary embodiment, the internal threads of the first tubular member and the internal threads of the second tubular member together provide a fluid tight seal. In an exemplary embodiment, only the portions of the first and second tubular members proximate the tubular sleeve are plastically deformed. In an exemplary embodiment, a fluid tight seal is provided between the tubular sleeve and at least one of the first and second tubular members. In an exemplary embodiment, the first tubular member includes internal threads; and wherein the second tubular member includes external threads that engage the internal threads of the first tubular member. In an exemplary embodiment, only the portions of the first and second members proximate the threads of the first and second tubular members are plastically deformed. In an exemplary embodiment, a fluid tight seal is provided between the threads of the first and second tubular members. In an exemplary embodiment, a fluid tight seal is provided between the tubular sleeve and at least one of the first and second tubular members.
An apparatus has been described that includes a tubular sleeve including an internal flange positioned between the ends of the tubular sleeve, a first tubular member received within an end of the tubular sleeve in abutment with the internal flange that comprises internal threads, and a second tubular member received within another end of the tubular sleeve in abutment with the internal flange that comprises external threads that engage the internal threads of the first tubular member. The tubular sleeve is in circumferential tension, the end of first tubular member is in circumferential compression, and the end of the second tubular member is in circumferential compression.
An apparatus has been described that includes a tubular sleeve comprising an external flange positioned between the ends of the tubular sleeve, a first tubular member that receives an end of the tubular sleeve and abuts the external flange that comprises internal threads, and a second tubular member that receives another end of the tubular sleeve that abuts the external flange that comprises external threads that engage the internal threads of the first tubular member. The tubular sleeve is in circumferential compression, the first tubular member is in circumferential tension, and the second tubular member is in circumferential tension.
An apparatus has been described that includes a tubular sleeve comprising an internal flange positioned between the ends of the tubular sleeve, a first tubular member received within an end of the tubular sleeve in abutment with the internal flange that comprises internal threads, and a second tubular member received within another end of the tubular sleeve in abutment with the internal flange that comprises external threads that engage the internal threads of the first tubular member. The tubular sleeve is in circumferential tension, the end of first tubular member is in circumferential compression, the end of the second tubular member is in circumferential compression, a fluid tight seal is provided between the tubular sleeve and at least one of the first and second tubular members, and a fluid tight seal is provided between the threads of the first and second tubular members.
An apparatus has been described that includes a tubular sleeve comprising an external flange positioned between the ends of the tubular sleeve, a first tubular member that receives an end of the tubular sleeve and abuts the external flange that comprises internal threads, and a second tubular member that receives another end of the tubular sleeve that abuts the external flange that comprises external threads that engage the internal threads of the first tubular member. The tubular sleeve is in circumferential compression, the first tubular member is in circumferential tension, the second tubular member is in circumferential tension, a fluid tight seal is provided between the tubular sleeve and at least one of the first and second tubular members, and a fluid tight seal is provided between the threads of the first and second tubular members.
A method of extracting geothermal energy from a subterranean source of geothermal energy has been described that includes drilling a borehole that traverses the subterranean source of geothermal energy, positioning a first casing string within the borehole, radially expanding and plastically deforming the first casing string within the borehole, positioning a second casing string within the borehole that traverses the subterranean source of geothermal energy, overlapping a portion of the second casing string with a portion of the first casing string, radially expanding and plastically deforming the second casing string within the borehole, and extracting geothermal energy from the subterranean source of geothermal energy using the first and second casing strings. In an exemplary embodiment, the interior diameter of a passage defined by the first and second casing strings is constant. In an exemplary embodiment, at least one of the first and second casing strings includes a tubular sleeve, a first tubular member coupled to an end of the tubular sleeve comprising internal threads at an end portion, and a second tubular member coupled to another end of the tubular sleeve comprising external threads at an end portion that engage the internal threads of the end portion of the first tubular member.
A method of extracting geothermal energy from a subterranean source of geothermal energy has been described that includes drilling a borehole that traverses the subterranean source of geothermal energy, positioning a first casing string within the borehole, radially expanding and plastically deforming the first casing string within the borehole, positioning a second casing string within the borehole that traverses the subterranean source of geothermal energy, overlapping a portion of the second casing string with a portion of the first casing string, radially expanding and plastically deforming the second casing string within the borehole, and extracting geothermal energy from the subterranean source of geothermal energy using the first and second casing strings the interior diameter of a passage defined by the first and second casing strings is constant, and at least one of the first and second casing strings includes a tubular sleeve comprising an internal flange positioned between the ends of the tubular sleeve, a first tubular member received within an end of the tubular sleeve in abutment with the internal flange that comprises internal threads, and a second tubular member received within another end of the tubular sleeve in abutment with the internal flange that comprises external threads that engage the internal threads of the first tubular member.
A method of extracting geothermal energy from a subterranean source of geothermal energy has been described that includes drilling a borehole that traverses the subterranean source of geothermal energy, positioning a first casing string within the borehole, radially expanding and plastically deforming the first casing string within the borehole, positioning a second casing string within the borehole that traverses the subterranean source of geothermal energy, overlapping a portion of the second casing string with a portion of the first casing string, radially expanding and plastically deforming the second casing string within the borehole, and extracting geothermal energy from the subterranean source of geothermal energy using the first and second casing strings. The interior diameter of a passage defined by the first and second casing strings is constant, and at least one of the first and second casing strings include: a tubular sleeve comprising an external flange positioned between the ends of the tubular sleeve, a first tubular member that receives an end of the tubular sleeve that abuts external flange that comprises internal threads, and a second tubular member that receives another end of the tubular sleeve that abuts the external flange that comprises external threads that engage the internal threads of the first tubular member.
A method of extracting geothermal energy from a subterranean source of geothermal energy has been described that includes drilling a borehole that traverses the subterranean source of geothermal energy, positioning a first casing string within the borehole, radially expanding and plastically deforming the first casing string within the borehole, positioning a second casing string within the borehole that traverses the subterranean source of geothermal energy, overlapping a portion of the second casing string with a portion of the first casing string, radially expanding and plastically deforming the second casing string within the borehole, and extracting geothermal energy from the subterranean source of geothermal energy using the first and second casing strings. The interior diameter of a passage defined by the first and second casing strings is constant, and at least one of the first and second casing strings include a tubular sleeve comprising an internal flange positioned between the ends of the tubular sleeve, a first tubular member received within an end of the tubular sleeve in abutment with the internal flange that comprises internal threads, and a second tubular member received within another end of the tubular sleeve in abutment with the internal flange that comprises external threads that engage the internal threads of the first tubular member. The tubular sleeve is in circumferential tension, the first tubular member is in circumferential compression, the second tubular member is in circumferential compression, a fluid tight seal is provided between the tubular sleeve and at least one of the first and second tubular members, and a fluid tight seal is provided between the threads of the first and second tubular members.
A method of extracting geothermal energy from a subterranean source of geothermal energy has been described that includes drilling a borehole that traverses the subterranean source of geothermal energy, positioning a first casing string within the borehole, radially expanding and plastically deforming the first casing string within the borehole, positioning a second casing string within the borehole that traverses the subterranean source of geothermal energy, overlapping a portion of the second casing string with a portion of the first casing string, radially expanding and plastically deforming the second casing string within the borehole, and extracting geothermal energy from the subterranean source of geothermal energy using the first and second casing strings. The interior diameter of a passage defined by the first and second casing strings is constant, and wherein at least one of the first and second casing strings include a tubular sleeve comprising an external flange positioned between the ends of the tubular sleeve, a first tubular member that receives an end of the tubular sleeve that abuts external flange that comprises internal threads, and a second tubular member that receives another end of the tubular sleeve that abuts the external flange that comprises external threads that engage the internal threads of the first tubular member. The tubular sleeve is in circumferential compression, the first tubular member is in circumferential tension, the second tubular member is in circumferential tension, a fluid tight seal is provided between the tubular sleeve and at least one of the first and second tubular members, and a fluid tight seal is provided between the threads of the first and second tubular members.
An apparatus for extracting geothermal energy from a subterranean source of geothermal energy has been described that includes a borehole that traverses the subterranean source of geothermal energy, a first casing string positioned within the borehole, and a second casing positioned within the borehole that overlaps with the first casing string that traverses the subterranean source of geothermal energy. The first casing string and the second casing string are radially expanded and plastically deformed within the borehole. In an exemplary embodiment, the interior diameter of a passage defined by the first and second casing strings is constant. In an exemplary embodiment, at least one of the first and second casing strings include a tubular sleeve, a first tubular member coupled to an end of the tubular sleeve comprising internal threads at an end portion, and a second tubular member coupled to another end of the tubular sleeve comprising external threads at an end portion that engage the internal threads of the end portion of the first tubular member.
An apparatus for extracting geothermal energy from a subterranean source of geothermal energy has been described that includes a borehole that traverses the subterranean source of geothermal energy, a first casing string positioned within the borehole, a second casing string within the borehole that traverses the subterranean source of geothermal energy that overlaps with the first casing string. The first and second casing strings are radially expanded and plastically deformed within the borehole, the inside diameter of a passage defined by the first and second casing strings is constant, and at least one of the first and second casing strings includes a tubular sleeve comprising an internal flange positioned between the ends of the tubular sleeve, a first tubular member received within an end of the tubular sleeve in abutment with the internal flange that comprises internal threads, and a second tubular member received within another end of the tubular sleeve in abutment with the internal flange that comprises external threads that engage the internal threads of the first tubular member.
An apparatus for extracting geothermal energy from a subterranean source of geothermal energy has been described a borehole that traverses the subterranean source of geothermal energy, a first casing string positioned within the borehole, and a second casing string positioned within the borehole that traverses the subterranean source of geothermal energy that overlaps with the first casing string. The interior diameter of a passage defined by the first and second casing strings is constant, and wherein at least one of the first and second casing strings include: a tubular sleeve comprising an external flange positioned between the ends of the tubular sleeve, a first tubular member that receives an end of the tubular sleeve that abuts external flange that comprises internal threads, and a second tubular member that receives another end of the tubular sleeve that abuts the external flange that comprises external threads that engage the internal threads of the first tubular member.
An apparatus for extracting geothermal energy from a subterranean source of geothermal energy has been described that includes a borehole that traverses the subterranean source of geothermal energy, a first casing string positioned within the borehole, and a second casing string within the borehole that traverses the subterranean source of geothermal energy that overlaps with the first casing string. The first and second casing strings are radially expanded and plastically deformed within the borehole. The inside diameter of a passage defined by the first and second casing strings is constant, and at least one of the first and second casing strings include: a tubular sleeve comprising an internal flange positioned between the ends of the tubular sleeve, a first tubular member received within an end of the tubular sleeve in abutment with the internal flange that comprises internal threads, a second tubular member received within another end of the tubular sleeve in abutment with the internal flange that comprises external threads that engage the internal threads of the first tubular member, the tubular sleeve is in circumferential tension, the first tubular member is in circumferential compression, the second tubular member is in circumferential compression, a fluid tight seal is provided between the tubular sleeve and at least one of the first and second tubular members, and a fluid tight seal is provided between the threads of the first and second tubular members.
An apparatus for extracting geothermal energy from a subterranean source of geothermal energy has been described that includes a borehole that traverses the subterranean source of geothermal energy, a first casing string positioned within the borehole, and a second casing string positioned within the borehole that traverses the subterranean source of geothermal energy that overlaps with the first casing string. The interior diameter of a passage defined by the first and second casing strings is constant, and at least one of the first and second casing strings include: a tubular sleeve comprising an external flange positioned between the ends of the tubular sleeve, a first tubular member that receives an end of the tubular sleeve that abuts external flange that comprises internal threads, and a second tubular member that receives another end of the tubular sleeve that abuts the external flange that comprises external threads that engage the internal threads of the first tubular member. The tubular sleeve is in circumferential compression, the first tubular member is in circumferential tension, the second tubular member is in circumferential tension, a fluid tight seal is provided between the tubular sleeve and at least one of the first and second tubular members, and a fluid tight seal is provided between the threads of the first and second tubular members.
A method has been described that includes coupling an end of a first tubular member to an end of a tubular sleeve, coupling an end of a second tubular member to another end of the tubular sleeve, coupling the ends of the first and second tubular members, injecting a pressurized fluid through the first and second tubular members, determining if any of the pressurized fluid leaks through the coupled ends of the first and second tubular members, and if a predetermined amount of the pressurized fluid leaks through the coupled ends of the first and second tubular members, then coupling a tubular sleeve to the ends of the first and second tubular members and radially expanding and plastically deforming only the portions of the first and second tubular members proximate the tubular sleeve. In an exemplary embodiment, radially expanding and plastically deforming only the portions of the first and second tubular members proximate the tubular sleeve includes displacing an expansion cone within and relative to the first and second tubular members. In an exemplary embodiment, radially expanding and plastically deforming only the portions of the first and second tubular members proximate the tubular sleeve includes applying radial pressure to the interior surfaces of the first and second tubular member proximate the tubular sleeve using a rotating member.
A method has been described that includes coupling an end of a first tubular member to an end of a tubular sleeve, coupling an end of a second tubular member to another end of the tubular sleeve, coupling the ends of the first and second tubular members, radially expanding and plastically deforming the first tubular member and the second tubular member, and transmitting energy through the first and second tubular members. In an exemplary embodiment, the energy is electrical energy. In an exemplary embodiment, the electrical energy is a communication signal. In an exemplary embodiment, the energy is thermal energy. In an exemplary embodiment, the energy is acoustic energy. In an exemplary embodiment, the energy is transmitted through the first and second tubular members prior to radially expanding and plastically deforming the first and second tubular members. In an exemplary embodiment, the energy is transmitted through the first and second tubular members after radially expanding and plastically deforming the first and second tubular members. In an exemplary embodiment, the method further includes placing the tubular members in another structure, then radially expanding the tubular members, and transmitting energy through the first and second tubular members.
A system has been described that includes a source of energy, a borehole formed in the earth, a first tubular member positioned within the borehole operably coupled to the source of energy, a second tubular member positioned within the borehole coupled to the first tubular member, and a tubular sleeve positioned within the borehole coupled to the first and second tubular members. The first tubular member, second tubular member, and the tubular sleeve are plastically deformed into engagement with one another. In an exemplary embodiment, the source of energy is a source of electrical energy. In an exemplary embodiment, the source of energy is a source of thermal energy. In an exemplary embodiment, the source of energy is a source of acoustic energy.
A method of operating a well for extracting hydrocarbons from a subterranean formation has been described that includes drilling a borehole into the earth that traverses the subterranean formation, positioning a wellbore casing in the borehole, transmitting energy through the wellbore casing, and extracting hydrocarbons from the subterranean formation. The wellbore casing includes a first tubular member, a second tubular member coupled to the first tubular member, and a tubular sleeve coupled to the first and second tubular member. The first tubular member, the second tubular member, and the tubular sleeve are plastically deformed into engagement with one another. In an exemplary embodiment, the energy is electrical energy. In an exemplary embodiment, the energy is thermal energy. In an exemplary embodiment, the energy is acoustic energy.
A method of extracting fluidic materials from first and second producing subterranean formations traversed by a borehole has been described that includes coupling an end of a first tubular member to an end of a tubular sleeve, coupling an end of a second tubular member to another end of the first tubular sleeve, coupling the ends of the first and second tubular members, positioning the coupled first tubular member, second tubular member and first tubular sleeve within the borehole proximate the first producing subterranean formation, radially expanding and plastically deforming the first tubular member, the second tubular member, and the first tubular sleeve within the borehole, coupling an end of a third tubular member to an end of a second tubular sleeve, coupling an end of a fourth tubular member to another end of the second tubular sleeve, coupling the ends of the third and fourth tubular members, positioning the coupled third tubular member, fourth tubular member and second tubular sleeve within the radially expanded and coupled first tubular member, second tubular member, and first tubular sleeve and the borehole proximate the second producing subterranean formation, radially expanding and plastically deforming the third tubular member, the fourth tubular member, and the second tubular sleeve within the borehole, extracting fluidic materials from the first producing subterranean formation through an annular passage defined between the radially expanded and coupled first tubular member, second tubular member, and first tubular sleeve and the radially expanded and coupled third tubular member, fourth tubular member, and second tubular sleeve, and extracting fluidic materials from the second producing subterranean formation through a passage defined within the radially expanded and coupled third tubular member, fourth tubular member, and second tubular sleeve. In an exemplary embodiment, the method further includes fluidicly sealing an annular passage defined between the radially expanded and coupled first tubular member, second tubular member, and first tubular sleeve and the borehole, and fluidicly sealing an annular passage defined between the radially expanded and coupled third tubular member, fourth tubular member, and second tubular sleeve and the borehole.
A system for extracting fluidic materials from first and second producing subterranean formations traversed by a borehole has been described that includes means for coupling an end of a first tubular member to an end of a tubular sleeve, means for coupling an end of a second tubular member to another end of the first tubular sleeve, means for coupling the ends of the first and second tubular members, means for positioning the coupled first tubular member, second tubular member and first tubular sleeve within the borehole proximate the first producing subterranean formation, means for radially expanding and plastically deforming the first tubular member, the second tubular member, and the first tubular sleeve within the borehole, means for coupling an end of a third tubular member to an end of a second tubular sleeve, means for coupling an end of a fourth tubular member to another end of the second tubular sleeve, means for coupling the ends of the third and fourth tubular members, means for positioning the coupled third tubular member, fourth tubular member and second tubular sleeve within the radially expanded and coupled first tubular member, second tubular member, and first tubular sleeve and the borehole proximate the second producing subterranean formation, means for radially expanding and plastically deforming the third tubular member, the fourth tubular member, and the second tubular sleeve within the borehole, means for extracting fluidic materials from the first producing subterranean formation through an annular passage defined between the radially expanded and coupled first tubular member, second tubular member, and first tubular sleeve and the radially expanded and coupled third tubular member, fourth tubular member, and second tubular sleeve, and means for extracting fluidic materials from the second producing subterranean formation through a passage defined within the radially expanded and coupled third tubular member, fourth tubular member, and second tubular sleeve. In an exemplary embodiment, the system further includes means for fluidicly sealing an annular passage defined between the radially expanded and coupled first tubular member, second tubular member, and first tubular sleeve and the borehole, and means for fluidicly sealing an annular passage defined between the radially expanded and coupled third tubular member, fourth tubular member, and second tubular sleeve and the borehole.
It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the teachings of the present illustrative embodiments may be used to provide a wellbore casing, a pipeline, or a structural support. Furthermore, the elements and teachings of the various illustrative embodiments may be combined in whole or in part in some or all of the illustrative embodiments.
Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
The present application is the National Stage patent application for PCT patent application serial number PCT/US2003/020694, attorney docket number 25791.110.02, filed on Jul. 1, 2003, which claimed the benefit of the filing dates of (1) U.S. provisional patent application Ser. No. 60/398,061, attorney docket no 25791.110, filed on Jul. 24, 2002, which is a continuation-in-part of U.S. provisional patent application Ser. No. 60/372,632, attorney docket no. 25791.101, filed on Apr. 15, 2002, which was a continuation-in-part of U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002, which was a continuation-in-part of U.S. provisional patent application Ser. No. 60/346,309, attorney docket no. 25791.92, filed on Jan. 7, 2002, the disclosures of which are incorporated herein by reference. The present application is a continuation-in-part of U.S. utility patent application Ser. No. ______, attorney docket number 25791.106.05, filed on ______, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/397284, attorney docket number 25791.106, filed on Jul. 19, 2002, which was a continuation-in-part of U.S. utility patent application Ser. No. 10/511,410, attorney docket number 25791.101.05, filed on Oct. 14, 2004 which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/372,632, attorney docket number 25791.101, filed on Apr. 15, 2002, which was a continuation-in-part of U.S. utility patent application Ser. No. 10/510,966, attorney docket number 25791.93.05, filed on Oct. 12, 2004, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/372,048, attorney docket number 25791.93, filed on Apr. 12, 2002, which was a continuation-in-part of U.S. utility patent application Ser. No. 10/500,745, attorney docket number 25791.92.05, filed on Jul. 6, 2004, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 10/500,745, attorney docket number 25791.92, filed on Dec. 10, 2002. The present application is a continuation-in-part of U.S. provisional patent-application Ser. No. 60/398,061, attorney docket no. 25791.106, filed on Jul. 19, 2002, which was a continuation-in-part of U.S. provisional patent application Ser. No. 60/372,632, attorney docket no. 25791.101, filed on Apr. 15, 2002, which was a continuation-in-part of U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002, which was a continuation-in-part of U.S. provisional patent application Ser. No. 60/346,309, attorney docket no. 25791.92, filed on Jan. 7, 2002, the disclosures of which are incorporated herein by reference. The present application is related to the following: (1) U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, attorney docket no. 25791.9.02, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, (10) PCT patent application serial no. PCT/US00/18635, attorney docket no. 25791.25.02, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (21) U.S. provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (23) U.S. provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (24) U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (25) U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (26) U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (27) U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, (28) U.S. provisional patent application Ser. No. 60/3318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (29) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (30) U.S. utility patent application Ser. No. 10/016,467, attorney docket no. 25791.70, filed on Dec. 10, 2001; (31) U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001; (32) U.S. provisional patent application Ser. No. 60/346,309, attorney docket no 25791.92, filed on Jan. 7, 2002; (33) U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002; (34) U.S. provisional patent application Ser. No. 60/380,147, attorney docket no. 25791.104, filed on May 6, 2002; (35) U.S. provisional patent application Ser. No. 60/387,486, attorney docket no. 25791.107, filed on Jun. 10, 2002; (36) U.S. provisional patent application Ser. No. 60/387,961, attorney docket no. 25791.108, filed on Jun. 12, 2002; (37) U.S. provisional patent application Ser. No. 60/391,703, attorney docket no. 25791.90, filed on Jun. 26, 2002; and (38) U.S. provisional patent application Ser. No. 60/397,284, attorney docket no. 25791.106, filed on Jul. 19, 2002, the disclosures of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US03/20694 | 7/1/2003 | WO | 1/24/2005 |
Number | Date | Country | |
---|---|---|---|
60398061 | Jul 2002 | US |