As requirements for data storage density increase for magnetic media, cell size decreases. A commensurate decrease in the size of a writer is difficult because in many systems, a strong write field is needed to switch the polarity of cells on a magnetized medium. As a result, writing data to smaller cells on the magnetized medium using the relatively larger write pole may affect the polarization of adjacent cells (e.g., overwriting the adjacent cells). Various recording techniques have been developed to enable gains in areal density capability (ADC) without significant corresponding decreases in device performance.
One such recording technique is interlaced magnetic recording (IMR). IMR utilizes alternating data tracks of different written track widths arranged with overlapping edges. In some perpendicular interlaced magnetic recording applications, tracks of different write widths are created using writers with two differently-sized write poles. This creates a number manufacturing challenges regarding write pole placement and performance setbacks regarding transducer head functionality.
Implementations disclosed herein provide for a transducer head including a storage medium and a transducer head including two writers separated from one another in a down-track direction of a data track on the storage medium.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. These and various other features and advantages will be apparent from a reading of the following Detailed Description.
The transducer head 120 is mounted on an actuator assembly 109 at an end distal to an actuator axis of rotation 114 and flies in close proximity above the surface of the magnetic storage medium 108 during disc rotation. The actuator assembly 109 rotates during a seek operation about the actuator axis of rotation 112 to position the transducer head 120 over a target data track for read and write operations.
Referring to View B, the transducer head 120 includes at least two different writers 126 and 128 (also referred to as write elements) and a reader 134 (e.g., a magnetoresistive read element). Each of the writers 126 and 128 includes a write coil (not shown) that converts a series of electrical pulses sent from a controller 106 into a series of magnetic pulses of commensurate magnitude and length. The magnetic pulses selectively magnetize magnetic grains of the rotating magnetic medium 108 as they pass below the pulsating writer 126 or 128. The writers 126 and 128 and the reader 134 are all separated from one another along a longitudinal axis 132 of the transducer head 120. In one implementation, the writers 126 and 128 have centers aligned along the longitudinal axis 132 of the transducer head 120. In other implementations, the writers 126 and 128 and/or the reader 134 have portions aligned along the longitudinal axis 132, but do not have centers in exact alignment with one another. In still other implementations, the writers 126 and 128 are not aligned along the longitudinal axis 132, but are still generally separated from another in a down-track (DT) direction of the magnetic storage medium.
In one implementation, the writers 126 and 128 have differently-sized write poles and are independently operable by a controller 106 of the magnetic storage medium to write data tracks of different written track widths. If, for example, the writer 128 has a wider write pole than the writer 126, the writer 128 is capable of generating a magnetic field that magnetically polarizes a larger region of the magnetic medium 108 than the writer 126. As a result, the writer 128 writes a wider data track than the writer 126. This multi-writer configuration facilitates a high-performance interlaced magnetic recording (IMR) technique described in greater detail with respect to View C, below.
View C illustrates magnified views 150 and 152 of a same surface portion of the magnetic storage medium 108 according to different write methodologies and settings of the storage device 100. Specifically, the magnified views 150 and 152 include a number of magnetically polarized regions, also referred to herein as “data bits,” along the data tracks of the magnetic storage medium 108. Each of the data bits (e.g., a data bit 127) represents one or more individual data bits of a same state (e.g., 1s or 0s). For example, the data bit 129 is a magnetically polarized region representing multiple bits of a first state (e.g., “000”), while the adjacent data bit 127 is an oppositely polarized region representing one or more bits of a second state (e.g., a single “1”). The data bits in each of the magnified views 150, 152 are not necessarily illustrative of the actual shapes or separations of the bits within an individual system configuration.
The magnified view 150 illustrates magnetic transitions recorded using techniques for conventional magnetic recording (CMR). In the CMR system, all written data tracks are randomly writeable and have a substantially equal written width. A data track is randomly writeable if it can be individually re-written multiple times without causing significant erasure of data on one or more adjacent data tracks. In one implementation, all data tracks of the magnified view 150 are written according to CMR techniques using a same writer (e.g., either one of the writers 126 or 128).
In contrast, the magnified view 152 illustrates magnetic transitions recorded using an interlaced magnetic recording (IMR) technique. Interlaced magnetic recording utilizes alternating data tracks of different written track widths arranged with overlapping edges. As used herein, a “written track width” refers to a radial width on the storage medium 108 including magnetic material that is transitioned (e.g., polarized) by a single pass of a writer. As described below, certain trimming techniques may alter track width so that an actual final track width differs from the original written track width. For example, the magnified view 152 illustrates alternating written data tracks of two different written track widths (e.g., 158, 160, 162, 164, and 166). Of these written data tracks, a series of alternating tracks 158, 160, and 162 have a wider written width than a series of interlaced tracks 164 and 166. In one implementation, the series of alternating tracks 158, 160, and 162 are generated with a writer that has a wide write pole (e.g., the writer 128) and the interlaced written tracks 164 and 166 are generated with a writer that has a comparatively narrow write pole (e.g., the writer 126). For example, the alternating tracks 158, 160, and 162 may have a written width that is 1.5 to 2.0 times the written width of the interlaced tracks 164 and 166.
In one implementation, the alternating tracks 158, 160, and 162 are written before the interlaced tracks 164, 166 as the storage device begins to fill up. Eventually, subsequent data writes to the interlaced tracks 164 and 166 overwrite outer edge portions of the alternating tracks 158, 160, and 162. For example, edges of the track 160 are “trimmed” by data writes to the interlaced tracks 164 and 166; however, the track 160 is still readable. In one implementation, the interlaced tracks 164, 166 store data of a different linear density (e.g., kilo bits per inch, measured in the down-track direction) than the alternating tracks 158, 160, and 162. Other IMR implementations utilize interlaced data tracks having more than two different linear densities and/or written track widths. In some implementations, IMR provides for a higher total areal bit density than conventional magnetic recording systems.
In View B, the longitudinal axis 132 of the transducer head 120 is shown to be substantially aligned with a target data track 138. Due to angling of the actuator arm assembly 109 as it sweeps between the inner diameter 104 and the outer diameter 102 of the magnetic storage medium 108, the longitudinal axis 132 of the transducer head 120 may, at some radial positions, appear angled relative to an axis along an underlying target data track. This angle is commonly referred to as the ‘skew angle’ and is greater in magnitude radial at positions closest to the inner diameter 104 and the outer diameter 102 than at radial positions near a middle diameter region of the magnetic storage medium 108.
When the skew angle of the transducer head 120 is non-zero, the writers 126 and 128 are defined by a cross-track (CT) separation relative to the reader 134. Mitigation of the average cross-track separation between each reader/writer pair is one primary consideration in selecting positions for the writers 126 and 128 on the transducer head 120. When the cross-track separation of a reader/writer pair is large, a larger positioning adjustment may be performed to allow for a data read back immediately following a data write. Larger position adjustments can negatively affect performance of the storage device 100; therefore, there exist incentives to reduce the average cross-track separation between each reader-writer pair.
When the writers 126 and 128 are separated from one another in the down-track direction of the magnetic storage medium 108 and on either side of the reader 134 (as shown), device performance may be significantly improved as compared to other writer configurations that implement IMR storage techniques utilizing coplanar writers (e.g., writers with zero down-track separation at positions of zero skew angle). Various down-track separations and transducer head configurations are explored further with respect to the following figures.
The controller 106 includes software and/or hardware, and may be implemented in any tangible computer-readable storage media within or communicatively coupled to the storage device 100. As used herein, the term “tangible computer-readable storage media refers to a tangible article of manufacture which may include without limitation RAM, ROM, EEPROM, flash memory or other memory technology, CDROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other tangible medium which can be used to store the desired information and which can accessed by mobile device or computer. In contrast to tangible computer-readable storage media, intangible computer-readable communication signals may embody computer readable instructions, data structures, program modules or other data resident in a modulated data signal, such as a carrier wave or other signal transport mechanism. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
The transducer head 200 further includes first and second return poles 212 and 210 on either side of the writer 202, as well as third and fourth return poles 214 and 216 on either side of the second writer 204. A reader assembly 218 generally includes a read sensor element 220 between a pair of reader shields 230 and 232, which are further positioned between the first writer 202 and the second writer 204 along the longitudinal axis 232 of the multi-writer transducer head 200. In
A perimeter of the write pole tip 206 is defined by a leading edge 222, a trailing edge 224, and two sidewalls 226 and 228. The perimeter of the write pole tip 206 is larger than the write pole tip 208. Like the write pole tip 206, the write pole tip 208 has a perimeter defined by a leading edge 222, a trailing edge 224, and two sidewalls 226 and 228. Consequently, a data bit on a rotating storage medium passes under the second writer 204 before passing under the first writer 202. In other implementations, the first writer 202 and the second writer 204 are not aligned along the longitudinal axis 232 and/or positions of the first writer 202 and the second writer 204 are swapped.
Although other shapes are contemplated, the write pole tips 206 and 208 are trapezoidal in shape. In one implementation, at least one of the write pole tips 206 and 208 is triangular in shape. For example, the write pole tip 206 may be trapezoidal, while the write pole tip 208 is triangular. Specific features of the transducer head 200 are not drawn to scale. In one implementation, the first writer 202 and the second writer 204 operate independent of one another.
When the transducer head 300 is at a position of zero skew angle (as shown), the first writer 302, second writer 304, and reader 306 are aligned along an axis that is further aligned with a tangent to an underlying target data track 312 of the storage medium 308.
The relative positions of the first writer 502 and the second writer 504 are purely exemplary and in no way limiting the scope of the disclosed technology. In other implementations, positions of the first writer 502 and second writer 504 are swapped and/or defined by different down-track separations relative to one another and/or the reader 506.
The first reader 706 and the second reader 708 are positioned between the first writer 702 and the second writer 704 with the first reader 706 positioned adjacent to the first writer 702 and the second reader 708 positioned adjacent to the second writer 704. A direction of rotation of an underlying storage media is indicated by an arrow 710. The second writer 704 is positioned on a leading edge of the transducer head 701, while the first writer 702 is positioned on a trailing edge of the transducer head 701 relative to the rotating media.
In one implementation, the transducer head 701 is implemented in a storage device that implements an interlaced magnetic recording (IMR) technique. The storage device includes a controller stored in memory and executable to operate the first writer 702 to write data tracks to have a narrower written track width when writing data to one set of tracks identified in memory and to operate the second writer 704 to write data tracks to have a wider written track width when writing data to another set of data tracks identified in memory. For example, the second writer 704 may be utilized when writing data to a set of alternating data tracks on the storage medium (e.g., odd-numbered tracks) and the first writer 702 may be utilized when writing data to a second set of tracks interlaced with the alternating data tracks (e.g., even-numbered tracks).
When the first reader 706 and the second reader 708 are separated and/or aligned in the cross-track direction (as shown), the transducer head 705 can read data from multiple data tracks at once. Therefore, in one implementation, the cross-track separation between a center of the first reader 706 and a center of the second reader 708 is equal to a track pitch of the storage medium (e.g., center-to-center distance between two adjacent data tracks).
A positioning operation 806 positions the transducer head so that the selected writer is positioned to write the data to the target data track. For example, the positioning operation 806 may align the selected writer with a center of the target data track. A directing operation 808 directs a write current through a write coil of the selected writer. In one implementation, the writers are independently controllable so that a current runs through a write coil of one element while no current runs through a write coil of the other writer.
The above specification, examples, and data provide a complete description of the structure and use of exemplary embodiments of the disclosed technology. Since many embodiments of the disclosed technology can be made without departing from the spirit and scope of the disclosed technology, the disclosed technology resides in the claims hereinafter appended. Furthermore, structural features of the different embodiments may be combined in yet another embodiment without departing from the recited claims.
The present application claims benefit to U.S. Provisional Patent Application Ser. No. 62/288,033 filed Jan. 28, 2016, and titled “Dual Writer Head Design”, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4030130 | Smith | Jun 1977 | A |
4152736 | Jansen et al. | May 1979 | A |
4298897 | Arter et al. | Nov 1981 | A |
4535372 | Yeakley | Aug 1985 | A |
4622601 | Isozaki et al. | Nov 1986 | A |
4646168 | Sonobe et al. | Feb 1987 | A |
4771346 | Shoji et al. | Sep 1988 | A |
4803571 | Fujioka et al. | Feb 1989 | A |
4853799 | Aikawa | Aug 1989 | A |
5010430 | Yamada et al. | Apr 1991 | A |
5285341 | Suzuki et al. | Feb 1994 | A |
5402270 | McDonnell et al. | Mar 1995 | A |
5760993 | Purkett | Jun 1998 | A |
5892634 | Ito et al. | Apr 1999 | A |
5978168 | Mathews et al. | Nov 1999 | A |
6052797 | Ofek et al. | Apr 2000 | A |
6104562 | Ottesen et al. | Aug 2000 | A |
6185063 | Cameron | Feb 2001 | B1 |
6412042 | Paterson | Jun 2002 | B1 |
6710960 | Yorimitsu | Mar 2004 | B1 |
6768605 | Yamamoto | Jul 2004 | B2 |
7130152 | Raymond et al. | Oct 2006 | B1 |
7259927 | Harris | Aug 2007 | B2 |
7393066 | Dugas et al. | Jul 2008 | B2 |
7440222 | Nakamura et al. | Oct 2008 | B2 |
7508619 | Okamoto | Mar 2009 | B2 |
7573682 | Pust et al. | Aug 2009 | B2 |
7872829 | Sakai | Jan 2011 | B2 |
7907360 | Mak et al. | Mar 2011 | B2 |
7957093 | Brand | Jun 2011 | B2 |
7965465 | Sanvido et al. | Jun 2011 | B2 |
7978429 | Biskeborn | Jul 2011 | B2 |
8023215 | Ghaly et al. | Sep 2011 | B1 |
8139318 | Biskeborn | Mar 2012 | B2 |
8310777 | Biskeborn et al. | Nov 2012 | B2 |
8310782 | Song | Nov 2012 | B2 |
8531792 | Burd et al. | Sep 2013 | B1 |
8531793 | Bandic et al. | Sep 2013 | B2 |
8537481 | Bandic | Sep 2013 | B1 |
8599510 | Fallone | Dec 2013 | B1 |
8693123 | Guo et al. | Apr 2014 | B1 |
8699159 | Malina | Apr 2014 | B1 |
8699162 | Grobis et al. | Apr 2014 | B1 |
8711517 | Erden | Apr 2014 | B2 |
8810960 | Dee | Aug 2014 | B2 |
8854752 | Jin et al. | Oct 2014 | B2 |
8867161 | Emo et al. | Oct 2014 | B2 |
8873178 | Erden et al. | Oct 2014 | B2 |
8913335 | Coker et al. | Dec 2014 | B2 |
8917469 | Guo et al. | Dec 2014 | B1 |
8929186 | Sharma et al. | Jan 2015 | B1 |
8976478 | Harllee, III et al. | Mar 2015 | B1 |
9053712 | Guo et al. | Jun 2015 | B1 |
9058829 | Wolf et al. | Jun 2015 | B1 |
9082458 | Tang | Jul 2015 | B1 |
9087541 | Pokharel et al. | Jul 2015 | B1 |
9099103 | Krichevsky | Aug 2015 | B1 |
9099125 | Hattori | Aug 2015 | B1 |
9105302 | Erden et al. | Aug 2015 | B1 |
9111575 | Zhou et al. | Aug 2015 | B1 |
9111578 | Hassel et al. | Aug 2015 | B1 |
9129658 | Yamamoto | Sep 2015 | B1 |
9142232 | Edelman et al. | Sep 2015 | B2 |
9142246 | Trantham et al. | Sep 2015 | B1 |
9153287 | Hamilton et al. | Oct 2015 | B1 |
9218838 | Biskeborn | Dec 2015 | B2 |
9251828 | Cherubini | Feb 2016 | B2 |
9286926 | Dhanda | Mar 2016 | B1 |
9324362 | Gao | Apr 2016 | B1 |
9355665 | Biskeborn | May 2016 | B2 |
9396062 | Sridhara et al. | Jul 2016 | B1 |
9418688 | Rausch et al. | Aug 2016 | B1 |
9472223 | Mendonsa | Oct 2016 | B1 |
9666212 | Han | May 2017 | B2 |
9805744 | Xue | Oct 2017 | B1 |
10002625 | Erden | Jun 2018 | B1 |
20020035666 | Beardsley et al. | Mar 2002 | A1 |
20020035704 | Wilson | Mar 2002 | A1 |
20020105867 | Tamaru et al. | Aug 2002 | A1 |
20030214886 | Sakamoto et al. | Nov 2003 | A1 |
20050078399 | Fung et al. | Apr 2005 | A1 |
20050088771 | Jaquette | Apr 2005 | A1 |
20050157597 | Sendur et al. | Jul 2005 | A1 |
20060215511 | Shin et al. | Sep 2006 | A1 |
20070047415 | Chang | Mar 2007 | A1 |
20070050593 | Chen et al. | Mar 2007 | A1 |
20070174582 | Feldman | Jul 2007 | A1 |
20080002272 | Riedel | Jan 2008 | A1 |
20080002277 | Sacks | Jan 2008 | A1 |
20080239901 | Tsunokawa et al. | Oct 2008 | A1 |
20080316639 | Tang et al. | Dec 2008 | A1 |
20090244775 | Ehrlich | Oct 2009 | A1 |
20090251821 | Song | Oct 2009 | A1 |
20100014183 | Aoki et al. | Jan 2010 | A1 |
20100027406 | Krause et al. | Feb 2010 | A1 |
20100271727 | Namkoong et al. | Oct 2010 | A1 |
20100321817 | Aida et al. | Dec 2010 | A1 |
20120014013 | Bandic et al. | Jan 2012 | A1 |
20120194946 | Watanabe et al. | Aug 2012 | A1 |
20120307399 | Hoerger | Dec 2012 | A1 |
20130148225 | Coker et al. | Jun 2013 | A1 |
20130155826 | Zhang et al. | Jun 2013 | A1 |
20130286502 | Erden | Oct 2013 | A1 |
20130294207 | Erden et al. | Nov 2013 | A1 |
20140016224 | Unoki et al. | Jan 2014 | A1 |
20140043708 | Erden et al. | Feb 2014 | A1 |
20140055881 | Zaharris | Feb 2014 | A1 |
20140153134 | Han et al. | Jun 2014 | A1 |
20140160589 | Deki et al. | Jun 2014 | A1 |
20140285923 | Aoki et al. | Sep 2014 | A1 |
20140327983 | Biskeborn | Nov 2014 | A1 |
20150178161 | Burd et al. | Jun 2015 | A1 |
20160148629 | Gao | May 2016 | A1 |
20160148630 | Rausch | May 2016 | A1 |
20160148635 | Zhu et al. | May 2016 | A1 |
20160148636 | Ma et al. | May 2016 | A1 |
20160148637 | Rausch et al. | May 2016 | A1 |
20160148641 | Gao | May 2016 | A1 |
20160148642 | Gao | May 2016 | A1 |
20160148643 | Gao et al. | May 2016 | A1 |
20160148644 | Zhu et al. | May 2016 | A1 |
20160148645 | Zhu et al. | May 2016 | A1 |
20160203837 | Han | Jul 2016 | A1 |
20170330587 | Gao | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
484774 | May 1992 | EP |
1564736 | Aug 2005 | EP |
H02-240862 | Sep 1990 | JP |
2005-030869 | Apr 2005 | WO |
Number | Date | Country | |
---|---|---|---|
62288033 | Jan 2016 | US |