Dual-wireform limited expansion heart valves

Information

  • Patent Grant
  • 11135057
  • Patent Number
    11,135,057
  • Date Filed
    Thursday, December 19, 2019
    5 years ago
  • Date Issued
    Tuesday, October 5, 2021
    3 years ago
Abstract
A prosthetic heart valve configured to replace a native heart valve and having a support frame configured to be reshaped into an expanded form in order to receive and/or support an expandable prosthetic heart valve therein. A dual-wireform support frame including an upper and a lower wireform permits expansion of the valve by one or two valve sizes, for example, with a 2-mm gap between each valve size. The lower wireform has a relatively shallow undulation so that it may stretch apart by a small amount and then prevent further expansion of the valve.
Description

The present disclosure relates to a heart valve for heart valve replacement, and more particularly to modifications to the construction of a surgical heart valve to enable receiving an expandable prosthetic heart valve therein and to expand to a limited degree.


The heart is a hollow muscular organ having four pumping chambers separated by four heart valves: aortic, mitral (or bicuspid), tricuspid, and pulmonary. Each heart valve is comprised of a dense fibrous ring known as the annulus, and leaflets or cusps attached to the annulus.


Heart valve disease is a widespread condition in which one or more of the valves of the heart fails to function properly. In a traditional valve replacement operation, the damaged leaflets are typically excised and the annulus sculpted to receive a replacement prosthetic valve.


In tissue-type valves, a whole xenograft valve (e.g., porcine) or a plurality of xenograft leaflets (e.g., bovine pericardium) can provide fluid occluding surfaces. Synthetic leaflets have been proposed, and thus the term “flexible leaflet valve” refers to both natural and artificial “tissue-type” valves. In a typical tissue-type valve, two or more flexible leaflets are mounted within a peripheral support structure that usually includes posts or commissures extending in the outflow direction to mimic natural fibrous commissures in the native annulus. The metallic or polymeric “support frame,” sometimes called a “wireform” or “stent,” has a plurality (typically three) of large radius cusps supporting the cusp region of the flexible leaflets (e.g., either a whole xenograft valve or three separate leaflets). The ends of each pair of adjacent cusps converge somewhat asymptotically to form upstanding commissures that terminate in tips, each extending in the opposite direction as the arcuate cusps and having a relatively smaller radius. Components of the valve are usually assembled with one or more biocompatible fabric (e.g., DACRON® polyethylene terephthalate) coverings, and a fabric-covered sewing ring is provided on the inflow end of the peripheral support structure.


Sometimes the need for complete valve replacement may arise after a patient has already had an earlier valve replacement for the same valve. For example, a prosthetic heart valve that was successfully implanted to replace a native valve may itself suffer damage and/or wear and tear many years after initially being implanted. Implanting a new prosthetic heart valve directly within a previously-implanted prosthetic heart valve (a so-called valve-in-valve procedure) may be impractical since traditional prosthetic heart valves may not be configured to easily receive such a valve-within-a-valve implantation in a manner which provides secure seating for the new valve while also having a large enough annulus within the new valve to support proper blood flow therethrough.


Some attention has been paid to the problem of implanting a new valve within an old valve. In particular, the following disclose various solutions for valve-in-valve systems: U.S. Patent Application Publication No. 2010/0076548 A1, filed Sep. 19, 2008; U.S. Pat. No. 8,613,765, filed Jul. 7, 2011; and International Patent Application Publication No. WO 2012/018779, filed Aug. 2, 2011. The entire disclosures of these publications are expressly incorporated herein by reference. Typically, the originally implanted heart valve is subjected to an outward dilatory force such as with an expanding balloon, until it expands to permit introduction of a new expandable valve within its orifice. The outward dilatory force from within the heart valve is typically substantially larger than forces associated with normal physiological cycling. The expansion may be done simultaneously with the new valve implantation.


Despite certain advances in valve-in-valve technology, there remains a need for a prosthetic heart valve that facilitates valve-in-valve procedures and simplifies manufacturing techniques.


Some embodiments provide a prosthetic heart valve configured to receive an expandable prosthetic heart valve, such as a catheter-deployed (transcatheter) prosthetic heart valve, therein. The prosthetic heart valve replaces a native heart valve and has a support frame configured to be reshaped into an expanded form in order to receive and/or support the expandable prosthetic heart valve therein. A dual-wireform support frame including an upper and a lower wireform permits expansion of the valve by one or two valve sizes, for example, with a 2-mm gap between each valve size. The expansion occurs upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling. The lower wireform has a relatively shallow undulation so that it may stretch apart by a small amount and then prevent further expansion of the valve.


In a first aspect, the present application discloses a prosthetic heart valve adapted for post-implant expansion and having an inflow end and an outflow end. An upper wireform undulates around a central axis with three upstanding commissure posts extending in an outflow direction alternating with three arcuate inflow cusps, and a fabric covering around the entire upper wireform. A lower wireform undulates around the central axis with three truncated peaks extending in an outflow direction alternating with three arcuate inflow cusp sections, with a fabric covering around the entire lower wireform. The lower wireform is positioned axially below the upper wireform with the three truncated peaks being aligned under three upstanding commissure posts of the upper wireform, and wherein the truncated peaks have an axial height of between about 10-30% of the commissure posts. Three flexible leaflets having outer arcuate cusp edges attach between the inflow cusps of the upper wireform and the inflow cusp sections of the lower wireform. Outer tabs of the leaflets extend outward between the commissure posts of the upper wireform and the truncated peaks of the lower wireform and are secured to the fabric covering around the upper wireform, the flexible leaflets being configured to ensure one-way blood flow through the heart valve. The inflow cusps of the upper wireform and the inflow cusp sections of the lower wireform together define an implant circumference having a first diameter, wherein the upper and lower wireforms permit expansion of the heart valve from the first diameter to a second diameter no greater than 3 mm larger than the first diameter upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling. Finally, the lower wireform has a shallow undulating shape that flattens out and prevents expansion of the heart valve beyond the second diameter


The prosthetic heart valve of the first aspect may further include three fabric-covered inserts located above the truncated peaks of the lower wireform that extend upward radially outward of the commissure posts of the upper wireform, the leaflet tabs being also secured to the inserts. Preferably, a lower end of each insert has an inverted Y-shape that closely matches a shape of the truncated peaks of the lower wireform.


The prosthetic heart valve of the first aspect may further include an annular sealing ring disposed outward of the inflow cusp sections of the lower wireform and being secured thereto, the annular sealing ring being suture permeable. In one embodiment, the lower wireform is embedded within the sealing ring.


The lower wireform may comprises a solid wire or a braided cable.


The prosthetic heart valve of the first aspect may further include an expandable frame attached to an inflow end of the heart valve and projecting therefrom in the inflow direction, the expandable frame having an upper undulating strut that extends around an entire periphery thereof and a plurality of lower struts. The undulating strut has a shape that closely follows the shape of the undulating lower wireform, wherein there are no lower struts below three peaks of the undulating strut to permit flattening out of the undulating strut upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling.


In a second aspect, a prosthetic heart valve adapted for post-implant expansion and having an inflow end and an outflow end, comprises an upper wireform undulating around a central axis with three upstanding commissure posts extending in an outflow direction alternating with three arcuate inflow cusps, and a fabric covering around the entire upper wireform. An annular sealing ring is disposed outward of the inflow cusps of the upper wireform and is secured thereto, the annular sealing ring being suture permeable. A braided cable undulates around the central axis with three truncated peaks extending in an outflow direction alternating with three arcuate inflow cusp sections, the braided cable being embedded within the sealing ring and the three truncated peaks being aligned under three upstanding commissure posts. Three flexible leaflets having outer arcuate cusp edges attach between the inflow cusps of the upper wireform and the sealing ring. Outer tabs of the leaflets extend outward between the commissure posts of the upper wireform and are secured to the fabric covering around the upper wireform, the flexible leaflets being configured to ensure one-way blood flow through the heart valve. The inflow cusps of the upper wireform and the inflow cusp sections of the braided cable together define an implant circumference having a first diameter, wherein the upper wireform and braided cable permit expansion of the heart valve from the first diameter to a second diameter no greater than 3 mm larger than the first diameter upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling. Finally, the braided cable has a shallow undulating shape that flattens out and prevents expansion of the heart valve beyond the second diameter


The prosthetic heart valve of the second aspect may further include three fabric-covered inserts located above the truncated peaks of the braided cable that extend upward radially outward of the commissure posts of the upper wireform, the leaflet tabs being also secured to the inserts. Lower ends of each insert may have an inverted Y-shape that closely matches a shape of the truncated peaks of the braided cable.


The braided cable may be joined together at free ends at a weld in one of the cusp sections, or at a crimp at one of the truncated peaks.


The prosthetic heart valve of the second aspect may further include an expandable frame attached to an inflow end of the heart valve and projecting therefrom in the inflow direction, the expandable frame having an upper undulating strut that extends around an entire periphery thereof and a plurality of lower struts. The undulating strut has a shape that closely follows the shape of the undulating lower wireform, wherein there are no lower struts below three peaks of the undulating strut to permit flattening out of the undulating strut upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling.





Other features and advantages will become apparent from the following detailed description, taken in conjunction with the accompanying drawings that illustrate, by way of example, certain principles and examples.



FIGS. 1A-1E are a number of views of an exemplary prosthetic heart valve of the present invention having a dual wireform construction including an expansion limiting suture in place of inner structural bands;



FIG. 2A is an elevational view of an upper wireform, FIG. 2B is an elevational view of a lower platform, and FIG. 2C is a schematic view showing the upper and lower wireforms in the positions they assume when assembled within a heart valve;



FIG. 3 is a view of the dual wireform assembly showing exemplary dimensions;



FIG. 4 is a view of the dual wireform assembly after expansion and showing altered dimensions;



FIG. 5 is a sectional view through a heart valve having a dual wireform assembly where the lower wireform is a braided cable;



FIGS. 6A and 6B are perspective views of two different braided cable wireforms;



FIG. 7A is a partially cutaway view of another exemplary prosthetic heart valve having an expandable frame attached to an inflow end, and FIG. 7B is an elevational view of the heart valve where only the expandable frame is shown in solid lines;



FIG. 8A is a perspective view of the expandable frame isolated from the heart valve; and



FIG. 8B is a perspective view of the expandable frame after expansion.





The prosthetic heart valves disclosed herein include a prosthetic valve member constructed similarly to embodiments of some commercially available surgical valves, with a relatively stable diameter that is not intended to be compressed or expanded during delivery and after implant when functioning as a one-way valve. The prosthetic heart valves described herein each include an internal (meaning incorporated into the valve member itself as opposed to being a supplemental element) structural stent or frame that is generally tubular in shape and that defines a flow orifice area through which blood flows from an inflow end to an outflow end. Alternatively, the shape of the internal stent can be oval, elliptical, D-shaped, irregular, or any other desired and functional shape. The valves include flexible leaflets that selectively open and close to allow for one-way fluid flow therethrough.


The present application discloses specific modifications to existing surgical valves that enable manufacturers to rapidly produce a valve that accommodates valve-in-valve (ViV) procedures. Specifically, the present application contemplates modifying certain components within existing surgical valve designs to enable post-implant expansion, which not only converts any proven surgical valve design for use in a ViV procedure, but it also reduces design and manufacturing work. Consequently, components of one popular surgical valve are described below to illustrate certain modifications thereto.



FIGS. 1A-1E are various views of an exemplary surgical prosthetic heart valve 20 oriented around a flow axis 22. The heart valve 20 comprises a plurality (typically three) of flexible leaflets 24 supported partly by an undulating upper wireform 26 as well as by a lower wireform 28. The upper wireform 26 and lower wireform 28 are visible in the figures, but are normally separately covered with a polyester fabric to facilitate assembly and reduce direct blood exposure after implant. The directions up and down are aligned along the flow axis 22 and generally correspond to flow directions, with the blood flowing up along the axis past the leaflets 24 in an outflow direction when the heart valve 20 is implanted.


Certain characteristics of the prosthetic heart valve 20 are common to a number of different prosthetic heart valves, such as pericardial heart valves manufactured by Edwards Lifesciences of Irvine, Calif. For example, the Edwards PERIMOUNT® heart valves that utilize pericardial leaflets 24 features a leaflet-supporting wireform such as the upper wireform 26, but also has an inner stent comprising a relatively non-expandable circular band structure. The exemplary heart valve 20 disclosed herein improves on the PERIMOUNT® heart valves by avoiding inner support structure which inhibits post-implant expansion.



FIG. 2A is an elevational view of the upper wireform 26, FIG. 2B is an elevational view of a lower wireform 28, and FIG. 2C is a schematic view showing the upper and lower wireforms in the approximate positions they assume when assembled within the heart valve 20. The upper wireform 26 may be formed from a suitably elastic metal, such as a Co—Cr—Ni alloy like ELGILOY® alloy. The upper wireform 26 has a continuous undulating wire-like structure with (preferably) three upstanding commissure posts 30 in between three downwardly curved valleys typically termed cusps 31, as best seen in FIG. 1C. The wireform 26 forms narrow inverted “U” shapes at the commissure posts 30 that project in the outflow direction and define the farthest extent of the valve in that direction aside from fabric covering. This undulating band shape is useful for prosthetic aortic heart valves, which typically have three leaflets joined at their adjacent edges at the upstanding commissure posts 30. Of course, the heart valves disclosed herein may be utilized in other implant locations, such as the pulmonary, mitral, or tricuspid annulus.


The lower wireform 28 is preferably metallic as well, but may be solid or a braided structure, as will be discussed. As seen in FIG. 1B, the lower wireform 28 has generally the same shape as the upper wireform 26 but with three truncated peaks 32 intermediate three cusp sections 34. The three cusp sections 34 closely parallel the cusps 31 of the upper wireform 26, but the truncated peaks 32 terminate well below the commissure posts 30.


In the illustrated embodiment, the peaks 32 of the lower wireform 28 are rotationally aligned with the commissure posts 30 of the upper wireform 26. In other embodiments, one or more of the peaks 32 is rotationally offset from the commissure posts 30. For example, in some embodiments, at least two peaks 32 are rotationally offset in the same direction. In some embodiments, at least a first peak is rotationally offset in an opposite direction as a second peak. In some embodiments, a first peak is rotationally offset by a different angular distance than a second peak.


Moreover, although the illustrated embodiment of the upper wireform 26 includes three commissure posts 30, in other embodiments, the upper wireform includes a different number of commissure posts, for example, two or four. In the illustrated embodiment, the number of peaks 32 on the lower wireform 28 matches the number of commissure posts 30 on the upper wireform 26: in this example, three of each. In other embodiments, the number of peaks is different than the number of commissure posts. For example, some embodiments include fewer peaks than commissure posts, for example, two peaks on a device with three commissure posts. Other embodiments include more peaks than commissures, for example, by replacing at least one of the peaks 32 with two peaks.



FIG. 3 is a view of the dual wireform assembly in a relaxed, unexpanded configuration showing exemplary dimensions. In a preferred embodiment, the truncated peaks 32 of the lower wireform 28 have an axial height H2 of only about 10-30% of the axial height H1 of commissure posts 30 of the upper wireform 26, and more preferably about 20%. The upper and lower wireforms 26, 28 define a circle of rotation at their inlet ends having a common diameter Di, with the two wireforms axially stacked and the lower wireform just below the upper wireform. Typically, heart valves are available in labeled sizes from 19 to up to 33 mm in 2-mm increments (e.g., 19 mm, 21 mm, 23 mm . . . ), and the diameter Di is between 19-33 mm, roughly corresponding to the labeled diameter of the finished valve 20. Other sizing schemes are also possible, for example, even millimeter sizing, and/or a sizing scheme implementing at least one different increment between sizes. The valves 20 disclosed herein have a functional size which equals the labeled size, whereas the valve becomes non-functional when expanded outward post-implant.



FIG. 4 is a view of the dual wireform assembly after expansion and showing altered dimensions d1, h1, h2. Namely, the dimension or diameter d1 widens or increases by up to about 2-3 mm, preferably closer to about 2 mm for smaller valves and about 3 mm for larger valves. Recent publications report a drastically higher probability of annular rupture upon expanding the native annulus by more than 20% by area, such as when expanding a prosthetic heart valve therein. In light of this information, it is desirable to ensure that an expandable surgical valve expands by less than about 20% by area in some embodiments. Thus, for example, for a 19-mm valve a 20% increase in area corresponds to an increase in diameter of about 2 mm.


In other embodiments, the upper and lower wireforms 26, 28 do not have a common diameter. For example, in some embodiments, the lower wireform has a larger diameter than the upper wireform. In some of these embodiments, such a configuration permits nesting the upper wireform within the lower wireform, thereby reducing the overall height (H1 and h1) of the device. In some of these embodiments, the final diameters (d1 in FIG. 4) of the upper and lower wireforms is different, while in other embodiments, the final diameters are substantially the same.


The heights h1, h2 of the upper and lower wireforms 26, 28, respectively, decrease when the wireforms expand. Because of the relatively high commissure posts 30 of the upper wireform 26, and their large capacity to expand outward toward the cusps 31, the height h1 decreases a smaller proportion of the original height H1 compared with h2/H2. However, since the lower wireform 28 has relatively shallower undulations between the peaks 32 and cusp sections 34 compared with the upper wireform 26, the reduced height h2 is preferably less than about 50% of the original height H2. More preferably, the lower wireform 28 flattens out to a great extent to more closely resemble a flat ring, thus presenting a relatively strong impediment to further expansion, such as with an expanding balloon during a valve-in-valve procedure. The expanded lower wireform 28 is shown with slight undulations, although it could be much flatter depending on the original height H2 and the extent of expansion. Preferably the hoop strength of the lower wireform 28 increases to a magnitude sufficient to withstand balloon expansion from within after an expansion of between about 2-3 mm in diameter.


With reference back to FIG. 1D, further constructional details of the heart valve 20 include a plurality of inserts 36 which are located generally between the commissure posts 30 of the upper wireforms 26 and the peaks 32 of the lower wireforms 28 and help secure the leaflets 24 in place. One of the inserts 36 is shown covered with cloth in FIG. 1E. Additionally, a suture permeable sealing ring 38 surrounds the inlet end of the valve 20 and is used to secure the valve to the annulus. Typically, the sealing ring 38 comprises silicone, cloth or other such suture-permeable material, and is covered in fabric as seen in FIG. 1B.


Outer tabs 40 of adjacent leaflets 24 wrap around upper ends of commissure inserts 36 (preferably three) that project in an outflow direction along the flow axis 22. The commissure inserts 36 comprises elements separate from either the upper and lower wireforms 26, 28, and each has an inverted “Y” shape with a forked lower end 42 that generally conforms to a peak 30 of the lower wireform 28. Once covered in fabric, as illustrated for the one of the inserts shown in FIG. 1E, the inserts 36 are preferably positioned above the fabric-covered lower wireform 28 and secured to the leaflets 24 and fabric-covered upper wireform 26. Arcuate cusp edges of the leaflets 24 preferably extend between the cloth covered wireforms 26, 28 and are secured thereto with sutures.


Once assembled with the other valve components, the combination of the upper and lower wireforms 26, 28 presents a relatively dimensionally stable circumferential base to the valve 20, which is beneficial for typical surgical use. That is, primarily the lower wireform 28 provides good ring support to the cusp edges of the leaflets 24 and helps provide resistance to deformation of the valve during implantation. However, because of its undulating shape, the lower wireform 28 facilitates limited expansion of the valve 20.


During a valve-in-valve procedure, as the lower wireform 28 expands, the commissure posts 30 become spaced apart since the upper wireform 26 expands outward, which may lead to a loss of function of the valve 20. However, the valve becomes obsolete, having been replaced with a transcatheter valve, and so this loss of function is of no consequence. The wireform maintains the upstanding commissure posts of the expanded valve in roughly the same relative circumferential locations as when they were functional, which are intermediate the surrounding coronary ostia, and thus valve expansion will not end up blocking critical blood flow to the coronary arteries.


Another concept for limiting the expansion of prosthetic heart valves is shown in FIG. 5, which is a sectional view through an alternative heart valve 50 also having a dual wireform assembly where a lower wireform 52 is a braided cable. As before, the heart valve 50 has a cloth-covered upper wireform 54 and a plurality of leaflets 56 supported thereby. An outer sealing ring 58 includes a taller axial portion 60 at each of the commissure locations, which may be a molded silicone element or folded cloth or the like. Although not shown, commissure inserts such as those shown above at 36 may be utilized, and an outer cloth covering is not shown for clarity.


The lower wireform 52 is preferably shaped similarly to the lower wireform 28 described above, and is shown in two different embodiments in FIGS. 6A and 6B. Namely, the wireform 52 has an undulating shape with truncated peaks 62 in between arcuate cusp sections 64. The braided wireform 52 is preferably formed from an elongated braided cable or wire which is joined together at its free ends at either a weld 66 as seen in FIG. 6A, or at a crimp 68 such as seen in FIG. 6B. A weld 66 is typically used in the cusp sections 64, while a crimp 68 would be preferred at one of the peaks 62. Although not shown, the braided cable or wire is preferably held in the undulating shape as shown, such as with the use of a mandrel or other such manufacturing form, and heat set so that the shape is imparted to the cable. In a preferred embodiment, the braided wireform 52 is made of a plurality of braided strands of Nitinol that have been heat set. In this way, the wireform 52 provides a relatively stable peripheral base for the valve 50, but is also relatively flexible and permits post-implant expansion. In other embodiments, the braided wireform 52 comprises strands manufactured from another material, for example, stainless steel or cobalt-chromium. In other embodiments, the cable comprises a polymer, for example, ultra-high-molecular-weight polyethylene (UHMWPE, e.g., Spectra® (Honeywell, Morristown, N.J.) or Dyneema® (Heerlen, Netherlands) UHMWPE)) or polyaramid (e.g., Kevlar® (DuPont, Wilmington, Del.) or Twaron® (Teijin, Arnhem, Netherlands) aramid). Other embodiments of the cable comprise a composite including at least two of any of these materials. Some examples of the braided wireform 52 are manufactured in an annular shape, and consequently, do not include a weld or crimp. Examples of suitable manufacturing methods include weaving, knitting, or braiding.


In contrast to the lower wireform 28 described above, the braided wireform 52 is desirably embedded within the sealing ring 58, although the lower wireform 28 may also be embedded within the sealing ring. In one embodiment, the sealing ring 58 is a molded silicone element having the braided wireform 52 co-molded in an underside thereof. As mentioned, the assembly of the wireform 52 and sealing ring 58 may be covered with fabric and then joined to the upper wireform 54 and leaflets 56 via sutures. In FIG. 5, the cable 58 is disposed directly below the wireform 54. In other embodiments, the cable and wireform are radially offset. For example, as discussed above in connection with the lower wireform 28, the wireform 52 can nest within a cable with a larger diameter.



FIG. 7A is a partially cutaway view of another exemplary prosthetic heart valve 70 having an expandable frame 72 attached to an inflow end, and FIG. 7B is an elevational view of the heart valve where only the expandable frame is shown in solid lines. As described above, the heart valve 70 includes an undulating wireform 74 that supports a plurality of flexible leaflets 76. Element number 78 refers to an inner support member which is adapted for post-implant expansion. That is, the support member 78 may comprise the lower wireforms 28, as described above, or may be a band structure which has at least one section adapted to expand from use of a dilatation balloon.


The addition of the expandable frame 72 creates a “hybrid” type of prosthetic heart valve in that the upper portion is constructed similar to a surgical valve, while the lower frame structure 72 is expandable to help in anchoring the valve in place. One specific commercial prosthetic heart valve that is constructed in this manner is one which is sold in conjunction with the Edwards Intuity® valve system from Edwards Lifesciences of Irvine, Calif. The Edwards Intuity® valve system comprises a “hybrid” valve incorporating essentially a surgical Perimount® valve, albeit one that is modified for post-implant expansion, and a stainless steel lower frame structure or skirt stent.



FIG. 8A is a perspective view of the expandable frame 72 isolated from the heart valve 70, and FIG. 8B is a perspective view of the expandable frame after expansion. The frame 72 includes an upper undulating strut 80 that extends around the entire periphery of the frame and above a plurality of generally V-shaped circumferential struts 82 extending between axial struts 84. The undulating strut 80 includes three peaks 86 that generally conform to the undulating shape of the inflow end of the heart valve 70, as best seen in FIG. 7B. In other words, the three peaks 86 correspond to the three commissures 74 of the valve. An absence of the vertical struts 84 immediately below each of the three peaks 86 creates a space or void 88. Due to the upper curvature of the peaks 86, this permits the undulating strut 80 to expand outward such as seen in FIG. 8B upon application of a dilatory force within the hybrid prosthetic valve.


In one embodiment, the aforementioned inner support member 78 may be omitted completely from the prosthetic valve 70 with the undulating strut 80 providing support to the base of the valve and the leaflets. For example, the undulating strut 80 may be positioned approximately the same place as the braided wireform 52 seen in FIG. 5. To prevent premature expansion of the undulating strut 80 at the time of implant of the valve 70, a biodegradable band may be assembled around the inflow end of the surgical valve 70. Such a biodegradable band is seen in FIG. 15 of U.S. Pat. No. 9,375,310 to Chung, et al., the contents of which are expressly incorporated herein by reference, and serves to prevent expansion of the upper end of the frame 72 at the time of initial implant of the valve 70. Subsequently, years later, if the valve 70 malfunctions, the biodegradable band has dissolved and a dilatation balloon can easily expand the undulating strut 80.


While certain principles have been described with reference to particular embodiments, it will understood that various changes and additional variations may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular situation or device to the teachings without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiments disclosed herein, but will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. A prosthetic heart valve adapted for post-implant expansion and having an inflow end and an outflow end, comprising: an upper wireform undulating around a central axis with three upstanding commissure posts extending in an outflow direction alternating with three arcuate inflow cusps, and a fabric covering around the entire upper wireform;a lower wireform undulating around a central axis with three truncated peaks extending in an outflow direction alternating with three arcuate inflow cusp sections, and a fabric covering around the entire lower wireform, the lower wireform being positioned axially below the upper wireform with the three truncated peaks being aligned under three upstanding commissure posts, and the wherein the truncated peaks have an axial height of between about 10-30% of the commissure posts of the upper wireform;three flexible leaflets having outer arcuate cusp edges attached between the inflow cusps of the upper wireform and the inflow cusp sections of the lower wireform and outer tabs that extend outward between the commissure posts of the upper wireform and the truncated peaks of the lower wireform and are secured to the fabric covering around the upper wireform, the flexible leaflets being configured to ensure one-way blood flow through the heart valve, andwherein the inflow cusps of the upper wireform and the inflow cusp sections of the lower wireform together define an implant circumference having a first diameter, and wherein the upper and lower wireforms permit expansion of the heart valve from the first diameter to a second diameter no greater than 3 mm larger than the first diameter upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling, and wherein the lower wireform has a shallow undulating shape that flattens out and prevents expansion of the heart valve beyond the second diameter.
  • 2. The prosthetic heart valve of claim 1, further including three fabric-covered inserts located above the truncated peaks of the lower wireform that extend upward radially outward of the commissure posts of the upper wireform, the leaflet tabs being also secured to the inserts.
  • 3. The prosthetic heart valve of claim 2, wherein a lower end of each insert has an inverted Y-shape that closely matches a shape of the truncated peaks of the lower wireform.
  • 4. The prosthetic heart valve of claim 1, further including an annular sealing ring disposed outward of the inflow cusp sections of the lower wireform and being secured thereto, the annular sealing ring being suture permeable.
  • 5. The prosthetic heart valve of claim 4, wherein the lower wireform is embedded within the sealing ring.
  • 6. The prosthetic heart valve of claim 1, wherein the lower wireform comprises a solid wire.
  • 7. The prosthetic heart valve of claim 1, wherein the lower wireform comprises a braided cable.
  • 8. The prosthetic heart valve of claim 1, further including an expandable frame attached to an inflow end of the heart valve and projecting therefrom in the inflow direction, the expandable frame having an upper undulating strut that extends around an entire periphery thereof and a plurality of lower struts, the undulating strut having a shape that closely follows the shape of the undulating lower wireform, wherein there are no lower struts below three peaks of the undulating strut to permit flattening out of the undulating strut upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling.
  • 9. A prosthetic heart valve adapted for post-implant expansion and having an inflow end and an outflow end, comprising: an upper wireform undulating around a central axis with three upstanding commissure posts extending in an outflow direction alternating with three arcuate inflow cusps, and a fabric covering around the entire upper wireform;an annular sealing ring disposed outward of the inflow cusps of the upper wireform and being secured thereto, the annular sealing ring being suture permeable;a lower wireform comprising a braided cable undulating around the central axis with three truncated peaks extending in an outflow direction alternating with three arcuate inflow cusp sections, the braided cable being embedded within the sealing ring and the three truncated peaks being aligned under the three upstanding commissure posts of the upper wireform;three flexible leaflets having outer arcuate cusp edges attached between the inflow cusps of the upper wireform and the sealing ring and having outer tabs that extend outward between the commissure posts of the upper wireform and are secured to the fabric covering around the upper wireform, the flexible leaflets being configured to ensure one-way blood flow through the heart valve, andwherein the inflow cusps of the upper wireform and the inflow cusp sections of the lower wireform together define an implant circumference having a first diameter, and wherein the upper wireform and lower wireform permit expansion of the heart valve from the first diameter to a second diameter no greater than 3 mm larger than the first diameter upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling, and wherein the lower wireform has a shallow undulating shape that flattens out and prevents expansion of the heart valve beyond the second diameter.
  • 10. The prosthetic heart valve of claim 9, further including three fabric-covered inserts located above the truncated peaks of the lower wireform that extend upward radially outward of the commissure posts of the upper wireform, the leaflet tabs being also secured to the inserts.
  • 11. The prosthetic heart valve of claim 10, wherein a lower end of each insert has an inverted Y-shape that closely matches a shape of the truncated peaks of the lower wireform.
  • 12. The prosthetic heart valve of claim 9, wherein the braided cable is joined together at free ends at a weld in one of the cusp sections.
  • 13. The prosthetic heart valve of claim 9, wherein the braided cable is joined together at free ends at a crimp at one of the truncated peaks.
  • 14. The prosthetic heart valve of claim 9, further including an expandable frame attached to an inflow end of the heart valve and projecting therefrom in the inflow direction, the expandable frame having an upper undulating strut that extends around an entire periphery thereof and a plurality of lower struts, the undulating strut having a shape that closely follows the shape of the undulating lower wireform, wherein there are no lower struts below three peaks of the undulating strut to permit flattening out of the undulating strut upon application of an outward dilatory force from within the heart valve substantially larger than forces associated with normal physiological cycling.
  • 15. The prosthetic heart valve of claim 9, wherein the braided cable is made of braided strands of Nitinol.
  • 16. The prosthetic heart valve of claim 15, wherein the braided cable is heat set into the undulating shape.
  • 17. The prosthetic heart valve of claim 9, wherein the braided cable is made of braided strands of stainless steel or cobalt-chromium.
  • 18. The prosthetic heart valve of claim 9, wherein the braided cable is made of braided strands of polymer.
  • 19. The prosthetic heart valve of claim 9, wherein the sealing ring is a molded silicone element and the lower wireform is co-molded in an underside thereof.
  • 20. The prosthetic heart valve of claim 19, wherein the lower wireform and sealing ring are covered with fabric and joined to the upper wireform and leaflets via sutures.
Parent Case Info

This application is a continuation of International Patent Application No. PCT/US2018/038527, filed Jun. 20, 2018, which claims the benefit of U.S. Patent Application No. 62/523,157, filed Jun. 21, 2017, the entire disclosures all of which are incorporated by reference for all purposes.

US Referenced Citations (381)
Number Name Date Kind
3143742 Cromie Aug 1964 A
3320972 High et al. May 1967 A
3371352 Siposs et al. Mar 1968 A
3546710 Shumakov et al. Dec 1970 A
3574865 Hamaker Apr 1971 A
3755823 Hancock Sep 1973 A
3839741 Haller Oct 1974 A
3997923 Possis Dec 1976 A
4035849 Angell et al. Jul 1977 A
4079468 Liotta et al. Mar 1978 A
4084268 Ionescu et al. Apr 1978 A
4106129 Carpentier et al. Aug 1978 A
4172295 Batten Oct 1979 A
4217665 Bex et al. Aug 1980 A
4218782 Rygg Aug 1980 A
4259753 Liotta et al. Apr 1981 A
RE30912 Hancock Apr 1982 E
4340091 Skelton et al. Jul 1982 A
4343048 Ross et al. Aug 1982 A
4364126 Rosen et al. Dec 1982 A
4388735 Ionescu et al. Jun 1983 A
4441216 Ionescu et al. Apr 1984 A
4451936 Carpentier et al. Jun 1984 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4501030 Lane Feb 1985 A
4506394 Bedard Mar 1985 A
4535483 Klawitter et al. Aug 1985 A
4566465 Arhan et al. Jan 1986 A
4605407 Black et al. Aug 1986 A
4626255 Reichert et al. Dec 1986 A
4629459 Ionescu et al. Dec 1986 A
4680031 Alonso Jul 1987 A
4687483 Fisher et al. Aug 1987 A
4705516 Barone et al. Nov 1987 A
4725274 Lane et al. Feb 1988 A
4731074 Rousseau et al. Mar 1988 A
4778461 Pietsch et al. Oct 1988 A
4790843 Carpentier et al. Dec 1988 A
4851000 Gupta Jul 1989 A
4888009 Lederman et al. Dec 1989 A
4914097 Oda et al. Apr 1990 A
4960424 Grooters Oct 1990 A
4993428 Arms Feb 1991 A
5010892 Colvin et al. Apr 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5147391 Lane Sep 1992 A
5163955 Love et al. Nov 1992 A
5258023 Reger Nov 1993 A
5316016 Adams et al. May 1994 A
5326370 Love et al. Jul 1994 A
5326371 Love et al. Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5360014 Sauter et al. Nov 1994 A
5360444 Kusuhara Nov 1994 A
5376112 Duran Dec 1994 A
5396887 Imran Mar 1995 A
5397351 Pavcnik et al. Mar 1995 A
5423887 Love et al. Jun 1995 A
5425741 Lemp et al. Jun 1995 A
5431676 Dubrul et al. Jul 1995 A
5449384 Johnson Sep 1995 A
5449385 Religa et al. Sep 1995 A
5469868 Reger Nov 1995 A
5487760 Villafana Jan 1996 A
5488789 Religa et al. Feb 1996 A
5489296 Love et al. Feb 1996 A
5489297 Duran Feb 1996 A
5489298 Love et al. Feb 1996 A
5500016 Fisher Mar 1996 A
5533515 Coller et al. Jul 1996 A
5549665 Vesely et al. Aug 1996 A
5562729 Purdy et al. Oct 1996 A
5571215 Sterman et al. Nov 1996 A
5573007 Bobo, Sr. Nov 1996 A
5578076 Krueger et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5618307 Donlon et al. Apr 1997 A
5626607 Malecki et al. May 1997 A
5628789 Vanney et al. May 1997 A
5693090 Unsworth et al. Dec 1997 A
5695503 Krueger et al. Dec 1997 A
5713952 Vanney et al. Feb 1998 A
5716370 Williamson, IV et al. Feb 1998 A
5728064 Burns et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735894 Krueger et al. Apr 1998 A
5752522 Murphy May 1998 A
5755762 Love et al. May 1998 A
5766240 Johnson Jun 1998 A
5800527 Jansen et al. Sep 1998 A
5814097 Sterman et al. Sep 1998 A
5814098 Hinnenkamp et al. Sep 1998 A
5824064 Taheri Oct 1998 A
5824068 Bugge Oct 1998 A
5840081 Andersen et al. Nov 1998 A
5848969 Panescu et al. Dec 1998 A
5855563 Kaplan et al. Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855801 Lin et al. Jan 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5895420 Mirsch, II et al. Apr 1999 A
5902308 Murphy May 1999 A
5908450 Gross et al. Jun 1999 A
5919147 Jain Jul 1999 A
5921934 Teo Jul 1999 A
5921935 Hickey Jul 1999 A
5924984 Rao Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5972004 Williamson, IV et al. Oct 1999 A
5984959 Robertson et al. Nov 1999 A
5984973 Girard et al. Nov 1999 A
6010531 Donlon et al. Jan 2000 A
6042554 Rosenman et al. Mar 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6066160 Colvin et al. May 2000 A
6074418 Buchanan et al. Jun 2000 A
6081737 Shah Jun 2000 A
6083179 Oredsson Jul 2000 A
6099475 Seward et al. Aug 2000 A
6106550 Magovern et al. Aug 2000 A
6110200 Hinnenkamp Aug 2000 A
6117091 Young et al. Sep 2000 A
6126007 Kari et al. Oct 2000 A
6162233 Williamson, IV et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6176877 Buchanan et al. Jan 2001 B1
6197054 Hamblin, Jr. et al. Mar 2001 B1
6217611 Klostermeyer Apr 2001 B1
6231561 Frazier et al. May 2001 B1
6241765 Griffin et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6264611 Ishikawa et al. Jul 2001 B1
6283127 Sterman et al. Sep 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6312447 Grimes Nov 2001 B1
6312465 Griffin et al. Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6350282 Eberhardt Feb 2002 B1
6371983 Lane Apr 2002 B1
6375620 Oser et al. Apr 2002 B1
6402780 Williamson, IV et al. Jun 2002 B2
6409674 Brockway et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6442413 Silver Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6468305 Otte Oct 2002 B1
6491624 Lotfi Dec 2002 B1
6582462 Andersen et al. Jun 2003 B1
6585766 Huynh et al. Jul 2003 B1
6645143 VanTassel et al. Nov 2003 B2
6652464 Schwartz et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6675049 Thompson et al. Jan 2004 B2
6682559 Myers et al. Jan 2004 B2
6685739 DiMatteo et al. Feb 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6741885 Park et al. May 2004 B1
6764508 Roehe et al. Jul 2004 B1
6767362 Schreck Jul 2004 B2
6773457 Ivancev et al. Aug 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf et al. Sep 2004 B2
6795732 Stadler et al. Sep 2004 B2
6805711 Quijano et al. Oct 2004 B2
6893459 Macoviak May 2005 B1
6893460 Spenser et al. May 2005 B2
6895265 Silver May 2005 B2
6908481 Cribier Jun 2005 B2
6939365 Fogarty et al. Sep 2005 B1
7011681 Vesely Mar 2006 B2
7025760 Gabbay Apr 2006 B2
7033322 Silver Apr 2006 B2
7052466 Scheiner et al. May 2006 B2
7070616 Majercak et al. Jul 2006 B2
7082330 Stadler et al. Jul 2006 B2
7097659 Woolfson et al. Aug 2006 B2
7101396 Artof et al. Sep 2006 B2
7147663 Berg et al. Dec 2006 B1
7153324 Case et al. Dec 2006 B2
7195641 Palmaz et al. Mar 2007 B2
7201771 Lane Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7238200 Lee et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7261732 Justino Aug 2007 B2
RE40377 Williamson, IV et al. Jun 2008 E
7416530 Turner et al. Aug 2008 B2
7422603 Lane Sep 2008 B2
7513909 Lane et al. Apr 2009 B2
7556647 Drews et al. Jul 2009 B2
7569072 Berg et al. Aug 2009 B2
7621878 Ericson et al. Nov 2009 B2
7871435 Carpentier Jan 2011 B2
7916013 Stevenson Mar 2011 B2
7998151 St. Goar et al. Aug 2011 B2
8066650 Lee et al. Nov 2011 B2
8248232 Stevenson et al. Aug 2012 B2
8253555 Stevenson et al. Aug 2012 B2
8340750 Prakash et al. Dec 2012 B2
8401659 Von Arx et al. Mar 2013 B2
8529474 Gupta et al. Sep 2013 B2
8613765 Bonhoeffer Dec 2013 B2
8622936 Schenberger et al. Jan 2014 B2
9101264 Acquista Aug 2015 B2
9101281 Reinert et al. Aug 2015 B2
10456246 Conklin Oct 2019 B2
20010039435 Roue et al. Nov 2001 A1
20010039436 Frazier et al. Nov 2001 A1
20010041914 Frazier et al. Nov 2001 A1
20010041915 Roue et al. Nov 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020020074 Love et al. Feb 2002 A1
20020026238 Lane et al. Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020058995 Stevens May 2002 A1
20020123802 Snyders Sep 2002 A1
20020138138 Yang Sep 2002 A1
20020151970 Garrison et al. Oct 2002 A1
20020188348 DiMatteo et al. Dec 2002 A1
20020198594 Schreck Dec 2002 A1
20030014104 Cribier Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030023303 Palmaz et al. Jan 2003 A1
20030036795 Andersen et al. Feb 2003 A1
20030040792 Gabbay Feb 2003 A1
20030055495 Pease et al. Mar 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030109924 Cribier Jun 2003 A1
20030114913 Spenser et al. Jun 2003 A1
20030130729 Paniagua et al. Jul 2003 A1
20030149478 Figulla et al. Aug 2003 A1
20030167089 Lane Sep 2003 A1
20030236568 Hojeibane et al. Dec 2003 A1
20040010296 Swanson et al. Jan 2004 A1
20040019374 Hojeibane et al. Jan 2004 A1
20040027306 Amundson et al. Feb 2004 A1
20040034411 Quijano et al. Feb 2004 A1
20040044406 Woolfson et al. Mar 2004 A1
20040106976 Bailey et al. Jun 2004 A1
20040122514 Fogarty et al. Jun 2004 A1
20040122516 Fogarty et al. Jun 2004 A1
20040167573 Williamson et al. Aug 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040193261 Berreklouw Sep 2004 A1
20040206363 McCarthy et al. Oct 2004 A1
20040210304 Seguin et al. Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040225355 Stevens Nov 2004 A1
20040236411 Sarac et al. Nov 2004 A1
20040260389 Case et al. Dec 2004 A1
20040260390 Sarac et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050027348 Case et al. Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050043760 Fogarty et al. Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050060029 Le et al. Mar 2005 A1
20050065594 DiMatteo et al. Mar 2005 A1
20050065614 Stinson Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075713 Biancucci et al. Apr 2005 A1
20050075717 Nguyen et al. Apr 2005 A1
20050075718 Nguyen et al. Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen et al. Apr 2005 A1
20050075724 Svanidze et al. Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050096738 Cali et al. May 2005 A1
20050137682 Justino Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137687 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137690 Salahieh et al. Jun 2005 A1
20050137692 Haug et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050159811 Lane Jul 2005 A1
20050165479 Drews et al. Jul 2005 A1
20050182486 Gabbay Aug 2005 A1
20050192665 Spenser et al. Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050203618 Sharkawy et al. Sep 2005 A1
20050216079 MaCoviak Sep 2005 A1
20050222674 Paine Oct 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240263 Fogarty et al. Oct 2005 A1
20050251252 Stobie Nov 2005 A1
20050261765 Liddicoat Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20060025857 Bergheim et al. Feb 2006 A1
20060052867 Revuelta et al. Mar 2006 A1
20060058871 Zakay et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060085060 Campbell Apr 2006 A1
20060095125 Chinn et al. May 2006 A1
20060122634 Ino et al. Jun 2006 A1
20060149360 Schwammenthal et al. Jul 2006 A1
20060154230 Cunanan et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060195184 Lane et al. Aug 2006 A1
20060195185 Lane et al. Aug 2006 A1
20060195186 Drews et al. Aug 2006 A1
20060207031 Cunanan et al. Sep 2006 A1
20060241745 Solem Oct 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060271172 Tehrani Nov 2006 A1
20060271175 Woolfson et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070005129 Damm et al. Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070016285 Lane et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070043435 Seguin et al. Feb 2007 A1
20070078509 Lotfy Apr 2007 A1
20070078510 Ryan Apr 2007 A1
20070100440 Figulla et al. May 2007 A1
20070129794 Realyvasquez Jun 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070142907 Moaddeb et al. Jun 2007 A1
20070150053 Gurskis et al. Jun 2007 A1
20070156233 Kapadia et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070162107 Haug et al. Jul 2007 A1
20070162111 Fukamachi et al. Jul 2007 A1
20070179604 Lane Aug 2007 A1
20070185565 Schwarnmenthal et al. Aug 2007 A1
20070198097 Zegdi Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070225801 Drews et al. Sep 2007 A1
20070233237 Krivoruchko Oct 2007 A1
20070239266 Birdsall Oct 2007 A1
20070239269 Dolan et al. Oct 2007 A1
20070239273 Allen Oct 2007 A1
20070255398 Yang et al. Nov 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265701 Gurskis et al. Nov 2007 A1
20070270944 Bergheim et al. Nov 2007 A1
20070282436 Pinchuk Dec 2007 A1
20070288089 Gurskis et al. Dec 2007 A1
20080033543 Gurskis et al. Feb 2008 A1
20080046040 Denker et al. Feb 2008 A1
20080119875 Ino et al. May 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080319543 Lane Dec 2008 A1
20090036903 Ino et al. Feb 2009 A1
20090192591 Ryan et al. Jul 2009 A1
20090192599 Lane et al. Jul 2009 A1
20100049313 Alon et al. Feb 2010 A1
20100145438 Barone Jun 2010 A1
20100256723 Murray Oct 2010 A1
20120078357 Conklin Mar 2012 A1
20120123284 Kheradvar May 2012 A1
20120239143 Rankin et al. Sep 2012 A1
20120296382 Shuros et al. Nov 2012 A1
20130144379 Najafi et al. Jun 2013 A1
20140128964 Delaloye May 2014 A1
20140188219 Conklin Jul 2014 A1
20140188221 Chung Jul 2014 A1
20140364707 Kintz et al. Dec 2014 A1
20150045635 Tankiewicz et al. Feb 2015 A1
20150088250 Zeng Mar 2015 A1
20150366664 Guttenberg Dec 2015 A1
20160045316 Braido et al. Feb 2016 A1
20160158013 Carpentier Jun 2016 A1
20160296331 Chung Oct 2016 A1
20170000603 Conklin Jan 2017 A1
20170071732 Conklin Mar 2017 A1
20190321170 Green et al. Oct 2019 A1
Foreign Referenced Citations (6)
Number Date Country
0125393 Nov 1984 EP
0143246 Jun 1985 EP
1116573 Jul 1985 SU
1697790 Dec 1991 SU
9213502 Aug 1992 WO
9742871 Nov 1997 WO
Related Publications (1)
Number Date Country
20200121456 A1 Apr 2020 US
Provisional Applications (1)
Number Date Country
62523157 Jun 2017 US
Continuations (1)
Number Date Country
Parent PCT/US2018/038527 Jun 2018 US
Child 16721727 US