The present disclosure relates to a heart valve for heart valve replacement, and more particularly to modifications to the construction of a surgical heart valve to enable receiving an expandable prosthetic heart valve therein and to expand to a limited degree.
The heart is a hollow muscular organ having four pumping chambers separated by four heart valves: aortic, mitral (or bicuspid), tricuspid, and pulmonary. Each heart valve is comprised of a dense fibrous ring known as the annulus, and leaflets or cusps attached to the annulus.
Heart valve disease is a widespread condition in which one or more of the valves of the heart fails to function properly. In a traditional valve replacement operation, the damaged leaflets are typically excised and the annulus sculpted to receive a replacement prosthetic valve.
In tissue-type valves, a whole xenograft valve (e.g., porcine) or a plurality of xenograft leaflets (e.g., bovine pericardium) can provide fluid occluding surfaces. Synthetic leaflets have been proposed, and thus the term “flexible leaflet valve” refers to both natural and artificial “tissue-type” valves. In a typical tissue-type valve, two or more flexible leaflets are mounted within a peripheral support structure that usually includes posts or commissures extending in the outflow direction to mimic natural fibrous commissures in the native annulus. The metallic or polymeric “support frame,” sometimes called a “wireform” or “stent,” has a plurality (typically three) of large radius cusps supporting the cusp region of the flexible leaflets (e.g., either a whole xenograft valve or three separate leaflets). The ends of each pair of adjacent cusps converge somewhat asymptotically to form upstanding commissures that terminate in tips, each extending in the opposite direction as the arcuate cusps and having a relatively smaller radius. Components of the valve are usually assembled with one or more biocompatible fabric (e.g., DACRON® polyethylene terephthalate) coverings, and a fabric-covered sewing ring is provided on the inflow end of the peripheral support structure.
Sometimes the need for complete valve replacement may arise after a patient has already had an earlier valve replacement for the same valve. For example, a prosthetic heart valve that was successfully implanted to replace a native valve may itself suffer damage and/or wear and tear many years after initially being implanted. Implanting a new prosthetic heart valve directly within a previously-implanted prosthetic heart valve (a so-called valve-in-valve procedure) may be impractical since traditional prosthetic heart valves may not be configured to easily receive such a valve-within-a-valve implantation in a manner which provides secure seating for the new valve while also having a large enough annulus within the new valve to support proper blood flow therethrough.
Some attention has been paid to the problem of implanting a new valve within an old valve. In particular, the following disclose various solutions for valve-in-valve systems: U.S. Patent Application Publication No. 2010/0076548 A1, filed Sep. 19, 2008; U.S. Pat. No. 8,613,765, filed Jul. 7, 2011; and International Patent Application Publication No. WO 2012/018779, filed Aug. 2, 2011. The entire disclosures of these publications are expressly incorporated herein by reference. Typically, the originally implanted heart valve is subjected to an outward dilatory force such as with an expanding balloon, until it expands to permit introduction of a new expandable valve within its orifice. The outward dilatory force from within the heart valve is typically substantially larger than forces associated with normal physiological cycling. The expansion may be done simultaneously with the new valve implantation.
Despite certain advances in valve-in-valve technology, there remains a need for a prosthetic heart valve that facilitates valve-in-valve procedures and simplifies manufacturing techniques.
Some embodiments provide a prosthetic heart valve configured to receive an expandable prosthetic heart valve, such as a catheter-deployed (transcatheter) prosthetic heart valve, therein. The prosthetic heart valve replaces a native heart valve and has a support frame configured to be reshaped into an expanded form in order to receive and/or support the expandable prosthetic heart valve therein. A dual-wireform support frame including an upper and a lower wireform permits expansion of the valve by one or two valve sizes, for example, with a 2-mm gap between each valve size. The expansion occurs upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling. The lower wireform has a relatively shallow undulation so that it may stretch apart by a small amount and then prevent further expansion of the valve.
In a first aspect, the present application discloses a prosthetic heart valve adapted for post-implant expansion and having an inflow end and an outflow end. An upper wireform undulates around a central axis with three upstanding commissure posts extending in an outflow direction alternating with three arcuate inflow cusps, and a fabric covering around the entire upper wireform. A lower wireform undulates around the central axis with three truncated peaks extending in an outflow direction alternating with three arcuate inflow cusp sections, with a fabric covering around the entire lower wireform. The lower wireform is positioned axially below the upper wireform with the three truncated peaks being aligned under three upstanding commissure posts of the upper wireform, and wherein the truncated peaks have an axial height of between about 10-30% of the commissure posts. Three flexible leaflets having outer arcuate cusp edges attach between the inflow cusps of the upper wireform and the inflow cusp sections of the lower wireform. Outer tabs of the leaflets extend outward between the commissure posts of the upper wireform and the truncated peaks of the lower wireform and are secured to the fabric covering around the upper wireform, the flexible leaflets being configured to ensure one-way blood flow through the heart valve. The inflow cusps of the upper wireform and the inflow cusp sections of the lower wireform together define an implant circumference having a first diameter, wherein the upper and lower wireforms permit expansion of the heart valve from the first diameter to a second diameter no greater than 3 mm larger than the first diameter upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling. Finally, the lower wireform has a shallow undulating shape that flattens out and prevents expansion of the heart valve beyond the second diameter
The prosthetic heart valve of the first aspect may further include three fabric-covered inserts located above the truncated peaks of the lower wireform that extend upward radially outward of the commissure posts of the upper wireform, the leaflet tabs being also secured to the inserts. Preferably, a lower end of each insert has an inverted Y-shape that closely matches a shape of the truncated peaks of the lower wireform.
The prosthetic heart valve of the first aspect may further include an annular sealing ring disposed outward of the inflow cusp sections of the lower wireform and being secured thereto, the annular sealing ring being suture permeable. In one embodiment, the lower wireform is embedded within the sealing ring.
The lower wireform may comprises a solid wire or a braided cable.
The prosthetic heart valve of the first aspect may further include an expandable frame attached to an inflow end of the heart valve and projecting therefrom in the inflow direction, the expandable frame having an upper undulating strut that extends around an entire periphery thereof and a plurality of lower struts. The undulating strut has a shape that closely follows the shape of the undulating lower wireform, wherein there are no lower struts below three peaks of the undulating strut to permit flattening out of the undulating strut upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling.
In a second aspect, a prosthetic heart valve adapted for post-implant expansion and having an inflow end and an outflow end, comprises an upper wireform undulating around a central axis with three upstanding commissure posts extending in an outflow direction alternating with three arcuate inflow cusps, and a fabric covering around the entire upper wireform. An annular sealing ring is disposed outward of the inflow cusps of the upper wireform and is secured thereto, the annular sealing ring being suture permeable. A braided cable undulates around the central axis with three truncated peaks extending in an outflow direction alternating with three arcuate inflow cusp sections, the braided cable being embedded within the sealing ring and the three truncated peaks being aligned under three upstanding commissure posts. Three flexible leaflets having outer arcuate cusp edges attach between the inflow cusps of the upper wireform and the sealing ring. Outer tabs of the leaflets extend outward between the commissure posts of the upper wireform and are secured to the fabric covering around the upper wireform, the flexible leaflets being configured to ensure one-way blood flow through the heart valve. The inflow cusps of the upper wireform and the inflow cusp sections of the braided cable together define an implant circumference having a first diameter, wherein the upper wireform and braided cable permit expansion of the heart valve from the first diameter to a second diameter no greater than 3 mm larger than the first diameter upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling. Finally, the braided cable has a shallow undulating shape that flattens out and prevents expansion of the heart valve beyond the second diameter
The prosthetic heart valve of the second aspect may further include three fabric-covered inserts located above the truncated peaks of the braided cable that extend upward radially outward of the commissure posts of the upper wireform, the leaflet tabs being also secured to the inserts. Lower ends of each insert may have an inverted Y-shape that closely matches a shape of the truncated peaks of the braided cable.
The braided cable may be joined together at free ends at a weld in one of the cusp sections, or at a crimp at one of the truncated peaks.
The prosthetic heart valve of the second aspect may further include an expandable frame attached to an inflow end of the heart valve and projecting therefrom in the inflow direction, the expandable frame having an upper undulating strut that extends around an entire periphery thereof and a plurality of lower struts. The undulating strut has a shape that closely follows the shape of the undulating lower wireform, wherein there are no lower struts below three peaks of the undulating strut to permit flattening out of the undulating strut upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling.
Other features and advantages will become apparent from the following detailed description, taken in conjunction with the accompanying drawings that illustrate, by way of example, certain principles and examples.
The prosthetic heart valves disclosed herein include a prosthetic valve member constructed similarly to embodiments of some commercially available surgical valves, with a relatively stable diameter that is not intended to be compressed or expanded during delivery and after implant when functioning as a one-way valve. The prosthetic heart valves described herein each include an internal (meaning incorporated into the valve member itself as opposed to being a supplemental element) structural stent or frame that is generally tubular in shape and that defines a flow orifice area through which blood flows from an inflow end to an outflow end. Alternatively, the shape of the internal stent can be oval, elliptical, D-shaped, irregular, or any other desired and functional shape. The valves include flexible leaflets that selectively open and close to allow for one-way fluid flow therethrough.
The present application discloses specific modifications to existing surgical valves that enable manufacturers to rapidly produce a valve that accommodates valve-in-valve (ViV) procedures. Specifically, the present application contemplates modifying certain components within existing surgical valve designs to enable post-implant expansion, which not only converts any proven surgical valve design for use in a ViV procedure, but it also reduces design and manufacturing work. Consequently, components of one popular surgical valve are described below to illustrate certain modifications thereto.
Certain characteristics of the prosthetic heart valve 20 are common to a number of different prosthetic heart valves, such as pericardial heart valves manufactured by Edwards Lifesciences of Irvine, Calif. For example, the Edwards PERIMOUNT® heart valves that utilize pericardial leaflets 24 features a leaflet-supporting wireform such as the upper wireform 26, but also has an inner stent comprising a relatively non-expandable circular band structure. The exemplary heart valve 20 disclosed herein improves on the PERIMOUNT® heart valves by avoiding inner support structure which inhibits post-implant expansion.
The lower wireform 28 is preferably metallic as well, but may be solid or a braided structure, as will be discussed. As seen in
In the illustrated embodiment, the peaks 32 of the lower wireform 28 are rotationally aligned with the commissure posts 30 of the upper wireform 26. In other embodiments, one or more of the peaks 32 is rotationally offset from the commissure posts 30. For example, in some embodiments, at least two peaks 32 are rotationally offset in the same direction. In some embodiments, at least a first peak is rotationally offset in an opposite direction as a second peak. In some embodiments, a first peak is rotationally offset by a different angular distance than a second peak.
Moreover, although the illustrated embodiment of the upper wireform 26 includes three commissure posts 30, in other embodiments, the upper wireform includes a different number of commissure posts, for example, two or four. In the illustrated embodiment, the number of peaks 32 on the lower wireform 28 matches the number of commissure posts 30 on the upper wireform 26: in this example, three of each. In other embodiments, the number of peaks is different than the number of commissure posts. For example, some embodiments include fewer peaks than commissure posts, for example, two peaks on a device with three commissure posts. Other embodiments include more peaks than commissures, for example, by replacing at least one of the peaks 32 with two peaks.
In other embodiments, the upper and lower wireforms 26, 28 do not have a common diameter. For example, in some embodiments, the lower wireform has a larger diameter than the upper wireform. In some of these embodiments, such a configuration permits nesting the upper wireform within the lower wireform, thereby reducing the overall height (H1 and h1) of the device. In some of these embodiments, the final diameters (d1 in
The heights h1, h2 of the upper and lower wireforms 26, 28, respectively, decrease when the wireforms expand. Because of the relatively high commissure posts 30 of the upper wireform 26, and their large capacity to expand outward toward the cusps 31, the height h1 decreases a smaller proportion of the original height H1 compared with h2/H2. However, since the lower wireform 28 has relatively shallower undulations between the peaks 32 and cusp sections 34 compared with the upper wireform 26, the reduced height h2 is preferably less than about 50% of the original height H2. More preferably, the lower wireform 28 flattens out to a great extent to more closely resemble a flat ring, thus presenting a relatively strong impediment to further expansion, such as with an expanding balloon during a valve-in-valve procedure. The expanded lower wireform 28 is shown with slight undulations, although it could be much flatter depending on the original height H2 and the extent of expansion. Preferably the hoop strength of the lower wireform 28 increases to a magnitude sufficient to withstand balloon expansion from within after an expansion of between about 2-3 mm in diameter.
With reference back to
Outer tabs 40 of adjacent leaflets 24 wrap around upper ends of commissure inserts 36 (preferably three) that project in an outflow direction along the flow axis 22. The commissure inserts 36 comprises elements separate from either the upper and lower wireforms 26, 28, and each has an inverted “Y” shape with a forked lower end 42 that generally conforms to a peak 30 of the lower wireform 28. Once covered in fabric, as illustrated for the one of the inserts shown in
Once assembled with the other valve components, the combination of the upper and lower wireforms 26, 28 presents a relatively dimensionally stable circumferential base to the valve 20, which is beneficial for typical surgical use. That is, primarily the lower wireform 28 provides good ring support to the cusp edges of the leaflets 24 and helps provide resistance to deformation of the valve during implantation. However, because of its undulating shape, the lower wireform 28 facilitates limited expansion of the valve 20.
During a valve-in-valve procedure, as the lower wireform 28 expands, the commissure posts 30 become spaced apart since the upper wireform 26 expands outward, which may lead to a loss of function of the valve 20. However, the valve becomes obsolete, having been replaced with a transcatheter valve, and so this loss of function is of no consequence. The wireform maintains the upstanding commissure posts of the expanded valve in roughly the same relative circumferential locations as when they were functional, which are intermediate the surrounding coronary ostia, and thus valve expansion will not end up blocking critical blood flow to the coronary arteries.
Another concept for limiting the expansion of prosthetic heart valves is shown in
The lower wireform 52 is preferably shaped similarly to the lower wireform 28 described above, and is shown in two different embodiments in
In contrast to the lower wireform 28 described above, the braided wireform 52 is desirably embedded within the sealing ring 58, although the lower wireform 28 may also be embedded within the sealing ring. In one embodiment, the sealing ring 58 is a molded silicone element having the braided wireform 52 co-molded in an underside thereof. As mentioned, the assembly of the wireform 52 and sealing ring 58 may be covered with fabric and then joined to the upper wireform 54 and leaflets 56 via sutures. In
The addition of the expandable frame 72 creates a “hybrid” type of prosthetic heart valve in that the upper portion is constructed similar to a surgical valve, while the lower frame structure 72 is expandable to help in anchoring the valve in place. One specific commercial prosthetic heart valve that is constructed in this manner is one which is sold in conjunction with the Edwards Intuity® valve system from Edwards Lifesciences of Irvine, Calif. The Edwards Intuity® valve system comprises a “hybrid” valve incorporating essentially a surgical Perimount® valve, albeit one that is modified for post-implant expansion, and a stainless steel lower frame structure or skirt stent.
In one embodiment, the aforementioned inner support member 78 may be omitted completely from the prosthetic valve 70 with the undulating strut 80 providing support to the base of the valve and the leaflets. For example, the undulating strut 80 may be positioned approximately the same place as the braided wireform 52 seen in
While certain principles have been described with reference to particular embodiments, it will understood that various changes and additional variations may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular situation or device to the teachings without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiments disclosed herein, but will include all embodiments falling within the scope of the appended claims.
This application is a continuation of International Patent Application No. PCT/US2018/038527, filed Jun. 20, 2018, which claims the benefit of U.S. Patent Application No. 62/523,157, filed Jun. 21, 2017, the entire disclosures all of which are incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3143742 | Cromie | Aug 1964 | A |
3320972 | High et al. | May 1967 | A |
3371352 | Siposs et al. | Mar 1968 | A |
3546710 | Shumakov et al. | Dec 1970 | A |
3574865 | Hamaker | Apr 1971 | A |
3755823 | Hancock | Sep 1973 | A |
3839741 | Haller | Oct 1974 | A |
3997923 | Possis | Dec 1976 | A |
4035849 | Angell et al. | Jul 1977 | A |
4079468 | Liotta et al. | Mar 1978 | A |
4084268 | Ionescu et al. | Apr 1978 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4172295 | Batten | Oct 1979 | A |
4217665 | Bex et al. | Aug 1980 | A |
4218782 | Rygg | Aug 1980 | A |
4259753 | Liotta et al. | Apr 1981 | A |
RE30912 | Hancock | Apr 1982 | E |
4340091 | Skelton et al. | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4364126 | Rosen et al. | Dec 1982 | A |
4388735 | Ionescu et al. | Jun 1983 | A |
4441216 | Ionescu et al. | Apr 1984 | A |
4451936 | Carpentier et al. | Jun 1984 | A |
4470157 | Love | Sep 1984 | A |
4490859 | Black et al. | Jan 1985 | A |
4501030 | Lane | Feb 1985 | A |
4506394 | Bedard | Mar 1985 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4566465 | Arhan et al. | Jan 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4626255 | Reichert et al. | Dec 1986 | A |
4629459 | Ionescu et al. | Dec 1986 | A |
4680031 | Alonso | Jul 1987 | A |
4687483 | Fisher et al. | Aug 1987 | A |
4705516 | Barone et al. | Nov 1987 | A |
4725274 | Lane et al. | Feb 1988 | A |
4731074 | Rousseau et al. | Mar 1988 | A |
4778461 | Pietsch et al. | Oct 1988 | A |
4790843 | Carpentier et al. | Dec 1988 | A |
4851000 | Gupta | Jul 1989 | A |
4888009 | Lederman et al. | Dec 1989 | A |
4914097 | Oda et al. | Apr 1990 | A |
4960424 | Grooters | Oct 1990 | A |
4993428 | Arms | Feb 1991 | A |
5010892 | Colvin et al. | Apr 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5147391 | Lane | Sep 1992 | A |
5163955 | Love et al. | Nov 1992 | A |
5258023 | Reger | Nov 1993 | A |
5316016 | Adams et al. | May 1994 | A |
5326370 | Love et al. | Jul 1994 | A |
5326371 | Love et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5360014 | Sauter et al. | Nov 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5376112 | Duran | Dec 1994 | A |
5396887 | Imran | Mar 1995 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5423887 | Love et al. | Jun 1995 | A |
5425741 | Lemp et al. | Jun 1995 | A |
5431676 | Dubrul et al. | Jul 1995 | A |
5449384 | Johnson | Sep 1995 | A |
5449385 | Religa et al. | Sep 1995 | A |
5469868 | Reger | Nov 1995 | A |
5487760 | Villafana | Jan 1996 | A |
5488789 | Religa et al. | Feb 1996 | A |
5489296 | Love et al. | Feb 1996 | A |
5489297 | Duran | Feb 1996 | A |
5489298 | Love et al. | Feb 1996 | A |
5500016 | Fisher | Mar 1996 | A |
5533515 | Coller et al. | Jul 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5562729 | Purdy et al. | Oct 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573007 | Bobo, Sr. | Nov 1996 | A |
5578076 | Krueger et al. | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5628789 | Vanney et al. | May 1997 | A |
5693090 | Unsworth et al. | Dec 1997 | A |
5695503 | Krueger et al. | Dec 1997 | A |
5713952 | Vanney et al. | Feb 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5728064 | Burns et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5735894 | Krueger et al. | Apr 1998 | A |
5752522 | Murphy | May 1998 | A |
5755762 | Love et al. | May 1998 | A |
5766240 | Johnson | Jun 1998 | A |
5800527 | Jansen et al. | Sep 1998 | A |
5814097 | Sterman et al. | Sep 1998 | A |
5814098 | Hinnenkamp et al. | Sep 1998 | A |
5824064 | Taheri | Oct 1998 | A |
5824068 | Bugge | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5855563 | Kaplan et al. | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5855801 | Lin et al. | Jan 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5895420 | Mirsch, II et al. | Apr 1999 | A |
5902308 | Murphy | May 1999 | A |
5908450 | Gross et al. | Jun 1999 | A |
5919147 | Jain | Jul 1999 | A |
5921934 | Teo | Jul 1999 | A |
5921935 | Hickey | Jul 1999 | A |
5924984 | Rao | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5972004 | Williamson, IV et al. | Oct 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5984973 | Girard et al. | Nov 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6042554 | Rosenman et al. | Mar 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6074418 | Buchanan et al. | Jun 2000 | A |
6081737 | Shah | Jun 2000 | A |
6083179 | Oredsson | Jul 2000 | A |
6099475 | Seward et al. | Aug 2000 | A |
6106550 | Magovern et al. | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6117091 | Young et al. | Sep 2000 | A |
6126007 | Kari et al. | Oct 2000 | A |
6162233 | Williamson, IV et al. | Dec 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6176877 | Buchanan et al. | Jan 2001 | B1 |
6197054 | Hamblin, Jr. et al. | Mar 2001 | B1 |
6217611 | Klostermeyer | Apr 2001 | B1 |
6231561 | Frazier et al. | May 2001 | B1 |
6241765 | Griffin et al. | Jun 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6264611 | Ishikawa et al. | Jul 2001 | B1 |
6283127 | Sterman et al. | Sep 2001 | B1 |
6287339 | Vazquez et al. | Sep 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6328727 | Frazier et al. | Dec 2001 | B1 |
6350282 | Eberhardt | Feb 2002 | B1 |
6371983 | Lane | Apr 2002 | B1 |
6375620 | Oser et al. | Apr 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | DiMatteo et al. | Aug 2002 | B1 |
6442413 | Silver | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6468305 | Otte | Oct 2002 | B1 |
6491624 | Lotfi | Dec 2002 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6585766 | Huynh et al. | Jul 2003 | B1 |
6645143 | VanTassel et al. | Nov 2003 | B2 |
6652464 | Schwartz et al. | Nov 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6675049 | Thompson et al. | Jan 2004 | B2 |
6682559 | Myers et al. | Jan 2004 | B2 |
6685739 | DiMatteo et al. | Feb 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6741885 | Park et al. | May 2004 | B1 |
6764508 | Roehe et al. | Jul 2004 | B1 |
6767362 | Schreck | Jul 2004 | B2 |
6773457 | Ivancev et al. | Aug 2004 | B2 |
6786925 | Schoon et al. | Sep 2004 | B1 |
6790229 | Berreklouw | Sep 2004 | B1 |
6790230 | Beyersdorf et al. | Sep 2004 | B2 |
6795732 | Stadler et al. | Sep 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6893460 | Spenser et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6939365 | Fogarty et al. | Sep 2005 | B1 |
7011681 | Vesely | Mar 2006 | B2 |
7025760 | Gabbay | Apr 2006 | B2 |
7033322 | Silver | Apr 2006 | B2 |
7052466 | Scheiner et al. | May 2006 | B2 |
7070616 | Majercak et al. | Jul 2006 | B2 |
7082330 | Stadler et al. | Jul 2006 | B2 |
7097659 | Woolfson et al. | Aug 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7147663 | Berg et al. | Dec 2006 | B1 |
7153324 | Case et al. | Dec 2006 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7201771 | Lane | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7238200 | Lee et al. | Jul 2007 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7261732 | Justino | Aug 2007 | B2 |
RE40377 | Williamson, IV et al. | Jun 2008 | E |
7416530 | Turner et al. | Aug 2008 | B2 |
7422603 | Lane | Sep 2008 | B2 |
7513909 | Lane et al. | Apr 2009 | B2 |
7556647 | Drews et al. | Jul 2009 | B2 |
7569072 | Berg et al. | Aug 2009 | B2 |
7621878 | Ericson et al. | Nov 2009 | B2 |
7871435 | Carpentier | Jan 2011 | B2 |
7916013 | Stevenson | Mar 2011 | B2 |
7998151 | St. Goar et al. | Aug 2011 | B2 |
8066650 | Lee et al. | Nov 2011 | B2 |
8248232 | Stevenson et al. | Aug 2012 | B2 |
8253555 | Stevenson et al. | Aug 2012 | B2 |
8340750 | Prakash et al. | Dec 2012 | B2 |
8401659 | Von Arx et al. | Mar 2013 | B2 |
8529474 | Gupta et al. | Sep 2013 | B2 |
8613765 | Bonhoeffer | Dec 2013 | B2 |
8622936 | Schenberger et al. | Jan 2014 | B2 |
9101264 | Acquista | Aug 2015 | B2 |
9101281 | Reinert et al. | Aug 2015 | B2 |
10456246 | Conklin | Oct 2019 | B2 |
20010039435 | Roue et al. | Nov 2001 | A1 |
20010039436 | Frazier et al. | Nov 2001 | A1 |
20010041914 | Frazier et al. | Nov 2001 | A1 |
20010041915 | Roue et al. | Nov 2001 | A1 |
20010049492 | Frazier et al. | Dec 2001 | A1 |
20020020074 | Love et al. | Feb 2002 | A1 |
20020026238 | Lane et al. | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020123802 | Snyders | Sep 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020188348 | DiMatteo et al. | Dec 2002 | A1 |
20020198594 | Schreck | Dec 2002 | A1 |
20030014104 | Cribier | Jan 2003 | A1 |
20030023300 | Bailey et al. | Jan 2003 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030036795 | Andersen et al. | Feb 2003 | A1 |
20030040792 | Gabbay | Feb 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030114913 | Spenser et al. | Jun 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030149478 | Figulla et al. | Aug 2003 | A1 |
20030167089 | Lane | Sep 2003 | A1 |
20030236568 | Hojeibane et al. | Dec 2003 | A1 |
20040010296 | Swanson et al. | Jan 2004 | A1 |
20040019374 | Hojeibane et al. | Jan 2004 | A1 |
20040027306 | Amundson et al. | Feb 2004 | A1 |
20040034411 | Quijano et al. | Feb 2004 | A1 |
20040044406 | Woolfson et al. | Mar 2004 | A1 |
20040106976 | Bailey et al. | Jun 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040122516 | Fogarty et al. | Jun 2004 | A1 |
20040167573 | Williamson et al. | Aug 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040193261 | Berreklouw | Sep 2004 | A1 |
20040206363 | McCarthy et al. | Oct 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040225355 | Stevens | Nov 2004 | A1 |
20040236411 | Sarac et al. | Nov 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20040260390 | Sarac et al. | Dec 2004 | A1 |
20050010285 | Lambrecht et al. | Jan 2005 | A1 |
20050027348 | Case et al. | Feb 2005 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050043760 | Fogarty et al. | Feb 2005 | A1 |
20050043790 | Seguin | Feb 2005 | A1 |
20050060029 | Le et al. | Mar 2005 | A1 |
20050065594 | DiMatteo et al. | Mar 2005 | A1 |
20050065614 | Stinson | Mar 2005 | A1 |
20050075584 | Cali | Apr 2005 | A1 |
20050075713 | Biancucci et al. | Apr 2005 | A1 |
20050075717 | Nguyen et al. | Apr 2005 | A1 |
20050075718 | Nguyen et al. | Apr 2005 | A1 |
20050075719 | Bergheim | Apr 2005 | A1 |
20050075720 | Nguyen et al. | Apr 2005 | A1 |
20050075724 | Svanidze et al. | Apr 2005 | A1 |
20050080454 | Drews et al. | Apr 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050159811 | Lane | Jul 2005 | A1 |
20050165479 | Drews et al. | Jul 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050192665 | Spenser et al. | Sep 2005 | A1 |
20050203616 | Cribier | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050203618 | Sharkawy et al. | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050222674 | Paine | Oct 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240263 | Fogarty et al. | Oct 2005 | A1 |
20050251252 | Stobie | Nov 2005 | A1 |
20050261765 | Liddicoat | Nov 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060085060 | Campbell | Apr 2006 | A1 |
20060095125 | Chinn et al. | May 2006 | A1 |
20060122634 | Ino et al. | Jun 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060154230 | Cunanan et al. | Jul 2006 | A1 |
20060167543 | Bailey et al. | Jul 2006 | A1 |
20060195184 | Lane et al. | Aug 2006 | A1 |
20060195185 | Lane et al. | Aug 2006 | A1 |
20060195186 | Drews et al. | Aug 2006 | A1 |
20060207031 | Cunanan et al. | Sep 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060271172 | Tehrani | Nov 2006 | A1 |
20060271175 | Woolfson et al. | Nov 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20060287719 | Rowe et al. | Dec 2006 | A1 |
20070005129 | Damm et al. | Jan 2007 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070016285 | Lane et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070078509 | Lotfy | Apr 2007 | A1 |
20070078510 | Ryan | Apr 2007 | A1 |
20070100440 | Figulla et al. | May 2007 | A1 |
20070129794 | Realyvasquez | Jun 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070142907 | Moaddeb et al. | Jun 2007 | A1 |
20070150053 | Gurskis et al. | Jun 2007 | A1 |
20070156233 | Kapadia et al. | Jul 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070162107 | Haug et al. | Jul 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070179604 | Lane | Aug 2007 | A1 |
20070185565 | Schwarnmenthal et al. | Aug 2007 | A1 |
20070198097 | Zegdi | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070203576 | Lee et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070225801 | Drews et al. | Sep 2007 | A1 |
20070233237 | Krivoruchko | Oct 2007 | A1 |
20070239266 | Birdsall | Oct 2007 | A1 |
20070239269 | Dolan et al. | Oct 2007 | A1 |
20070239273 | Allen | Oct 2007 | A1 |
20070255398 | Yang et al. | Nov 2007 | A1 |
20070260305 | Drews et al. | Nov 2007 | A1 |
20070265701 | Gurskis et al. | Nov 2007 | A1 |
20070270944 | Bergheim et al. | Nov 2007 | A1 |
20070282436 | Pinchuk | Dec 2007 | A1 |
20070288089 | Gurskis et al. | Dec 2007 | A1 |
20080033543 | Gurskis et al. | Feb 2008 | A1 |
20080046040 | Denker et al. | Feb 2008 | A1 |
20080119875 | Ino et al. | May 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080319543 | Lane | Dec 2008 | A1 |
20090036903 | Ino et al. | Feb 2009 | A1 |
20090192591 | Ryan et al. | Jul 2009 | A1 |
20090192599 | Lane et al. | Jul 2009 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100145438 | Barone | Jun 2010 | A1 |
20100256723 | Murray | Oct 2010 | A1 |
20120078357 | Conklin | Mar 2012 | A1 |
20120123284 | Kheradvar | May 2012 | A1 |
20120239143 | Rankin et al. | Sep 2012 | A1 |
20120296382 | Shuros et al. | Nov 2012 | A1 |
20130144379 | Najafi et al. | Jun 2013 | A1 |
20140128964 | Delaloye | May 2014 | A1 |
20140188219 | Conklin | Jul 2014 | A1 |
20140188221 | Chung | Jul 2014 | A1 |
20140364707 | Kintz et al. | Dec 2014 | A1 |
20150045635 | Tankiewicz et al. | Feb 2015 | A1 |
20150088250 | Zeng | Mar 2015 | A1 |
20150366664 | Guttenberg | Dec 2015 | A1 |
20160045316 | Braido et al. | Feb 2016 | A1 |
20160158013 | Carpentier | Jun 2016 | A1 |
20160296331 | Chung | Oct 2016 | A1 |
20170000603 | Conklin | Jan 2017 | A1 |
20170071732 | Conklin | Mar 2017 | A1 |
20190321170 | Green et al. | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
0125393 | Nov 1984 | EP |
0143246 | Jun 1985 | EP |
1116573 | Jul 1985 | SU |
1697790 | Dec 1991 | SU |
9213502 | Aug 1992 | WO |
9742871 | Nov 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20200121456 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
62523157 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2018/038527 | Jun 2018 | US |
Child | 16721727 | US |