The present invention is related to the washing and/or thickening of pulp and more particularly to a washer with a two stage dewatering zone without a wire belt.
The pulp and paper making industry has for many years made regular use of apparatus for washing and/or thickening pulp and paper stock. One apparatus commonly used in the prior art practice, described in U.S. Pat. No. 5,382,327 by Seifert et al., is known as a double nip thickener (DNT) or simply a washer and is relatively closely comparable in structure and mode of operation with a cylinder type paper forming machine in that its main components are a pair of wire-covered cylinders and a vat in which the cylinders rotate.
The DNT may be used as an extraction device, to thicken the stock, or may be used primarily for washing of the pulp fibers. In operation, the pulp stock is fed to the nip between a rotating breast cylinder and wire entrained thereover. The pulp is dewatered by centrifugal force and travels on the wire to a second or couch roller for further dewatering. The pulp is removed from the couch roller by gravity and a doctor blade and collected on a conveyor which moves the dewatered pulp downstream from the DNT.
In many of these prior art devices, an endless belt or loop of foraminous “wire” is trained around the rolls and defines therewith a space in which the other operating parts of the washer are located. The wire may consist preferably of a plastic material, i.e., polyester. Since the product of the machine is pulp, rather than a sheet on which wire marking may be undesirable, the wire may be of the pin seam type wherein the ends of the wire belt include overlapping loops which are releasably fastened together by a metal “pin” inserted through these loops. Use of pin seam wires makes possible the changing of wires after wear without the cantilevering of the rolls which is required if the wire is an endless loop without a seam. In addition, a wire thickener or washer has limited rotational speed due to wire belt and other component wear concerns, thus the hydraulic capacity of the machine is directly related to the rotational speed.
During the dewatering process of the pulp, pulp stock is fed on to the rotating wiring. Centrifugal force throws fluid with contaminants, and usually good fibers from the pulp, outward through the filtered wire.
Accordingly, it would be beneficial to have a pulp thickening or washer device that would eliminate a wire belt as the filtering medium, increase the rotational speed of the thickener to create additional centrifugal force therefore removing more fluid from the pulp, and prevent the waste of good pulp fibers.
The present invention provides for a pulp washing or thickening apparatus for removing fluid from pulp stock in a dewatering system. The apparatus includes a feed manifold for supplying the apparatus with pulp stock, a primary cylindrical rotating filter for accepting the pulp stock from the feed manifold and for creating centrifugal force against the pulp stock to expel liquid, and a first doctor blade for assisting the removal of the pulp stock from an inner surface of the primary cylindrical filter after the pulp stock is dewatered.
The invention will be described with reference to the drawings.
Feedstock is delivered to the apparatus 5 similarly to the prior art thickeners or washers. The headbox 20, shown in
The motor 10, shown in
The jet of feedstock from the headbox 20 is directed at a high point onto the inner surface 32 of the primary cylinder 30. Some of the stock is immediately partially dewatered because the force of the jet causes liquid to travel through the meshed body. Accepts material may be scraped from the inside of the cylinder 30 by doctor blade 50 with the accepts collected by the doctor assembly transported away through outlet pipe 51.
Turning to
As shown, the primary and secondary cylindrical filters are attached to a common drive. Alternatively, the two filters could be separately driven for g-force optimization. The primary cylindrical filter is driven with about 30-120 g-forces and the secondary cylindrical filter is driven with about 60-300 g-forces to provide the desired filtrate clarity and capacity. Variable speed drives can also be provided for either or both of the cylindrical filters so that g-loads and washing efficiency can be controlled within a wide range of operating parameters. As stated above, in contradistinction to many of the prior art devices, wires or similar rotating meshes are not trained or disposed around the cylinders in the present invention in order to form a nip with the cylinder to express liquid from the pulp suspension located in the nip region. Accordingly, the apparatus 5 is subjected to lower amounts of loading, can achieve higher rotation speeds, and can result in increased hydraulic capacity and fines separation efficiency.
The continuous application of centrifugal force causes the liquid component of the feedstock to be expressed through the wire meshing of the primary and secondary filters while the pulp materials suspended therein are held by the meshed body and form a layer on the inner surfaces 32, 42 of the primary and secondary cylindrical filters 30, 40. The liquid expressed through the secondary discharge is expelled from the apparatus 5 through port 60. As known to those skilled in the art, the liquid often carries very fine solid particles such as ink, PSA, etc. These solids are desirably discharged through the port also along with the liquid carrier. As shown, secondary accepts material traveling on an inner surface 42 of the cylinder 40 is removed via doctor 52 and travels through egress piping 55.
The function of the foraminous bodies on the cylinders is to serve as a filter medium that holds the fiber from the feedstock and other desired solid constituents of the feedstock on its inner surface against the action of centrifugal force, which is the major factor causing dewatering of the retained pulp. Vanes 35, 33 shown in
The first doctor blade 50 and associated outlet pipe 51 remove the thickened/dewatered pulp from the inner surface 32 of the primary filter. The thickened/dewatered pulp is transferred from the inner surface 32 of the primary cylindrical filter 30 to a downstream process in the papermaking system. A screw like conveyor (not shown) or other transport means may be operatively associated with the pipe 51 to aid in transferring the pulp. When the mat touches the doctor blades, the mat may become airborne. Directional steering jets of air may be employed to keep the mat airborne and blow the mat out of the washer 5 into the doctor collection assembly. Alternatively, a vacuum may be used to pull the pulp from the washer 5. It is noted that the primary accepts may be subjected to an additional thickening operation before removal from the washer 5.
For the dewatered pulp on the inner surface 42 of the secondary cylindrical filter 40, a second doctor blade assembly 52 and associated collection pipe 55 are provided, and the removal process is the same as above. The purpose of the second doctor blade 52 is to clean the filter media and recover any fiber that was plugged on the filter media surface of the secondary filter 42.
To release the mat of pulp from the filter media, a backflush of water at a pressure great enough to exceed the opposing g-force may be used to impinge the cylinder surface just upstream from or at the leading edge of the first doctor blade assembly 50. The pulp not collected by the first doctor blade assembly 50 will be filtered out again on the primary cylindrical filter 30. A second backflush of water at the leading edge of the second doctor blade 52 may be used to collect the pulp that is retained on the secondary cylindrical 40 filter in order that the filter media does not become clogged over time.
In an alternative embodiment of the present invention, non-contacting doctor blades may be used to remove the thickened mat from the filter media of the primary and secondary cylindrical filters 30, 40. For example, a very fine, high pressure jet or fan of water or air that blows from the inside to get under the fiber mat and lift the mat off the filter media or blows from the backside to blow the mat off may be mentioned as exemplary.
In an alternative method of operation, a pulsed system may be used to increase the dewatering levels and thicken the pulp more. This could be achieved by selective, intermittent contact of the first and second doctor blades 50, 52 with their associated rotating cylinders to remove the thickened pulp after every two or more revolutions of the primary and secondary cylindrical filters 30, 40. This would allow a longer period of time for centrifugal force to be applied to the pulp forcing liquid to expel from the pulp.
In the washer 5, the filter media for the primary and secondary cylindrical filters 30, 40 may be replaceable. In one embodiment, the filter media is in the form of a cartridge that inserts into the primary and secondary cylindrical filters 30, 40. In another embodiment, the filter media may be installed and tensioned in place to the primary or secondary cylindrical filters 30, 40.
An elongated nozzle in the form of a slotted opening 78 comprising a generally planar housing surface 76 extends tangentially from the conical body in laterally offset position from axis 95. Pulp suspension exits the cyclone through this slotted opening 78 with the opening positioned adjacent the inner surface 32 of the primary filter 30.
The slotted opening presents an elongated opening with its elongated dimension oriented parallel to the surface of the inner cylinder 32 as this surface is positioned adjacent the opening 78 during its rotation.
As shown in
By employment of the stratified feed shown in
As shown in
In accordance with the embodiment shown in
It is also possible to add wash shower nozzles along either or both of the rotating cylinders.
Preliminary results have indicated that the dual zone washer is effective in removing ash, ink, and stickies, and fines from pulp slurries that may include, for example, copy paper, OCC, and mixed office waste. At present, it is preferred that the inner wire medium be more open than the outer wire medium. Present data suggests that ash removal is optimized with a 60 micron filter medium with fines removal optimized utilizing a 200 micron filter medium. The filter medium may, for example, include nylon, polyester, or other polymer mesh screens having opening from about 30-600 microns. Woven polymer media having square openings are presently preferred. However, a wedgewire filter cartridge may also be mentioned as an acceptable filter medium. For example, a wedgewire cartridge having slot openings of from about 0.001-0.010 inches may be provided with 0.020-0.045 inch thick smooth wires. Preliminary results indicate that the dual zone washer shows improved ash removal while exhibiting minimal fiber loss.
Exemplary operating parameters include inner and outer concentrically disposed cylinders having lengths of about 300 cm. The inner cylinder, in one embodiment, has a diameter of about 250 cm. Thus, the apparatus is compact, leading to decreased floor space requirements. G-forces exerted on the slurry typically may be on the order of about 50-350 G. Initial feed consistency to the dual zone washer may be on the order of about 0.1-10%, preferably about 0.5-5.0%.
Although the invention has been described in detail with reference to certain preferred embodiments thereof, other embodiments are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred embodiment contained herein.
This application claims the priority benefit of U.S. Provisional Patent Application 60/563,066 filed Apr. 16, 2004.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/12176 | 4/11/2005 | WO | 11/1/2006 |
Number | Date | Country | |
---|---|---|---|
60563066 | Apr 2004 | US |