The instant disclosure is generally directed toward a duct connector. For example, the instant disclosure is directed toward a duct connector connecting duct components that are resistant to relatively high temperature fluids and relatively high pressure fluids transported by the duct components.
Duct connectors can be used between various duct or tubing components to maintain relatively reliable, relatively leak-free duct connections. Duct connectors can be used in gasoline-fueled internal combustion engines, diesel-fueled internal combustion engines, etc.
This summary is provided to introduce concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key factors or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
According to an aspect, a duct connector includes an internal sleeve extending from a first end to a second end. The internal sleeve includes a first interior wall and a first exterior wall, the first interior wall defining a first interior volume. The duct connector also includes an external sleeve extending from a first end to a second end, the external sleeve having a second interior wall and a second exterior wall, the second interior wall defining a second interior volume. A portion of the internal sleeve is located within the second interior volume such that the first exterior wall contacts the second interior wall. A portion of a first duct is located within the first interior volume, and a portion of a second duct is located within the first interior volume. The first end of the external sleeve is moved between a first position and a second position. When the first end of the external sleeve is in the first position, the first end of the external sleeve applies a first force to the first end of the internal sleeve to secure the internal sleeve to the portion of the first duct. When the first end of the external sleeve is in the second position, the first end of the external sleeve applies a second force to the first end of the internal sleeve such that the portion of the first duct is movable with respect to the internal sleeve. The second end of the external sleeve is moved between a first position and a second position. When the second end of the external sleeve is in the first position, the second end of the external sleeve applies a first force to the second end of the internal sleeve to secure the internal sleeve to the portion of the second duct. When the second end of the external sleeve is in the second position, the second end of the external sleeve applies a second force to the second end of the internal sleeve such that the portion of the second duct is movable with respect to the internal sleeve.
According to an aspect, a duct connector includes an internal sleeve extending from a first end to a second end. The internal sleeve includes a first interior wall and a first exterior wall, the first interior wall defining a first interior volume. The duct connector also includes an external sleeve extending from a first end to a second end, the external sleeve having a second interior wall and a second exterior wall, the second interior wall defining a second interior volume. A portion of the internal sleeve is located within the second interior volume such that the first exterior wall contacts the second interior wall. A portion of a first duct is located within the first interior volume, and a portion of a second duct is located within the first interior volume. At least one of the first end of the external sleeve or the second end of the external sleeve comprises a finger selectively movable from a first position to a second position. When the finger is in the first position, at least one of the first end or the second end of the external sleeve has a first diameter such that movement of at least one of the first duct or the second duct is inhibited with respect to the internal sleeve. When the finger is in the second position, at least one of the first end or the second end of the external sleeve has a second diameter such that the internal sleeve applies a force to at least one of the first duct or the second duct such that at least one of the first duct or the second duct is movable with respect to the internal sleeve.
According to an aspect, a duct connector includes an internal sleeve extending from a first end to a second end, the internal sleeve having a first interior wall and a first exterior wall. The first interior wall defining a first interior volume and a first interlocking feature. The duct connector also includes an external sleeve extending from a first end to a second end, the external sleeve having a second interior wall and a second exterior wall, the second interior wall defining a second interior volume. A portion of the internal sleeve is located within the second interior volume such that the first exterior wall contacts the second interior wall. A portion of a duct is located within the first interior volume and defines a second interlocking feature cooperating with the first interlocking feature.
The following description and annexed drawings set forth certain illustrative aspects and implementations. These are indicative of but a few of the various ways in which one or more aspects can be employed. Other aspects, advantages, and/or novel features of the disclosure will become apparent from the following detailed description when considered in conjunction with the annexed drawings.
The claimed subject matter is now described with reference to the drawings, wherein like reference numerals are generally used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide an understanding of the claimed subject matter. It is evident, however, that the claimed subject matter can be practiced without these specific details. In other instances, structures and devices are illustrated in block diagram form in order to facilitate describing the claimed subject matter. Relative size, orientation, etc. of parts, components, etc. may differ from that which is illustrated while not falling outside of the scope of the claimed subject matter.
Referring to
In many automotive applications, transfer of fluids (e.g., gases or liquids) is required for proper operation of various components in and around the engine compartment or battery storage areas of the vehicle. Often times, this transfer of fluids requires connections between two ducts, pipes, tubes, etc. These ducts are also commonly constructed of relatively hard and/or rigid materials such as metal or plastic and necessitate a connector that is less rigid and will permit connection of ducts that may vibrate or include two ducts that do not share a common central axis or are not concentric to one another.
As shown in
Referring to
Referring to
For example, the first duct 102 can define an annular groove 306 extending radially inward from the exterior wall 204 of the first duct 102. In some examples, one or more annular grooves 306 can cooperate with structure located on the internal sleeve 104 as will be described below. For the purposes of this disclosure, the term “radially inward” will refer to a direction that is perpendicular to the central axis 200 and extends along any radius from a point on a structure (e.g., the first duct 102) toward the central axis 200. Similarly, the term “radially outward” refers to a direction that is perpendicular to the central axis 200 and extends along any radius from the central axis 200 toward structure located away from the central axis 200 (e.g., the first duct 102).
Referring to
However, it is to be appreciated that shapes and forms other than cylindrical are contemplated for the internal sleeve 104. For example, the internal sleeve 104 can include a first cylindrical form having a first diameter at the first end 400 and a second, different cylindrical form having a second diameter at the second end 402 in order to cooperate with a first duct 102 having a first diameter and a second duct (shown in
The internal sleeve 104 is constructed of a polymeric material and, in particular, a polymeric material which, in most embodiments, is relatively softer than the material utilized for the external sleeve 106. In some examples, the internal sleeve 104 may be made from thermoplastic elastomer which is manufactured by RTP Company under part number RTP™ 6091-65 which has a hardness value of 65 Shore A. Other polymeric materials having similar properties and values may be utilized. Other suitable materials that could be used for the internal sleeve 104 include, but are not limited to: thermoplastic elastomers manufactured by Exxon Mobile part number SATOPRENE™ 101-55, which has a hardness value of 55 Shore A, or Santoprene™ 101-64 which has a hardness value of 64 Shore A. Other suitable thermoplastic elastomers are manufactured by Teknor Apex under part numbers SARLINK™ 4175B, which has a hardness value of 75 Shore A, or SARLINK™ 4180B which has a hardness value of 80 Shore A. The RTP Company also manufactures thermoplastic elastomers RTP™ 6091-65, which has a hardness value of 65 Shore A, and RTP™ 6091-85, which has a hardness value of 85 Shore A. A liquid silicone rubber material manufactured by Wacker Chemical under part number LR 3070/60 which has a hardness value of 60 Shore A may also be utilized. Accordingly, in some embodiments, the material used for the internal sleeve 104 may have a hardness value ranging anywhere from about 45 Shore A to about 90 Shore A, and in other embodiments from about 55 Shore A to about 80 Shore A. In summary, the internal sleeve 104 can comprise materials such as rubber, silicone, and thermoplastic vulcanizates (TPV), but these materials are simply examples, and are not meant to be limiting. Selection of materials of the internal sleeve 104 can depend upon the fluids passing through the ducts that are to be connected by the duct connector 100 (e.g., high temperature requirements, etc.)
Referring to
In some examples, the internal sleeve 104 defines a first interlocking feature 502. The first interlocking feature 502 can include an annular groove as shown that extends radially outward from the first interior wall 404. The first interlocking feature 502 can cooperate with the barb 302 of the first duct 102 as previously described to provide a tactile indication of correct placement of the duct connector 100 onto the first duct 102 as will be described below. In some examples, the annular groove of the first interlocking feature 502 and the barb 302 provide a snap fit for the duct connector 100 to the first duct 102. Of course, the annular groove of the first interlocking feature 502 and the barb 302 are only examples of cooperating structure between the first duct 102 and the internal sleeve 104, and any suitable cooperating structure is satisfactory.
In some examples, the internal sleeve 104 can include an annular groove 504 extending radially inward from the first exterior wall 406. The annular groove 504 can be configured to cooperate with structure defined by the external sleeve 106 as will be described below. In some examples, the internal sleeve 104 includes a rib 506 extending radially inward from the first interior wall 404. The rib 506 can provide structural stability and additional strength to the internal sleeve 104 in the section of the internal sleeve 104 adjacent to the annular groove 504.
Remaining with
In some examples, the internal sleeve 104 can also include structure extending radially inward from the first interior wall 404 such as a bead 510. In some examples, the bead 510 can contact the exterior wall 204 of the first duct 102. In some examples, the bead 510 can cooperate with the annular groove 306 of the first duct 102 to provide improved sealing functionality to the duct connector 100.
Referring to
In some examples, the external sleeve 106 is constructed of thermoplastic or nylon materials and, in particular, materials which, in some examples, is relatively harder than the material utilized for the internal sleeve 104. In some examples, the external sleeve is manufactured utilizing a blow-molding process, an extrusion or an injection molding process. The external sleeve 106 may be made from a polymeric material such as polypropylene manufactured by Lyondell Bassel under part number Pro-Fax™ SV152 which has a hardness value of 78 Shore D. Skilled artisans will appreciate that other polymeric materials having similar properties and values may also be utilized. Other suitable materials that could be used for the external sleeve 106 can include: nylon manufactured by BASF under the part number Ultrmid™ 827G which has a hardness value of 121 Shore R; nylon 6/6 manufactured by DuPont under part number Zytel™ BM70G20HSLX which has a hardness value of 120 Shore R; or thermoplastic elastomer manufactured by Teknor Apex under part number Sarlink™ 4190B which has a hardness value of 90 Shore A. Accordingly, in some examples the material used for the external sleeve 106 may have a hardness value ranging anywhere from about 70 Shore A to about 130 Shore R, and in some examples from about 90 Shore A to about 121 Shore R.
In some examples, the external sleeve 106 is injection molded and made of hard thermoplastic materials such as Nylon or Polypropylene, depending on temperatures and pressures of the fluid within the first duct 102. The materials can be unfilled or filled with common strengthening media such talc or glass.
Remaining with
The external sleeve 106 defines an axial slot 616 adjacent to the finger 612. The axial slot 616 extends from the first end 600 of the external sleeve 106 toward the central portion 614 to an end point 618. The axial slot 616 can be oriented in an axial direction and pass through the second interior wall 604 and the second exterior wall 606 such that each finger 612 can selectively flex or pivot toward and away from the second interior volume 608. This flexing can alter the diameter of the first end 600 such that the duct connector 100 can both pass onto the first duct 102 and also provide force radially inward toward the central axis 200 to secure the external sleeve 106 to the internal sleeve 104 and to the first duct 102.
In some examples, the end point 618 can define a stress relief feature 620 that can include an aperture having a radius that is larger than a width of the axial slot 616. The stress relief feature 620 can reduce any stress concentration points at the end of the axial slot 616 during flexing of the finger 612. The stress relief feature 620 can also minimize the width of the finger 612 where it meets the central portion 614 so that less force is required to flex the finger 612. All of the features of the finger 612 as described can be located on the second end 602 of the external sleeve 106 as well as the first end 600. As such, the finger 612 can be located on both ends 600, 602 of the external sleeve 106.
In some examples, the external sleeve 106 includes a pair of fingers 612, and the external sleeve 106 defines the axial slot 616 between the pair of fingers 612. As noted previously, the axial slots 616 and the stress relief features 620 (e.g., a relatively large radius at the end point 618) aid in expansion of the duct connector 100 during installation and collapse or contraction of the duct connector 100 during a compression operation.
Remaining with
Referring to
Additionally, the second interior wall 604 of the external sleeve 106 can define an annular groove 702 extending radially outward that is configured to cooperate with the first interlocking feature 502 of the internal sleeve 104. The cooperation between the annular groove 702 and the first interlocking feature 502 (e.g., the annular groove as shown) can ease passage of the external sleeve 106 (and the duct connector 100) over the barb 302 and seal the first interlocking feature 502 with the barb 302.
In some examples, at least one finger 612 includes a clamp guide 704 extending radially outward from the second exterior wall 606 of the external sleeve 106 (e.g., an outside surface of the finger 612). In these and other examples, the clamp guide 704 can limit relative motion between a clamp (shown in
Referring to
Referring to
Referring to
Details of
In some examples, the internal sleeve 104 extends axially from at least one of the first end 600 of the external sleeve 106 or the second end 602 of the external sleeve 106. In some examples, the first exterior wall 406 of the internal sleeve 104 defines the end flange 508 extending radially outward from the first exterior wall 406 at one or both of the first end 400 of the internal sleeve 104 and the second end 402 of the internal sleeve 104. In these examples, the end flange 508 extends beyond at least one of the first end 600 of the external sleeve 106 or the second end 602 of the external sleeve 106.
Referring to
During application of the duct connector 100, the first end 600 of the external sleeve 106 is moved between the first position and a second position. This can also be described as the duct connector 100 passing axially over the portion of the first duct 102 or the second duct 1000. When the first end 600 of the external sleeve 106 is in the first position, the first end 600 of the external sleeve 106 applies a first force to the first end 400 of the internal sleeve 104 to secure the internal sleeve 104 to the portion of the first duct 102. When the first end 600 of the external sleeve 106 is in the second position (e.g., the clamp 1006 is not applying a force to the external sleeve 106 or the duct connector 100 is passing over the barb 302 to spread the fingers radially outward), the first end 600 of the external sleeve 106 applies a second force to the first end 400 of the internal sleeve 104 such that the portion of the first duct 102 is movable with respect to the internal sleeve 104. In other words, in the second position, the duct connector 100 does not physically entrap the first duct 102.
Similarly, the second end 602 of the external sleeve 106 is moved between a first position and a second position, wherein when the second end 602 of the external sleeve 106 is in the first position, the second end 602 of the external sleeve 106 applies a first force to the second end 402 of the internal sleeve 104 to secure the internal sleeve 104 to the portion of the second duct 1000, and when the second end 602 of the external sleeve 106 is in the second position, the second end 602 of the external sleeve 106 applies a second force to the second end 402 of the internal sleeve 104 such that the portion of the second duct 1000 is movable with respect to the internal sleeve 104.
Referring to
Referring to
Referring to
Referring to
A number of benefits can be realized by the presently described apparatus and methods. In some examples, the duct connector can provide a lower cost alternative to braided hose connections for automotive engines. Also, the duct connector can provide a longer design life or service life for connections between ducts. Additionally, the described duct connector can use a variety of clamps. Furthermore, the described structures can provide positive clamp orientation features (e.g., clocking) for holding the clamp in place before installing and tactical installation feedback (e.g., snap fit sensations to the operator).
Although the subject matter has been described in language specific to structural features or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing at least some of the claims.
Various operations of embodiments are provided herein. The order in which some or all of the operations described should not be construed to imply that these operations are necessarily order dependent. Alternative ordering will be appreciated having the benefit of this description. Further, it will be understood that not all operations are necessarily present in each embodiment provided herein. Also, it will be understood that not all operations are necessary in some embodiments.
Many modifications may be made to the instant disclosure without departing from the scope or spirit of the claimed subject matter. Unless specified otherwise, “first,” “second,” or the like are not intended to imply a temporal aspect, a spatial aspect, an ordering, etc. Rather, such terms are merely used as identifiers, names, etc. for features, elements, items, etc. For example, a first component and a second component generally correspond to component A and component B or two different or two identical components or the same component.
Moreover, “exemplary” is used herein to mean serving as an example, instance, illustration, etc., and not necessarily as advantageous. As used in this application, “or” is intended to mean an inclusive “or” rather than an exclusive “or”. In addition, “a” and “an” as used in this application are generally to be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Also, at least one of A and B or the like generally means A or B or both A and B. Furthermore, to the extent that “includes”, “having”, “has”, “with”, or variants thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to “comprising”.
Also, although the disclosure has been illustrated and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art based upon a reading and understanding of this specification and the annexed drawings. The disclosure includes all such modifications and alterations and is limited only by the scope of the following claims. In particular regard to the various functions performed by the above described components (e.g., elements, resources, etc.), the terms used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., that is functionally equivalent), even though not structurally equivalent to the disclosed structure. In addition, while a particular feature of the disclosure may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.
This application claims priority to U.S. Provisional Patent Application No. 62/989,171 filed on Mar. 13, 2020, entitled “DUCT CONNECTOR,” which is hereby incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62989171 | Mar 2020 | US |