The present disclosure relates to the field of air conditioning technologies, and in particular, to a ducted air conditioner and an assembling method thereof.
The ducted air conditioner is an indoor unit of a ducted air conditioning system, which transmits cold or warm air into the indoors through air ducts. Since the ducted air conditioner may be installed in a hidden way, it has less effects on the aesthetically pleasing of the indoor and is convenient to maintain, so it is widely used.
In an aspect, a ducted air conditioner is provided. The ducted air conditioner includes a housing, a heat-retaining and drainage assembly, a fan assembly and an air conditioning device. The heat-retaining and drainage assembly is disposed in the housing, and includes a first heat-retaining member and a second heat-retaining member. The first heat-retaining member includes a first dividing plate. The second heat-retaining member is stacked with the first heat-retaining member, the second heat-retaining member includes a second dividing plate connected to the first dividing plate. An inner space of the housing is divided to a first cavity and a second cavity, an arrangement direction of the first cavity and the second cavity is perpendicular to a stacking direction of the first heat-retaining member and the second heat-retaining member. The fan assembly is disposed in the first cavity. The air conditioning device is disposed in the second cavity, and is located between the first heat-retaining member and the second heat-retaining member.
In another aspect, an assembling method of a ducted air conditioner is provided. The ducted air conditioner includes a housing, an electrical control box, a heat-retaining and drainage assembly, an air conditioning device and a fan assembly. The housing includes a box body and a cover plate. The box body has an opening. The cover plate is configured to close the opening. The heat-retaining and drainage assembly includes a first heat-retaining member and a second heat-retaining member. The first heat-retaining member includes a first dividing plate. The second heat-retaining member is stacked with the first heat-retaining member, the second heat-retaining member includes a second dividing plate connected to the first dividing plate. An inner space of the housing is divided to a first cavity and a second cavity, an arrangement direction of the first cavity and the second cavity is perpendicular to a stacking direction of the first heat-retaining member and the second heat-retaining member. The method includes: mounting the box body; mounting the electrical control box, and clamping the electrical control box with the box body, so that the electrical control box is located at an end of the first cavity along a length direction of the first cavity; installing the first heat-retaining member in the box body, so that the first heat-retaining member is located between the electrical control box and a third side plate of the box body; installing and fixing the air conditioning device in the box body, so that the air conditioning device is located at a side of the first heat-retaining member proximate to the cover plate; abutting and connecting the second heat-retaining member with the first heat-retaining member, so that the air conditioning device is located in the second cavity; installing the fan assembly in the first cavity; and clamping the cover plate and the box body.
In order to describe technical solutions in the present disclosure more clearly, accompanying drawings to be used in some embodiments of the present disclosure will be introduced briefly below. However, the accompanying drawings to be described below are merely accompanying drawings of some embodiments of the present disclosure, and a person of ordinary skill in the art may obtain other drawings according to these drawings. In addition, the accompanying drawings in the following description may be regarded as schematic diagrams, and are not limitations on actual size of products, actual processes of methods and actual timings of signals to which the embodiments of the present disclosure relate.
Technical solutions in some embodiments of the present disclosure will be described clearly and completely with reference to the accompanying drawings below. Obviously, the described embodiments are merely some but not all embodiments of the present disclosure. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present disclosure shall be included in the protection scope of the present disclosure.
Unless the context requires otherwise, throughout the specification and the claims, the term “comprise” and other forms thereof such as the third-person singular form “comprises” and the present participle form “comprising” are construed as being open and inclusive, meaning “including, but not limited to”. In the description, the terms such as “one embodiment”, “some embodiments”, “exemplary embodiments”, “example”, “specific example” or “some examples” are intended to indicate that specific features, structures, materials, or characteristics related to the embodiment(s) or example(s) are included in at least one embodiment or example of the present disclosure. Schematic representations of the above terms do not necessarily refer to the same embodiment(s) or example(s). In addition, the specific features, structures, materials or characteristics may be included in any one or more embodiments or examples in any suitable manner.
Hereinafter, the terms “first” and “second” are used for descriptive purposes only, and are not to be construed as indicating or implying the relative importance or implicitly indicating the number of indicated technical features. Thus, features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the embodiments of the present disclosure, the term “a/the plurality of” means two or more unless otherwise specified.
In the description of some embodiments, the term “coupled” and “connected” and their derivatives may be used. For example, the term “connected” may be used in the description of some embodiments to indicate that two or more components are in direct physical or electrical contact with each other. For another example, the term “coupled” may be used in the description of some embodiments to indicate that two or more components are in direct physical or electrical contact. However, the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other. The embodiments disclosed herein are not necessarily limited to the contents herein.
The phrase “at least one of A, B and C” has a same meaning as the phrase “at least one of A, B or C”, and they both include the following combinations of A, B and C: only A, only B, only C, a combination of A and B, a combination of A and C, a combination of B and C, and a combination of A, B and C.
The phrase “A and/or B” includes the following three combinations: only A, only B, and a combination of A and B.
The use of the phrase “applicable to” or “configured to” herein means an open and inclusive language, which does not exclude devices that are applicable to or configured to perform additional tasks or steps.
In addition, the use of the phrase “based on” is meant to be open and inclusive, since a process, step, calculation or other action that is “based on” one or more of the stated conditions or values may, in practice, be based on additional conditions or values exceeding those stated.
The term “about”, “substantially” or “approximately” as used herein includes a stated value and an average value within an acceptable range of deviation of a particular value. The acceptable range of deviation is determined by a person of ordinary skill in the art, considering measurement in question and errors associated with measurement of a particular quantity (i.e., limitations of a measurement system).
The term such as “parallel”, “perpendicular” or “equal” as used herein includes a stated condition and a condition similar to the stated condition. A range of the similar condition is within an acceptable deviation range, and the acceptable deviation range is determined by a person of ordinary skill in the art, considering measurement in question and errors associated with measurement of a particular quantity (i.e., limitations of a measurement system). For example, the term “parallel” includes absolute parallelism and approximate parallelism, and an acceptable deviation range of the approximate parallelism may be, for example, a deviation within 5°. The term “perpendicular” includes absolute perpendicularity and approximate perpendicularity, and an acceptable deviation range of the approximate perpendicularity may also be, for example, a deviation within 5°. The term “equal” includes absolute equality and approximate equality, and an acceptable deviation range of the approximate equality may be that, for example, a difference between the two that are equal is less than or equal to 5% of either of the two.
An air conditioning system 1000 is provided. As shown in
The ducted air conditioner 10A includes an indoor heat exchanger 11.
The outdoor unit 20 includes an outdoor heat exchanger 21, a compressor 22, a four-way valve 23, an expansion valve 24 and a throttle mechanism 25. In some embodiments, the expansion valve 24 may further be provided in the indoor unit 10. The throttle mechanism 25 may be a throttle valve or a pressure reducer.
The compressor 22, the outdoor heat exchanger 21, the expansion valve 24 and the indoor heat exchanger 11 are connected in sequence to form a refrigerant loop. The refrigerant circulates in the refrigerant loop, and exchanges heat with the air through the outdoor heat exchanger 21 and the indoor heat exchanger 11 respectively, so as to implement cooling or heating of the air conditioning system 1000.
The compressor 22 is configured to compress the refrigerant, so that the refrigerant with low pressure is compressed to be a refrigerant with high pressure.
The outdoor heat exchanger 21 is configured to perform heat-exchange between outdoor air and the refrigerant conveyed in the outdoor heat exchanger 21. For example, the outdoor heat exchanger 21 operates as a condenser in a cooling mode of the air conditioning system 1000, so that the refrigerant compressed by the compressor 22 dissipates heat into the outdoor air through the outdoor heat exchanger 21 and condenses. The outdoor heat exchanger 21 operates as an evaporator in a heating mode of the air conditioning system 1000, so that the decompressed refrigerant absorbs heat in the outdoor air through the outdoor heat exchanger 21 and evaporates.
Generally, the outdoor heat exchanger 21 further includes heat exchange fins, so as to expand a contact area between the outdoor air and the refrigerant conveyed in the outdoor heat exchanger 21, thereby improving heat exchange efficiency between the outdoor air and the refrigerant.
The expansion valve 24 is connected between the outdoor heat exchanger 21 and the indoor heat exchanger 11. A pressure of a refrigerant flowing between the outdoor heat exchanger 21 and the indoor heat exchanger 11 is adjusted by an opening degree of the expansion valve 24, so as to adjust the flow of the refrigerant flowing between the outdoor heat exchanger 21 and the indoor heat exchanger 11. The flow and pressure of the refrigerant flowing between the outdoor heat exchanger 21 and the indoor heat exchanger 11 will affect the heat exchange performance of the outdoor heat exchanger 21 and the indoor heat exchanger 11. The expansion valve 24 may be an electronic valve. The opening degree of the expansion valve 24 is adjustable, so as to control the flow and pressure of the refrigerant flowing through the expansion valve 24.
The four-way valve 23 is connected in the refrigerant loop, and is configured to switch a flow direction of the refrigerant in the refrigerant loop, so as to cause the air conditioning system 1000 to perform the cooling mode or the heating mode.
The throttle mechanism 25 is connected between the expansion valve 24 and the indoor heat exchanger 11. In a case where the air conditioning system 1000 operates in the cooling mode, the throttling mechanism 25 is configured to throttle a supercooled liquid refrigerant flowing out of the outdoor heat exchanger 21 into a gas-liquid two-phase refrigerant with low temperature and low pressure, and the flow direction of the refrigerant is shown by solid arrows in
The indoor heat exchanger 11 is configured to perform heat-exchange between indoor air and the refrigerant conveyed in the indoor heat exchanger 11. For example, the indoor heat exchanger 11 operates as an evaporator in the cooling mode of the air conditioning system 1000, so that the refrigerant, which has dissipated heat by the outdoor heat exchanger 21, absorbs heat from the indoor air through the indoor heat exchanger 11 and evaporates. The indoor heat exchanger 11 operates as a condenser in the heating mode of the air conditioning system 1000, so that the refrigerant, which has absorbed heat through the outdoor heat exchanger 21, dissipates heat into the indoor air through the indoor heat exchanger 11 and condenses.
Generally, the indoor heat exchanger 11 further includes heat exchange fins, so as to expand a contact area between the indoor air and the refrigerant conveyed in the indoor heat exchanger 11, thereby improving heat exchange efficiency between the indoor air and the refrigerant.
Operation manners of the cooling mode and the heating mode of the air conditioning system 1000 will be described below with reference to
As shown in
As shown in
Some embodiments of the present disclosure provide a ducted air conditioner 10A, as shown in
In some embodiments, as shown in
For example, the cover plate 120 is fixedly connected to the box body 110 in a clamping manner. When necessary, the connection may be assisted through a small number of screws.
In some embodiments, as shown in
The first side plate 111, the second side plate 112 and the third side plate 113 are all connected to the bottom plate 114 and are located at a side of the bottom plate 114 proximate to the cover plate 120. The first side plate 111 is parallel to the second side plate 112, the first side plate 111 constitutes a left side wall of the housing 100 (a left-right direction as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, the first heat-retaining member 210 is a foam member which is integrally formed, and is configured to insulate heat transfer between the housing 100 and an interior of the heat-retaining and drainage assembly 200.
In some embodiments, a length of the first heat-retaining member 210 is substantially equal to a length of the box body 110, and a front surface of the first heat-retaining member 210 abuts against the third side plate 113 of the box body 110.
The drain pan 220A is configured to receive condensed water generated in a case where the ducted air conditioner 10A is in a condition of refrigeration, and abuts against the first heat-retaining member 210. In some embodiments, the drain pan 220A is further configured to insulate heat transfer between the housing 100 and the interior of the heat-retaining and drainage assembly 200.
In some embodiments, as shown in
In some embodiments, as shown in
It can be understood that, the heat-retaining and drainage assembly 200 may maintain heat, receive condensed water, and may further isolate the fan assembly 400 from the air conditioning device 300. In this way, there is no need to provide a partition plate in the ducted air conditioner 10A, so that the number of components is reduced, a structure of the ducted air conditioner 10A is simplified, and a cost is reduced.
In some embodiments, a length of the drain pan 220A is substantially equal to the length of the first heat-retaining member 210 and is equal to the length of the box body 110.
In some embodiments, as shown in
In some embodiments, referring to
In some embodiments, as shown in
In some embodiments, as shown in
The electrical control box top plate 515 is coplanar with the cover plate 120, and jointly constitutes a top wall of the housing 100 with the cover plate 120.
The electrical control box bottom plate 516 is coplanar with the bottom plate 114, and jointly constitutes a bottom wall of the housing 100 with the bottom plate 114.
The electrical control box right side plate 514 is perpendicular to the electrical control box top plate 515, and is connected to an end (e.g., a right end) of the electrical control box top plate 515. The electrical control box right side plate 514 constitutes a right side wall of the electrical control box 510.
In some embodiments, the electrical control box right side plate 514 is coplanar with the second side plate 112, and jointly constitutes the right side wall of the housing 100 with the second side plate 112.
In some embodiments, the electrical control box front side plate 511, the electrical control box rear side plate 512, the electrical control box left side plate 513 and the electrical control box right side plate 514 are all clamped with the electrical control box bottom plate 516, and the electrical control box bottom plate 516 is clamped with the bottom plate 114. When necessary, the connection may be assisted through a small number of screws.
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
For example, referring to
In some embodiments, as shown in
The drain pan 220A includes a second opening 2022 corresponding to the first opening 2021. The second opening 2022 is located at an edge of the drain pan side plate 221 proximate to the first side wall 211, and runs through the drain pan side plate 221. A side of the second opening 2022 proximate to the first side wall 211 is open.
In some embodiments, as shown in
In some embodiments, the first sidewall 211 is provided with one or a plurality of first openings 2021, and a plurality of second openings 2022 and the plurality of first openings 2021 are arranged in a one-to-one correspondence manner.
In some embodiments, as shown in
In some embodiments, as shown in
It can be understood that, the positioning and connecting speed of the drain pan 220A in the box body 110 may be improved by mounting the water outlet pipe 223 in the water outlet pipe hole 1121, thereby improving the assembly efficiency of the ducted air conditioner 10A.
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, the first reinforcing rib 225, the second reinforcing rib 226, and the third reinforcing rib 227 are integrally formed with the drain pan side plate 221.
In some embodiments, as shown in
In some embodiments, the heat insulating layer 224 is bonded to the drain pan bottom plate 222.
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, the cross section of the first protruding portion 2241 is a right-angled trapezoid. The third groove 2221 includes a right-angled trapezoidal groove matched with the first protruding portion 2241. A vertical surface where a right-angle side of the third groove 2221 is located is bonded to a vertical surface where a right-angle side of the first protruding portion 2241 is located. A sloping surface where a sloping side of the third groove 2221 is located has a guiding effect on an installation of the first protruding portion 2241, which is conducive to improving a mounting efficiency of the drain pan 220A.
In some embodiments, as shown in
It can be understood that, in a case where the heat insulating layer 224 abuts against the third side plate 113, the third side plate 113 applies a first force on the heat insulating layer 224 in the width direction of the box body 110. The heat insulating layer 224 is an integral member, therefore, the first force will be transmitted to the drain pan side plate 221 through the first protruding portion 2241, so that the drain pan side plate 221 will apply a second force on the first protruding portion 2241. A direction of the second force is opposite to a direction of the first force. The heat insulating layer 224 is clamped between the third side plate 113 and the drain pan side plate 221, which is conducive to improving a stability of the connection between the drain pan 220A and the heat insulating layer 224.
In addition, since the drain pan side plate 221 has a vertical plate-shaped structure, and a surface of the first protruding portion 2241 in contact with the drain pan side plate 221 is a vertical surface. Therefore, the first protruding portion 2241 is not easy to disengage from the third groove 2221, thereby increasing a reliability of the connection between the drain pan bottom plate 222 and the heat insulating layer 224.
In some embodiments, as shown in
As shown in
In some embodiments, as shown in
In some examples, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, referring to
Referring to
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
Referring to
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, the box fixing member 103 further includes a limiting plate 1035. The limiting plate 1035 is disposed at the end (e.g., the lower end) of the slideway 1031 proximate to the bottom plate 114, and is respectively connected to the first sildeway wall 1031A and the second sildeway wall 1031B. In a case where the slide rail 311 slides to the lower end of the slideway 1031, the slide rail 311 may be limited by the limiting plate 1035, thereby preventing the slide rail 311 from disengaging from the slideway 1031.
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
Referring to
In some embodiments, as shown in
In some embodiments, as shown in
The buckling portion 3211 is parallel to the second fixing plate 326 and located at a side of the second fixing plate 326 proximate to the first fixing plate 341. The connecting portion 3212 connects the second fixing plate 326 and the buckling portion 3211.
The connecting portion 3212 is configured to space a distance D2 (referring to
In this way, in a case where the second buckle 321 is clamped to the second clamping groove 342, the first fixing plate 341 is located between the buckling portion 3211 and the second fixing plate 326, so that the connection between the second end plate 340 and the second fixing member 320 is more stable.
In some embodiments, as shown in
For example, the third opening 343 may be located at a middle position of the first fixing plate 341 along a length direction. The second end plate 340 includes two second clamping grooves 342, and the third opening 343 is located between the two second clamping grooves 342. However, the present disclosure is not limited thereto.
The second fixing member 320 further includes a fixing column 322. The fixing column 322 and the second buckle 321 are located at the same side of the second fixing plate 326. A quick positioning between the second buckle 321 (e.g., the buckling portion 3211) and the second clamping groove 342 may be achieved by a cooperation between the fixing column 322 and the third opening 343, which is conducive to improving the mounting efficiency of the air conditioning device 300.
In some embodiments, as shown in
In some embodiments, the second fixing member 320 further includes a limiting bar 324. The limiting bar 324 is located at an end (e.g., an upper end) of the second fixing plate 326 away from the bottom plate 114 and extends along a length direction of the bottom plate 114. The limiting bar 324 is configured to limit the first fixing plate 341, so that the connection between the second buckle 321 and the second clamping groove 342 is more convenient, which is conducive to improving the mounting efficiency of the air conditioning device 300.
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, the second fixing member 320 includes a plurality of first screw holes 325, and the third side plate 113 includes a plurality of second screw holes 1131 in one-to-one correspondence with the plurality of first screw holes 325. The screw is inserted through each of the first screw holes 325 and the corresponding second screw hole 1131, so as to further improve the connection stability between the air conditioning assembly 301 and the box body 110.
In some embodiments, the box fixing member 103, the first fixing member 310 and the second fixing member 320 are all rubber member or plastic member. The rubber member and the plastic member are capable of preserving heat, so that the heat or cold of the air conditioning assembly 301 is hardly transferred to the housing 100 (e.g., a metal member), thereby reducing heat loss, facilitating energy saving, and reducing power consumption of the ducted air conditioner 10A.
In some embodiments, the air conditioning assembly 301 has a second positioning column, and the box body 110 includes a second positioning hole matched with the second positioning column. It is convenient to limit the air conditioning assembly 301 through a cooperation of the second positioning column and the second positioning hole, which is conducive to improving the mounting efficiency of the air conditioning device 300.
In some embodiments, as shown in
In some embodiments, the mounting plate 132 may also be fixedly connected to the bottom plate 114 in a riveting manner.
In some embodiments, the mounting plate 132 includes a third positioning column. The third positioning column protrudes in a direction toward the cover plate 120. The motor mounting frame 131 includes a third positioning hole matched with the third positioning column. It is conducive to improving a mounting efficiency of the motor mounting frame 131 and the mounting plate 132 through a cooperation between the third positioning column and the third positioning hole.
In some embodiments, as shown in
In some embodiments, as shown in
Referring to
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, as shown in
In some embodiments, the bayonet 1321 may be directly disposed on the bottom plate 114. In this case, the third buckle 401 is clamped to the bayonet 1321, so that the volute 420 may be directly clamped to the bottom plate 114.
In some embodiments, as shown in
For example, referring to
It can be understood that, since the first heat-retaining member 210 is an integrally formed foam member having good shock absorption properties. Therefore, in a case where the volute 420 abuts against the third protruding portion 214, the vibration noise generated during an operation of the fan 430 may be reduced.
In some embodiments, as shown in
The ducted air conditioner 10A according to some embodiments of the present disclosure, the fan assembly 400 may be quickly positioned and fixed in the box body 110 through the cooperation of the bayonet 1321 and the third buckle 401. The mounting plate 132 and the bottom plate 114 are fixedly connected by a small number of rivets or screws, which simplifies the installation process and improves the mounting efficiency. In addition, a tension between the third buckle 401 and the bayonet 1321 and a transverse shear force of the rivet or screw may enhance a connection strength between the box body 110 and the fan assembly 400 and improve a reliability of the connection.
In some embodiments, as shown in
Of course, in some embodiments, the electrical control box right side plate 514 may further be provided with the hanging opening 1125 matching the hanger, which is not limited thereto.
Some embodiments of the present disclosure further provide an assembling method of the ducted air conditioner. As shown in
Step 1 includes an operation to mount the box body 110. The opening 105 of the mounted box body 110 is placed upward.
In some embodiments, as shown in
Step 1.1 includes an operation to clamp the second side plate 112 with the bottom plate 114, or connect the second side plate 112 to the bottom plate 114 by threading.
Step 1.2 includes an operation to clamp the third side plate 113 with the first side plate 111, clamp the third side plate 113 with the second side plate 112, and clamp the third side plate 113 with the bottom plate 114.
Step 2 includes an operation to mount the electrical control box 510, and clamp the electrical control box 510 with the second side plate 112 and the bottom plate 114 respectively, so that the electrical control box 510 is located at an end (e.g., the right end) of the first cavity 101 along the length direction.
In some embodiments, as shown in
Step 2.1 includes an operation to clamp the electrical control box front side plate 511, the electrical control box rear side plate 512, the electrical control box left side plate 513 and the electrical control box right side plate 514 to the electrical control box bottom plate 516.
Step 2.2 includes an operation to clamp two adjacent ones of the electrical control box front side plate 511, the electrical control box rear side plate 512, the electrical control box left side plate 513 and the electrical control box right side plate 514.
For example, the electrical control box front side plate 511 and the electrical control box left side plate 513, the electrical control box left side plate 513 and the electrical control box rear side plate 512, the electrical control box rear side plate 512 and the electrical control box right side plate 514, and the electrical control box right side plate 514 and the electrical control box front side plate 511 are all fixedly connected in the clamping manner.
Step 2.3 includes an operation to clamp the electrical control box bottom plate 516 and the bottom plate 114, so that the electrical control box bottom plate 516 and the bottom plate 114 jointly constitute the bottom wall of the housing 100.
Step 2.4 includes an operation to clamp the electrical control box right side plate 514 and the second side plate 112, so that the electrical control box right side plate 514 and the second side plate 112 jointly constitute the right side wall of the housing 100.
Step 2.5 includes an operation to clamp the electrical control box top plate 515 and the cover plate 120, so that the electrical control box top plate 515 and the cover plate 120 jointly constitute the top wall of the housing 100.
It will be noted that, as shown in
Step 3 includes an operation to install the first heat-retaining member 210 in the box body 110, so that the first heat-retaining member 210 is located between the electrical control box front side plate 511 and the third side plate 113.
For example, the front side surface of the first heat-retaining member 210 abuts against the third side plate 113 of the box body 110.
It can be understood that, the first heat-retaining member 210 may be positioned through the cooperation between the electrical control box front side plate 511 and the third side plate 113, so that the first heat-retaining member 210 may be installed in the box body 110 quickly and conveniently, thereby improving the mounting efficiency of the ducted air conditioner 10A.
Step 4 includes an operation to fix and install the air conditioning device 300 in the box body 110, so that the air conditioning device 300 is supported on the first heat-retaining member 210. In this case, the air conditioning device 300 is located at a side of the first heat-retaining member 210 proximate to the cover plate 120.
It will be noted that, the connecting manner between the air conditioning device 300 and the box body 110 may be referred to the corresponding descriptions in the above embodiments, which will not be repeated herein.
Step 5 includes an operation to abut the drain pan 220A with the first heat-retaining member 210, so that the air conditioning assembly 301 is located between the drain pan 220A and the first heat-retaining member 210.
For example, as shown in
For example, the outer side of the upper end of the first side wall 211 (the rear side as shown in
Step 6 includes an operation to install the fan assembly 400 in the first cavity 101.
In some embodiments, referring to
The fan assembly 400 includes the motor 410, the volute 420 and the fan 430. The fan 430 is provided in the volute 420. The motor 410 is fixedly mounted on the motor mounting frame 131. The volute 420 is fixedly connected to the box body 110 in the clamping manner.
It will be noted that, the fan assembly 400 is not connected to the above components other than the box body 110. Therefore, step 6 may be performed after step 5, or may be performed after any one of steps 1 to 4, the present disclosure is not limited thereto.
Step 7 includes an operation to install the cover plate 120 on the box body 110.
In some embodiments, the cover plate 120 is clamped with the box body 110 and closes the opening 105 of the box body 110. In addition, the cover plate 120 may further be fixedly connected with the motor mounting frame 131 by threading, so as to improve the mounting stability of the ducted air conditioner 10A.
A person skilled in the art will understand that, the scope of disclosure involved in the present disclosure is not limited to technical solutions formed by specific combinations of the above technical features, and shall cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the concept of disclosure. For example, technical solutions formed by replacing the above features with technical features with similar functions disclosed in some embodiments (but not limited thereto).
Number | Date | Country | Kind |
---|---|---|---|
201911053161.6 | Oct 2019 | CN | national |
201911053175.8 | Oct 2019 | CN | national |
201911053185.1 | Oct 2019 | CN | national |
201911054429.8 | Oct 2019 | CN | national |
201921857719.1 | Oct 2019 | CN | national |
201921857720.4 | Oct 2019 | CN | national |
201921858792.0 | Oct 2019 | CN | national |
201921858814.3 | Oct 2019 | CN | national |
This application is a continuation-in-part application of International Patent Application No. PCT/CN2020/079501, filed on Mar. 16, 2020, which claims priorities to Chinese Patent Application No. 201911053161.6, filed on Oct. 31, 2019, and Chinese Patent Application No. 201921857719.1, filed on Oct. 31, 2019; this application is a continuation-in-part application of International Patent Application No. PCT/CN2020/079498, filed on Mar. 16, 2020, which claims priorities to Chinese Patent Application No. 201911053175.8, filed on Oct. 31, 2019, and Chinese Patent Application No. 201921858814.3, filed on Oct. 31, 2019; this application is a continuation-in-part application of International Patent Application No. PCT/CN2020/079507, filed on Mar. 16, 2020, which claims priorities to Chinese Patent Application No. 201911053185.1, filed on Oct. 31, 2019, and Chinese Patent Application No. 201921858792.0, filed on Oct. 31, 2019, and this application is a continuation-in-part application of International Patent Application No. PCT/CN2020/079500, filed on Mar. 16, 2020, which claims priorities to Chinese Patent Application No. 201911054429.8, filed on Oct. 31, 2019, and Chinese Patent Application No. 201921857720.4, filed on Oct. 31, 2019. The entire contents of the foregoing applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4240264 | Nakada | Dec 1980 | A |
11493230 | Jang | Nov 2022 | B2 |
20160131368 | Tomoigawa | May 2016 | A1 |
20180180318 | Shiomi | Jun 2018 | A1 |
20180195790 | Fushimi | Jul 2018 | A1 |
20200309405 | Jang | Oct 2020 | A1 |
20200318887 | Tsutsumi | Oct 2020 | A1 |
20210293443 | Inagaki | Sep 2021 | A1 |
20220252299 | Ishigami | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
203550041 | Apr 2014 | CN |
203797797 | Aug 2014 | CN |
203835802 | Sep 2014 | CN |
203837235 | Sep 2014 | CN |
204555054 | Aug 2015 | CN |
204648454 | Sep 2015 | CN |
105258216 | Jan 2016 | CN |
205048550 | Feb 2016 | CN |
106765637 | May 2017 | CN |
206269322 | Jun 2017 | CN |
107192020 | Sep 2017 | CN |
107796105 | Mar 2018 | CN |
107850331 | Mar 2018 | CN |
207335115 | May 2018 | CN |
207702696 | Aug 2018 | CN |
108489156 | Sep 2018 | CN |
207907441 | Sep 2018 | CN |
108844205 | Nov 2018 | CN |
109282359 | Jan 2019 | CN |
209068728 | Jul 2019 | CN |
210980109 | Jul 2020 | CN |
3 081 867 | Oct 2016 | EP |
H03-213918 | Sep 1991 | JP |
2006-097937 | Apr 2006 | JP |
2017-048966 | Mar 2017 | JP |
2019-052793 | Apr 2019 | JP |
10-2018-0111270 | Oct 2018 | KR |
2015-025342 | Aug 2013 | WO |
Entry |
---|
International Search Report and Written Opinion issued in corresponding International Application No. PCT/ CN2020/079498 dated Aug. 10, 2020, with English translation. |
International Search Report and Written Opinion issued in corresponding International Application No. PCT/ CN2020/079500 dated Jul. 29, 2020, with English translation. |
International Search Report and Written Opinion issued in corresponding International Application No. PCT/ CN2020/079501 dated Jul. 29, 2020, with English translation. |
International Search Report and Written Opinion issued in corresponding International Application No. PCT/ CN2020/079507 dated Jul. 24, 2020, with English translation. |
Office Action issued on Aug. 2, 2024 in Chinese Patent Application No. 201911053161.6 with English tranlsation. |
Number | Date | Country | |
---|---|---|---|
20220252300 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2020/079500 | Mar 2020 | WO |
Child | 17731870 | US | |
Parent | PCT/CN2020/079507 | Mar 2020 | WO |
Child | 17731870 | US | |
Parent | PCT/CN2020/079498 | Mar 2020 | WO |
Child | 17731870 | US | |
Parent | PCT/CN2020/079501 | Mar 2020 | WO |
Child | 17731870 | US |