All of the material in this patent document is subject to copyright protection under the copyright laws of the United States and of other countries. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The present invention relates generally to cabinets for rack-mount computer and data storage equipment, and, in particular, to thermal management of cabinets for rack-mount computer and data storage equipment.
Racks, frames and cabinets for mounting and storing computer and other electronic components or equipment have been well known for many years. Racks and frames are typically simple rectangular frameworks on which electronic components may be mounted, or on which other mounting members, such as shelves or brackets, may be mounted which in turn may support the electronic components. Cabinets are typically frames on which panels or doors, or both, are hung to provide aesthetic improvement, to protect the components from external influences, to provide security for the components stored inside, or for other reasons.
Racks, frames and cabinets have been built in many different sizes and with many different proportions in order to best accommodate the components which they are designed to store. Components stored in these enclosures may include audio and video equipment and the like, but quite frequently include computer equipment and related peripheral devices. These components typically include housings enclosing internal operative elements.
As is also well known, the electronic equipment mounted therein tends to generate large amounts of thermal energy that needs to be exhausted away from the equipment effectively in order to maintain the equipment in proper operating order or to prevent damage thereto. The problem can be especially significant when the components are enclosed in cabinets, because thermal energy generated thereby can concentrate within the equipment enclosure and cause the components to overheat and shut down. As equipment becomes more densely packed with electronics, the quantities of thermal energy have continued to increase in recent years, and thermal energy management has become a significant issue confronting today's rack, cabinet, frame and enclosure manufacturers, the manufacturers of the electronic equipment, and the users of such equipment.
Typically, multiple racks, frames, cabinets, and the like (sometimes collectively referred to hereinafter as “enclosures”) are housed together in a data center. Because of the overheating problem, and particularly with multiple enclosures being placed in a single room or other enclosed space, thermal management of the data center is very important. A goal of data center thermal management is to maximize the performance, uptime and life expectancy of the active components being housed in the data center. This goal is generally accomplished by managing the cold air delivered to each component such that the internal temperature of the component does not exceed the manufacturer's maximum allowable operating temperature. Preferably, the cold air delivered to the component is at or below the manufacturer's recommended temperature and in sufficient volume to meet the airflow requirements of the component, which are typically measured in cubic feet per minute (CFM).
A common type of operating environment for enclosures and the equipment mounted therein is known as a “raised floor” system, wherein the enclosures are supported on a heavy-duty mechanical floor that is installed above the actual floor of the room at a given elevation. One significant advantage of this approach is that cables, wires, water pipes, and other utility connections may be routed to and from the enclosures via the space beneath the floor, thereby leaving the top surface of the raised floor clear for locating enclosures and traversal by users. Another significant advantage, however, is that the space beneath the top surface of the raised floor serves as a plenum through which cool air may likewise be distributed to the enclosures. Through open tiles or perforations or ventilations in the tiles comprising the surface of the raised floor, this cool air may be supplied to the enclosures and used to cool the equipment inside.
Unfortunately, the use of perforated floor tiles, typically located directly in front of enclosures to try to cause a maximum amount of cool air to be directed into the enclosures and not merely lost to the ambient room, have been found to be insufficient in cooling the equipment within the enclosures to the desired degree. Thus, a number of techniques and devices have been developed in recent years to more efficiently utilize the capabilities of the Computer Room Air Conditioner (“CRAC”) and to put the available cool air to the most efficient use possible. Among others, these include improved strategies involving perforated panels, such as those described in the commonly-assigned U.S. Provisional Patent Application No. 60/725,511, filed Oct. 10, 2005 and entitled “EFFICIENT USE OF PERFORATED PANELS IN ELECTRONIC EQUIPMENT CABINETS,” and also improved cool air distribution strategies, such as those described in the commonly-assigned U.S. Provisional Patent Application No. 60/743,148, filed Jan. 20, 2006 and entitled “INTERNAL AIR DUCT,” the entirety of each of which is incorporated herein by reference.
The supply of cool air to the raised floor plenum, and the transfer of thermal energy from the electronic equipment, is conventionally handled by the CRAC. Airflow through the plenum and into the enclosures generally relies solely or at least primarily on the air pressure differential as measured between the raised floor plenum and the ambient room. However, active means are often used to push or pull heated air out of the enclosures.
For a particular component, thermal energy is transferred from its housing using forced air convection. More specifically, internal fans draw or push air through the housing from front-to-rear over the heated internal elements within the housing. The air absorbs the thermal energy from the internal elements and carries it away as it exits the housing.
Airflow through a particular component housing is primarily controlled by the internal fan installed by the manufacturer. While it is possible to reduce this throughput by constricting air flow through an enclosure, it is difficult to appreciably increase the airflow through a component housing.
In addition, the rate of transfer of thermal energy from the housing does not change very much for different intake air temperatures. Lowering the intake air temperature reduces the temperature of the processor(s) inside of the component, but the temperature change and the total cooling taking place for the component does not change for a constant airflow. Therefore, any enclosure that does not choke the airflow through the component mounted inside and that prevents recirculation should effectively dissipate most, if not all, of the thermal energy generated by the component.
Recent conventional thinking for the thermal management of data centers involves the use of an approach commonly referred to as the Hot Aisle/Cold Aisle approach. In this strategy, cold air aisles are segregated from hot air aisles by enclosures being positioned between them such that cold air aisles are in front of rows of enclosures and hot air aisles are behind these rows of enclosures. In this approach, the cold air and hot air aisles alternate. Ideally, air enters the enclosure from the cold air aisles and is exhausted from the enclosure into the hot air aisles.
This approach works well in low to medium density data center applications. However, it does not perform well in many medium density applications and can not support high density applications without extreme discipline and additional air flow management devices outside of the enclosures to prevent hot exhaust recirculation into the cold aisle.
Further, Hot Aisle/Cold Aisle data center environments typically do not operate at ideal conditions. Two common problems that affect thermal management in general, and Hot Aisle/Cold Aisle in particular, are recirculation and bypass. Recirculation occurs when hot exhaust air travels back into the component intake air stream. Recirculation can occur for a single component or for an entire enclosure. When this occurs, the exhaust airflow raises intake air temperatures and causes components to run at higher operating temperatures. Bypass occurs when cold source air bypasses the active component and travels directly into the hot exhaust air stream. Similarly to recirculation, bypass may occur for a single component or for a whole enclosure. Because cold source air is bypassing the active component, the air is not serving its intended purpose of transferring thermal energy away from the active component. As such, the bypassing air is essentially wasted, and the active component retains its thermal energy until additional cold source air contacts the active component thereby transferring the thermal energy away from the component. Based on the foregoing, it is readily apparent that bypass wastes energy. In addition, bypass contributes to humidity control problems, and can indirectly contribute to recirculation. Under ideal circumstances, all recirculation and bypass airflow can be eliminated.
Hot Aisle/Cold Aisle is a well-principled thermal management approach, i.e., segregating the cold source air in front of enclosures and hot exhaust air behind them does work. Unfortunately, maintaining the segregation is difficult. In order to maintain proper segregation, the airflow delivered to each enclosure must roughly equal the airflow required by all of the active components in each enclosure. In addition, strict discipline and careful airflow balancing are required to maintain this ideal operating condition in higher density data center environments. While an initial installation may realize these ideal conditions, moves, adds and changes, along with the demands for constantly monitoring and rebalancing, frequently make maintaining this ideal operating condition impractical, if not outright impossible.
For example, one known airflow balancing technique employs variable speed fans that are carefully monitored and controlled using appropriate control methodologies. A drawback to the controlled variable speed fan approach is the unpredictable nature of components, particularly server usage. For example if a server is suddenly heavily burdened by a particular software application, the server heats up, perhaps more quickly than expected, or more than can be handled quickly by a corresponding variable fan. The fan then quickly increases in speed in an attempt to respond to the sudden drastic increase in temperature of the server. The fan may not be able to sufficiently supply cooling air to the suddenly overheated server, and even if it is, such heat balancing procedure is difficult, at best, to manage. It would be better to avoid dependence on such a reactive approach to thermal management.
Cylindrical exhaust ducts have been added to enclosures in an effort to alleviate thermal management issues such as recirculation and bypass. The exhaust ducts generally extend upwardly away from a top surface of the enclosure near the rear of the enclosure and provide a path for hot exhaust air to be expelled. While available exhaust ducts are operative for their intended purpose, an improved design thereof would further aid in alleviating thermal management issues. In addition, it has been found that heated air tends to pool or collect in portions of the interior of enclosures rather than be guided to the exhaust ducts.
As such, a need exists for an improved design of exhaust ducts for component storage enclosures. Further, additional thermal management features are needed in these enclosures. This, and other needs, are addressed by one or more aspects of the present invention.
The present invention includes many aspects and features. Moreover, while many aspects and features relate to, and are described in, the context of enclosures for storage of electronic equipment, the present invention is not limited to use only in enclosures for storage of electronic equipment, as will become apparent from the following summaries and detailed descriptions of aspects, features, and one or more embodiments of the present invention.
Broadly defined, the present invention according to one aspect includes an electronic equipment enclosure comprising a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining an enclosure having a top, a bottom and a rear thereof. The top panel includes an opening there through that is rectangular in shape. The equipment enclosure further comprises an exhaust air duct extending upward from the top panel of the enclosure. The exhaust air duct is rectangular in cross-section and is disposed in surrounding relation to, and in fluid communication with, the top panel opening. The exhaust air duct is adapted to segregate hot air being exhausted from the enclosure from cool air entering the enclosure, thereby improving thermal management of the enclosure.
In a feature of this aspect, the top panel opening is disposed toward the rear of the top panel. In accordance with this feature, the top panel opening is disposed substantially adjacent the back panel of the enclosure. With regard to this feature, the dimensions of the rectangular cross-section of the exhaust air duct are substantially similar to the dimensions of the top panel opening.
In another feature, the top panel opening is disposed toward the rear of the enclosure. In an additional feature, the exhaust air duct is self-supporting. In yet another feature, the exhaust air duct is adapted to be connected to a separate overhead structure in a room. With regard to this feature, the exhaust air duct is adapted to be connected to a return air duct. With further regard to this feature, the exhaust air duct has a top edge and a mounting flange extending around the periphery of the top edge for connection to a separate overhead structure in a room.
In yet another feature, the height of the exhaust air duct is adjustable, thereby adjusting the distance to which the exhaust air duct extends above the top panel of the enclosure. With regard to this feature, the exhaust air duct includes a first rectangular open-ended duct section that nests inside a second rectangular open-ended duct section, wherein the first duct section may be telescopically withdrawn from the second duct section.
In a further feature, the back panel is generally air-impervious to prevent heated air from escaping there through. In accordance with this feature, the back panel is a door panel that is connected at a connection point to the frame structure. Seals are disposed at the connection point between the back door panel and the frame structure. In furtherance of this feature, the seals are brackets. With regard to this feature, the seals are metal. It is preferred that rubber or foam gaskets are included with the seals.
In an additional feature, the plurality of panels includes a bottom panel that has a brush opening arranged therein.
Broadly defined, the present invention according to another aspect includes an electronic equipment enclosure comprising a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining an enclosure having a top, a bottom and a rear thereof. The top panel includes an opening there through. The equipment enclosure further comprises an exhaust air duct extending upward from the top panel of the enclosure. The exhaust air duct is disposed in generally surrounding relation to, and in fluid communication with, the top panel opening. The enclosure further comprises an air diverter, disposed near the rear of the enclosure and angled upward to redirect, toward the top of the enclosure, heated air moving rearward through the enclosure. The exhaust air duct and the air diverter cooperate to segregate hot air being exhausted from the enclosure from cool air entering the enclosure, thereby improving thermal management of the enclosure.
In a feature of this aspect, the top panel opening is rectangular in shape. In another feature, the top panel opening is disposed toward the rear of the top panel. In an additional feature, the top panel opening is disposed substantially adjacent the back panel of the enclosure. In accordance with this feature, the exhaust air duct is rectangular in cross-section, and the dimensions of the rectangular cross-section of the exhaust air duct are substantially similar to the dimensions of the top panel opening.
In yet another feature, the top panel opening is disposed toward the rear of the enclosure. In a further feature, the exhaust air duct is self-supporting. In still a further feature, the exhaust air duct is adapted to be connected to a separate overhead structure in a room. In accordance with this feature, the exhaust air duct is adapted to be connected to a return air duct. With further regard to this feature, the exhaust air duct has a top edge and a mounting flange extending around the periphery of the top edge for connection to a separate overhead structure in a room.
In an additional feature, the height of the exhaust air duct is adjustable, thereby adjusting the distance to which the exhaust air duct extends above the top panel of the enclosure. In furtherance of this feature, the exhaust air duct includes a first rectangular open-ended duct section that nests inside a second rectangular open-ended duct section, wherein the first duct section may be withdrawn from the second duct section by a predetermined amount.
In another feature, the back panel is generally air-impervious to prevent heated air from escaping there through. With regard to this feature, the back panel is a door panel that is connected at a connection point to the frame structure. Seals are disposed at the connection point between the back door panel and the frame structure. With further regard to this feature, the seals are brackets. It is preferred that the seals are metal. It is further preferred that rubber or foam gaskets are included with the seals.
In still yet another feature, the plurality of panels includes a bottom panel that has a brush opening arranged therein.
Broadly defined, the present invention according to yet another aspect includes an exhaust air duct adapted to segregate hot air being exhausted from an electronic equipment enclosure from cool air entering the enclosure, thereby improving thermal management of the enclosure, wherein the exhaust air duct includes four panels joined at side edges thereof to form a rectangular shaped exhaust duct. Each of at least two of the panels has a flange at a bottom edge thereof such that the exhaust air duct has a flange around a bottom periphery thereof.
In a feature of this aspect, each of all four of the panels has a flange at a bottom edge such that the exhaust air duct has a flange around a bottom periphery thereof. In another feature, the panels are constructed of a material that is self-supporting. In yet another feature, an upper end thereof is adapted to be connected to a separate overhead structure in a room. In accordance with this feature, the upper end thereof is adapted to be connected to a return air duct. With regard to this feature, the upper end thereof has a top edge and a mounting flange extending around the periphery of the top edge for connection to a separate overhead structure in a room.
In an additional feature, the height of the exhaust air duct is adjustable, thereby adjusting the distance to which the exhaust air duct extends above the top panel of the enclosure. With regard to this feature, the exhaust air duct includes a first rectangular open-ended duct section that nests inside a second rectangular open-ended duct section, wherein the first duct section may be telescopically withdrawn from the second duct section. In accordance with this feature, the telescopically withdrawn duct section is self-supporting. Further in accordance with this feature, the telescopically withdrawn duct section may be affixed to the second duct section at a user-controlled vertical disposition relative to the second duct section. It is preferred that at least one of the duct sections includes a plurality of columns of evenly-spaced openings adapted to facilitate the connection of the two duct sections together to effectuate the user-controlled vertical disposition.
Broadly defined, the present invention according to another aspect includes an electronic equipment enclosure having a frame structure at least partially enclosed by a plurality of panels defining a compartment in which one or more electronic components are mounted and an extendible exhaust air duct extending upward from the top panel of the compartment. The exhaust air duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In a feature of this aspect, the extendible exhaust air duct is adapted to telescope in length.
Broadly defined, the present invention according to another aspect includes an electronic equipment enclosure for mounting one or more electronic components. The electronic equipment enclosure includes a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels, the panels including at least side, top and back panels defining a compartment in which the one or more electronic components are mounted. The compartment has a top, a bottom and a rear, and the top panel includes an opening therethrough that is rectangular in shape. The electronic equipment enclosure further includes an extendible exhaust air duct extending upward from the top panel of the compartment. The exhaust air duct is rectangular in cross-section and is disposed in surrounding relation to, and in fluid communication with, the top panel opening; and the exhaust air duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In a feature of this aspect, the extendible exhaust air duct is adapted to telescope in length.
Broadly defined, the present invention according to another aspect includes an electronic equipment enclosure having a frame structure at least partially enclosed by a plurality of panels defining a compartment in which one or more electronic components are mounted and a collapsible exhaust air duct extending upward from the top panel of the compartment. The exhaust air duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In features of this aspect, the collapsible exhaust air duct is adapted to telescope in length. In another feature of this aspect, and the collapsible exhaust air duct includes four side panels that are hinged relative to each other, thereby facilitating the collapse of the exhaust air duct from a use state to a flattened state.
In other features of this aspect, the four side panels are connected at their corners by a hinged corner fitting; a corner lock is coupled to one of the corner fittings and adapted to maintain the side panels in the use state; each corner lock includes a main body, a lock plate, and a lock screw; each corner fitting extends substantially along the length of each of an edge of a respective panel and an edge of a respective adjacent panel; an upper edge of each side panel is flared outward; and a respective seal is attached to the upper edge of each side panel to limit air escaping from between an upper end of the duct section and a ceiling structure.
Broadly defined, the present invention according to another aspect includes an electronic equipment enclosure for mounting one or more electronic components. The electronic equipment enclosure includes a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels, the panels including at least side, top and back panels defining a compartment in which the one or more electronic components are mounted. The compartment has a top, a bottom and a rear, and the top panel includes an opening therethrough that is rectangular in shape. The electronic equipment enclosure further includes a collapsible exhaust air duct extending upward from the top panel of the compartment. The exhaust air duct is rectangular in cross-section and is disposed in surrounding relation to, and in fluid communication with, the top panel opening; and the exhaust air duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In features of this aspect, the collapsible exhaust air duct is adapted to telescope in length, and the collapsible exhaust air duct includes four side panels that are hinged relative to each other, thereby facilitating the collapse of the exhaust air duct from a use state to a flattened state.
In other features of this aspect, the four air duct panels are connected at their corners by a hinged corner fitting; a corner lock is coupled to one of the corner fittings and adapted to maintain the air duct panels in the use state; each corner lock includes a main body, a lock plate, and a lock screw; each corner fitting extends substantially along the length of each of an edge of a respective panel and an edge of a respective adjacent panel; an upper edge of each air duct panel is flared outward; and a respective seal is attached to the upper edge of each air duct panel to limit air escaping from between an upper end of the duct section and a ceiling structure.
Broadly defined, the present invention according to another aspect includes an electronic equipment enclosure, including a frame structure at least partially enclosed by a plurality of panels defining a compartment in which one or more electronic components are mounted and an exhaust air duct with a lower duct section extending upward from the top panel of the compartment and an upper duct section extending upward from an upper end of the lower duct section. The exhaust air duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In features of this aspect, the upper duct section is adapted to telescope from the lower duct section; each duct section includes four flat side panels connected at their corners by a corner fitting; each corner fitting is hinged; each corner fitting in the lower duct section is slidably coupled to a respective corner fitting in the upper duct section; a corner lock is coupled to one of the corner fittings and adapted to maintain the position of the upper duct section relative to the lower duct section; each corner lock includes a main body, a lock plate, and a lock screw; each corner fitting includes a pair of clamp fingers on the outer side thereof for engaging the respective corner lock; each corner fitting includes a pair of fingers defining a panel channel in which an edge of a side panel is inserted and retained; each side panel includes a plurality of raised structures along its lateral edges, and the structures are engaged within the panel channel; each raised structure is a boss; and each corner fitting extends substantially along the length of each of an edge of a respective panel and an edge of a respective adjacent panel.
In other features of this aspect, the upper duct section telescopes from within the lower duct section; a respective seal is attached to an upper edge of each panel of the lower duct section to limit air escaping from between the upper end of the lower duct section and a lower end of the upper duct section; each side panel includes a plurality of raised structures along its upper edge, and the structures are engaged within a channel of the seal; and each raised structure is an outwardly-extending tab.
In still other features of this aspect, the upper duct section telescopes from around the periphery of the lower duct section, and a respective seal is attached to a lower edge of each panel of the upper duct section to limit air escaping from between the upper end of the lower duct section and a lower end of the upper duct section.
In still yet another feature of this aspect, at least one panel in a first of the two duct sections includes a column of openings, and a respective corresponding panel in a second of the two duct sections includes a corresponding mounting feature such that when the first duct section and the second duct section are telescopically assembled to each other, the mounting feature of the second duct section may be aligned with any opening of the column of openings, thereby facilitating the attachment of the second duct section to the first duct section at a desired height.
Broadly defined, the present invention according to another aspect includes an electronic equipment enclosure for mounting one or more electronic components, including a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining a compartment in which the one or more electronic components are mounted. The compartment has a top, a bottom and a rear, and the top panel includes an opening therethrough that is rectangular in shape. The electronic equipment enclosure further includes an exhaust air duct with a lower duct section extending upward from the top panel of the compartment, and an upper duct section extending upward from an upper end of the lower duct section. Each duct section is rectangular in cross-section, and a lower end of the lower duct section is disposed in surrounding relation to, and in fluid communication with, the top panel opening. The exhaust air duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In features of this aspect, the upper duct section is adapted to telescope from the lower duct section; each duct section includes four flat side panels connected at their corners by a corner fitting; each corner fitting is hinged; each corner fitting in the lower duct section is slidably coupled to a respective corner fitting in the upper duct section; a corner lock is coupled to one of the corner fittings and adapted to maintain the position of the upper duct section relative to the lower duct section; each corner lock includes a main body, a lock plate, and a lock screw; and each corner fitting includes a pair of clamp fingers on the outer side thereof for engaging the respective corner lock.
In other features of this aspect, each corner fitting includes a pair of fingers defining a panel channel in which an edge of an air duct panel is inserted and retained; each air duct panel includes a plurality of raised structures along its lateral edges, and the structures are engaged within the panel channel; and each raised structure is a boss.
In another feature of this aspect, each corner fitting extends substantially along the length of each of an edge of a respective panel and an edge of a respective adjacent panel.
In still other features of this aspect, the upper duct section telescopes from within the lower duct section; a respective seal is attached to an upper edge of each panel of the lower duct section to limit air escaping from between the upper end of the lower duct section and a lower end of the upper duct section; each air duct panel includes a plurality of raised structures along its upper edge, and the structures are engaged within a channel of the seal; each raised structure is an outwardly-extending tab; the upper duct section telescopes from around the periphery of the lower duct section; and a respective seal is attached to a lower edge of each panel of the upper duct section to limit air escaping from between the upper end of the lower duct section and a lower end of the upper duct section.
In still yet another feature of this aspect, at least one panel in a first of the two duct sections includes a column of openings. A respective corresponding panel in a second of the two duct sections includes a corresponding mounting feature such that when the first duct section and the second duct section are telescopically assembled to each other, the mounting feature of the second duct section may be aligned with any opening of the column of openings, thereby facilitating the attachment of the second duct section to the first duct section at a desired height.
Broadly defined, the present invention according to another aspect includes an electronic equipment enclosure, including a frame structure at least partially enclosed by a plurality of panels defining a compartment in which one or more electronic components are mounted, and an exhaust air duct, having four side panels connected by four corner fittings, extending upward from the top panel of the compartment. The exhaust air duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In features of this aspect, each corner fitting extends substantially along the length of each of an edge of a respective panel and an edge of a respective adjacent panel; the exhaust air duct is adapted to telescope in length; the corner fittings include hinges, thereby facilitating the collapse of the exhaust air duct from a use state to a flattened state; each hinge is a living hinge; each corner fitting is formed in an extrusion process; each corner fitting has a uniform cross-section; and each panel of the exhaust air duct is planar in form.
In other features of this aspect, a corner lock is coupled to one of the corner fittings and adapted to maintain the side panels in the use state; each corner lock includes a main body, a lock plate, and a lock screw; an upper edge of each side panel is flared outward; and a respective seal is attached to the upper edge of each side panel to limit air escaping from between an upper end of the duct section and a ceiling structure.
In other features of this aspect, each corner fitting includes two finger arrays connected together by the hinge; each finger array includes a pair of fingers defining a channel; and each pair of fingers includes a latch finger with a hook adapted to fit over a raised structure on a side panel.
In still other features of this aspect, each corner fitting is formed in a co-extrusion process using a first material for the hinge and a second material for the remainder of the corner fitting, and each corner fitting has a uniform cross-section.
In still yet other features of this aspect, each corner fitting includes a pair of fingers defining a panel channel in which an edge of a side panel is inserted and retained; and each side panel includes a plurality of raised structures along its lateral edges, and the structures are engaged within the panel channel.
Broadly defined, the present invention according to another aspect includes an electronic equipment enclosure for mounting one or more electronic components, including a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining a compartment in which the one or more electronic components are mounted. The compartment has a top, a bottom and a rear, and the top panel includes an opening therethrough that is rectangular in shape. The electronic equipment enclosure further includes an exhaust air duct, having four side panels connected by four corner fittings, extending upward from the top panel of the compartment. The exhaust air duct is rectangular in cross-section and is disposed in surrounding relation to, and in fluid communication with, the top panel opening, and the exhaust air duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In features of this aspect, each corner fitting extends substantially along the length of each of an edge of a respective panel and an edge of a respective adjacent panel; the exhaust air duct is adapted to telescope in length; each corner fitting is formed in an extrusion process; each corner fitting has a uniform cross-section; and each panel of the exhaust air duct is planar in form.
In other features of this aspect, the corner fittings include hinges, thereby facilitating the collapse of the exhaust air duct from a use state to a flattened state; a corner lock is coupled to one of the corner fittings and adapted to maintain the air duct panels in the use state; each corner lock includes a main body, a lock plate, and a lock screw; an upper edge of each air duct panel is flared outward; a respective seal is attached to the upper edge of each air duct panel to limit air escaping from between an upper end of the duct section and a ceiling structure; each hinge is a living hinge; each corner fitting includes two finger arrays connected together by the hinge; each finger array includes a pair of fingers defining a channel; each pair of fingers includes a latch finger with a hook adapted to fit over a raised structure on an air duct panel; each corner fitting is formed in a co-extrusion process using a first material for the hinge and a second material for the remainder of the corner fitting; and each corner fitting has a uniform cross-section.
In still other features of this aspect, each corner fitting includes a pair of fingers defining a panel channel in which an edge of an air duct panel is inserted and retained; and each air duct panel includes a plurality of raised structures along its lateral edges, and the structures are engaged within the panel channel.
Broadly defined, the present invention according to another aspect includes an extendible exhaust air duct, for an electronic equipment enclosure having a frame structure at least partially enclosed by a plurality of panels defining a compartment in which one or more electronic components are mounted, that is adapted to extend upward from the top panel of the compartment, and that is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In a feature of this aspect, the extendible exhaust air duct is adapted to telescope in length.
Broadly defined, the present invention according to another aspect includes an extendible exhaust air duct for an electronic equipment enclosure that includes a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining a compartment in which the one or more electronic components are mounted. The compartment has a top, a bottom and a rear, and the top panel includes an opening therethrough that is rectangular in shape. The extendible exhaust air duct is adapted to extend upward from the top panel of the compartment; the exhaust air duct is rectangular in cross-section and is disposed in surrounding relation to, and in fluid communication with, the top panel opening; and the exhaust air duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In a feature of this aspect, the extendible exhaust air duct is adapted to telescope in length.
Broadly defined, the present invention according to another aspect includes a collapsible exhaust duct, for an electronic equipment enclosure having a frame structure at least partially enclosed by a plurality of panels defining a compartment in which one or more electronic components are mounted, that is adapted to extend upward from the top panel of the compartment, and that is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In a feature of this aspect, the collapsible exhaust duct is adapted to telescope in length.
In other features of this aspect, the collapsible exhaust duct includes four side panels that are hinged relative to each other, thereby facilitating the collapse of the exhaust duct from a use state to a flattened state; the four side panels are connected at their corners by a hinged corner fitting; a corner lock is coupled to one of the corner fittings and adapted to maintain the exhaust duct panels in the use state; each corner lock includes a main body, a lock plate, and a lock screw; each corner fitting extends substantially along the length of each of an edge of a respective panel and an edge of a respective adjacent panel; an upper edge of each exhaust duct panel is flared outward; and a respective seal is attached to the upper edge of each exhaust duct panel to limit air escaping from between an upper end of the duct section and a ceiling structure.
Broadly defined, the present invention according to another aspect includes a collapsible exhaust duct for an electronic equipment enclosure having a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining a compartment in which the one or more electronic components are mounted. The compartment has a top, a bottom and a rear, and the top panel includes an opening therethrough that is rectangular in shape. The collapsible exhaust duct is adapted to extend upward from the top panel of the compartment; the exhaust duct is rectangular in cross-section and is disposed in surrounding relation to, and in fluid communication with, the top panel opening; and the exhaust duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In a feature of this aspect, the collapsible exhaust duct is adapted to telescope in length.
In other features of this aspect, the collapsible exhaust duct includes four side panels that are hinged relative to each other, thereby facilitating the collapse of the exhaust duct from a use state to a flattened state; the four exhaust duct panels are connected at their corners by a hinged corner fitting; a corner lock is coupled to one of the corner fittings and adapted to maintain the exhaust duct panels in the use state; each corner lock includes a main body, a lock plate, and a lock screw; each corner fitting extends substantially along the length of each of an edge of a respective panel and an edge of a respective adjacent panel; an upper edge of each exhaust duct panel is flared outward; and a respective seal is attached to the upper edge of each exhaust duct panel to limit air escaping from between an upper end of the duct section and a ceiling structure.
Broadly defined, the present invention according to another aspect includes an exhaust duct for an electronic equipment enclosure having a frame structure at least partially enclosed by a plurality of panels defining a compartment in which one or more electronic components are mounted. The exhaust duct includes a lower duct section extending upward from the top panel of the compartment and an upper duct section extending upward from an upper end of the lower duct section. The exhaust duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In a feature of this aspect, the upper duct section is adapted to telescope from the lower duct section.
In other features of this aspect, each duct section includes four flat side panels connected at their corners by a corner fitting; each corner fitting is hinged; each corner fitting in the lower duct section is slidably coupled to a respective corner fitting in the upper duct section; a corner lock is coupled to one of the corner fittings and adapted to maintain the position of the upper duct section relative to the lower duct section; each corner lock includes a main body, a lock plate, and a lock screw; each corner fitting includes a pair of clamp fingers on the outer side thereof for engaging the respective corner lock; each corner fitting includes a pair of fingers defining a panel channel in which an edge of an exhaust duct panel is inserted and retained; each panel includes a plurality of raised structures along its lateral edges, and the structures are engaged within the panel channel; each raised structure is a boss; and each corner fitting extends substantially along the length of each of an edge of a respective panel and an edge of a respective adjacent panel.
In other features of this aspect, the upper duct section telescopes from within the lower duct section; a respective seal is attached to an upper edge of each panel of the lower duct section to limit air escaping from between the upper end of the lower duct section and a lower end of the upper duct section; each exhaust duct panel includes a plurality of raised structures along its upper edge, and the structures are engaged within a channel of the seal; and each raised structure is an outwardly-extending tab.
In still other features of this aspect, the upper duct section telescopes from around the periphery of the lower duct section, and a respective seal is attached to a lower edge of each panel of the upper duct section to limit air escaping from between the upper end of the lower duct section and a lower end of the upper duct section.
In still yet another feature of this aspect, at least one panel in a first of the two duct sections includes a column of openings, and a respective corresponding panel in a second of the two duct sections includes a corresponding mounting feature such that when the first duct section and the second duct section are telescopically assembled to each other, the mounting feature of the second duct section may be aligned with any opening of the column of openings, thereby facilitating the attachment of the second duct section to the first duct section at a desired height.
Broadly defined, the present invention according to another aspect includes an exhaust duct for an electronic equipment enclosure having a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining a compartment in which the one or more electronic components are mounted. The compartment has a top, a bottom and a rear, and the top panel includes an opening therethrough that is rectangular in shape. The exhaust duct includes a lower duct section extending upward from the top panel of the compartment and an upper duct section extending upward from an upper end of the lower duct section. Each duct section is rectangular in cross-section; and, when disposed in surrounding relation to, and in fluid communication with, the top panel opening, the exhaust duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In a feature of this aspect, the upper duct section is adapted to telescope from the lower duct section.
In other features of this aspect, each duct section includes four flat side panels connected at their corners by a corner fitting; each corner fitting is hinged; each corner fitting in the lower duct section is slidably coupled to a respective corner fitting in the upper duct section; a corner lock is coupled to one of the corner fittings and adapted to maintain the position of the upper duct section relative to the lower duct section; each corner lock includes a main body, a lock plate, and a lock screw; each corner fitting includes a pair of clamp fingers on the outer side thereof for engaging the respective corner lock; each corner fitting includes a pair of fingers defining a panel channel in which an edge of an exhaust duct panel is inserted and retained; each panel includes a plurality of raised structures along its lateral edges, and the structures are engaged within the panel channel; each raised structure is a boss; and each corner fitting extends substantially along the length of each of an edge of a respective exhaust duct panel and an edge of a respective adjacent exhaust duct panel.
In other features of this aspect, the upper duct section telescopes from within the lower duct section; a respective seal is attached to an upper edge of each panel of the lower duct section to limit air escaping from between the upper end of the lower duct section and a lower end of the upper duct section; each exhaust duct panel includes a plurality of raised structures along its upper edge, and the structures are engaged within a channel of the seal; and each raised structure is an outwardly-extending tab.
In still other features of this aspect, the upper duct section telescopes from around the periphery of the lower duct section, and a respective seal is attached to a lower edge of each panel of the upper duct section to limit air escaping from between the upper end of the lower duct section and a lower end of the upper duct section.
In still yet another feature of this aspect, at least one panel in a first of the two duct sections includes a column of openings, and a respective corresponding panel in a second of the two duct sections includes a corresponding mounting feature such that when the first duct section and the second duct section are telescopically assembled to each other, the mounting feature of the second duct section may be aligned with any opening of the column of openings, thereby facilitating the attachment of the second duct section to the first duct section at a desired height.
Broadly defined, the present invention according to another aspect includes an exhaust duct for an electronic equipment enclosure having a frame structure at least partially enclosed by a plurality of panels defining a compartment in which one or more electronic components are mounted. The exhaust duct includes four side panels connected by four corner fittings, adapted to extend upward from the top panel of the compartment, and the exhaust duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In features of this aspect, each corner fitting extends substantially along the length of each of an edge of a respective panel and an edge of a respective adjacent panel; the exhaust duct is adapted to telescope in length; each corner fitting is formed in an extrusion process; and each corner fitting has a uniform cross-section.
In other features of this aspect, the corner fittings include hinges, thereby facilitating the collapse of the exhaust duct from a use state to a flattened state; a corner lock is coupled to one of the corner fittings and adapted to maintain the exhaust duct panels in the use state; each corner lock includes a main body, a lock plate, and a lock screw; an upper edge of each exhaust duct panel is flared outward; a respective seal is attached to the upper edge of each exhaust duct panel to limit air escaping from between an upper end of the duct section and a ceiling structure; each hinge is a living hinge; each corner fitting includes two finger arrays connected together by the hinge; each finger array includes a pair of fingers defining a channel; each pair of fingers includes a latch finger with a hook adapted to fit over a raised structure on an exhaust duct panel; each corner fitting is formed in a co-extrusion process using a first material for the hinge and a second material for the remainder of the corner fitting; and each corner fitting has a uniform cross-section.
In still other features of this aspect, each corner fitting includes a pair of fingers defining a panel channel in which an edge of an exhaust duct panel is inserted and retained, and each exhaust duct panel includes a plurality of raised structures along its lateral edges, and the structures are engaged within the panel channel.
Broadly defined, the present invention according to another aspect includes an exhaust duct for an electronic equipment enclosure having a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining a compartment in which the one or more electronic components are mounted. The compartment has a top, a bottom and a rear, and the top panel includes an opening therethrough that is rectangular in shape. The exhaust duct includes four side panels connected by four corner fittings, and is adapted to extend upward from the top panel of the compartment. Furthermore, the exhaust duct is rectangular in cross-section; and, when disposed in surrounding relation to, and in fluid communication with, the top panel opening, the exhaust duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In features of this aspect, each corner fitting extends substantially along the length of each of an edge of a respective panel and an edge of a respective adjacent panel; the exhaust duct is adapted to telescope in length; each corner fitting is formed in an extrusion process; and each corner fitting has a uniform cross-section.
In other features of this aspect, the corner fittings include hinges, thereby facilitating the collapse of the exhaust duct from a use state to a flattened state; a corner lock is coupled to one of the corner fittings and adapted to maintain the exhaust duct panels in the use state; each corner lock includes a main body, a lock plate, and a lock screw; an upper edge of each exhaust duct panel is flared outward; a respective seal is attached to the upper edge of each exhaust duct panel to limit air escaping from between an upper end of the duct section and a ceiling structure; each hinge is a living hinge; each corner fitting includes two finger arrays connected together by the hinge; each finger array includes a pair of fingers defining a channel; each pair of fingers includes a latch finger with a hook adapted to fit over a raised structure on an exhaust duct panel; each corner fitting is formed in a co-extrusion process using a first material for the hinge and a second material for the remainder of the corner fitting; and each corner fitting has a uniform cross-section.
In still other features of this aspect, each corner fitting includes a pair of fingers defining a panel channel in which an edge of an exhaust duct panel is inserted and retained, and each exhaust duct panel includes a plurality of raised structures along its lateral edges, and the structures are engaged within the panel channel.
Broadly defined, the present invention according to another aspect includes a method of installing an exhaust duct on an electronic equipment enclosure having a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining a compartment in which the one or more electronic components are mounted. The compartment has a top, a bottom and a rear, and the top panel includes an opening therethrough that is rectangular in shape. The method includes the steps of providing an exhaust duct, having four side panels connected to one another by hinges, in a collapsed state; opening the exhaust duct by rotating the panels relative to each other, about the hinges, to place the exhaust duct in a use state; and attaching a lower end of the exhaust duct to the equipment enclosure such that an interior of the exhaust duct is in fluid communication with an interior of the compartment via the opening in the top panel of the enclosure.
In a feature of this aspect, in the use state, the exhaust duct has a rectangular cross-section.
In other features of this aspect, the providing step includes shipping the exhaust duct to an installation site, and the providing step includes, prior to shipping the exhaust duct to an installation site, connecting a corner fitting, incorporating at least one of the hinges, to a lateral edge of a first panel and a lateral edge of a second panel.
Broadly defined, the present invention according to still another aspect includes an electronic equipment enclosure for mounting one or more electronic components having a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining a compartment in which the one or more electronic components are mounted. The compartment has a top, a bottom and a rear, and the top panel includes an opening therethrough that is rectangular in shape. The electronic equipment enclosure includes an exhaust air duct having at least one duct section having four side panels, each side panel having an outwardly flared portion at an upper edge thereof, extending upward from the top panel of the compartment. The exhaust air duct is rectangular in cross-section and is disposed in surrounding relation to, and in fluid communication with, the top panel opening. The exhaust air duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In features of this aspect, each outwardly flared portion includes an outwardly angled portion of a respective upper portion of a side panel; the electronic equipment enclosure further comprises a top seal mounted on each respective upper edge; and each air duct side panel is generally planar in form, and each outwardly flared portion includes an outwardly flared top seal mounted on an upper edge of a respective air duct side panel.
Broadly defined, the present invention according to still yet another aspect includes an exhaust duct for an electronic equipment enclosure having a frame structure formed from a plurality of support posts and at least partially enclosed by a plurality of panels. The panels include at least side, top and back panels defining a compartment in which the one or more electronic components are mounted. The compartment has a top, a bottom and a rear, and the top panel includes an opening therethrough that is rectangular in shape. The exhaust duct includes at least one duct section having four side panels, each side having an outwardly flared portion at an upper edge thereof. The exhaust duct is adapted to extend upward from the top panel of the compartment; the exhaust duct is rectangular in cross-section; and when disposed in surrounding relation to, and in fluid communication with, the top panel opening, the exhaust duct is adapted to segregate hot air being exhausted from the compartment from cool air entering the compartment, thereby improving thermal management of the enclosure.
In features of this aspect, each outwardly flared portion includes an outwardly angled portion of a respective upper portion of a side panel; the exhaust duct further comprises a top seal mounted on each respective upper edge; and each air duct side panel is generally planar in form, and each outwardly flared portion includes an outwardly flared top seal mounted on an upper edge of a respective air duct side panel.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
Further features, embodiments, and advantages of the present invention will become apparent from the following detailed description with reference to the drawings, wherein:
As a preliminary matter, it will readily be understood by one having ordinary skill in the relevant art (“Ordinary Artisan”) that the present invention has broad utility and application. Furthermore, any embodiment discussed and identified as being “preferred” is considered to be part of a best mode contemplated for carrying out the present invention. Other embodiments also may be discussed for additional illustrative purposes in providing a full and enabling disclosure of the present invention. Moreover, many embodiments, such as adaptations, variations, modifications, and equivalent arrangements, will be implicitly disclosed by the embodiments described herein and fall within the scope of the present invention.
Accordingly, while the present invention is described herein in detail in relation to one or more embodiments, it is to be understood that this disclosure is illustrative and exemplary of the present invention, and is made merely for the purposes of providing a full and enabling disclosure of the present invention. The detailed disclosure herein of one or more embodiments is not intended, nor is to be construed, to limit the scope of patent protection afforded the present invention, which scope is to be defined by the claims and the equivalents thereof. It is not intended that the scope of patent protection afforded the present invention be defined by reading into any claim a limitation found herein that does not explicitly appear in the claim itself.
Thus, for example, any sequence(s) and/or temporal order of steps of various processes or methods that are described herein are illustrative and not restrictive. Accordingly, it should be understood that, although steps of various processes or methods may be shown and described as being in a sequence or temporal order, the steps of any such processes or methods are not limited to being carried out in any particular sequence or order, absent an indication otherwise. Indeed, the steps in such processes or methods generally may be carried out in various different sequences and orders while still falling within the scope of the present invention. Accordingly, it is intended that the scope of patent protection afforded the present invention is to be defined by the appended claims rather than the description set forth herein.
Additionally, it is important to note that each term used herein refers to that which the Ordinary Artisan would understand such term to mean based on the contextual use of such term herein. To the extent that the meaning of a term used herein—as understood by the Ordinary Artisan based on the contextual use of such term—differs in any way from any particular dictionary definition of such term, it is intended that the meaning of the term as understood by the Ordinary Artisan should prevail.
Furthermore, it is important to note that, as used herein, “a” and “an” each generally denotes “at least one,” but does not exclude a plurality unless the contextual use dictates otherwise. Thus, reference to “a picnic basket having an apple” describes “a picnic basket having at least one apple” as well as “a picnic basket having apples.” In contrast, reference to “a picnic basket having a single apple” describes “a picnic basket having only one apple.”
When used herein to join a list of items, “or” denotes “at least one of the items,” but does not exclude a plurality of items of the list. Thus, reference to “a picnic basket having cheese or crackers” describes “a picnic basket having cheese without crackers”, “a picnic basket having crackers without cheese”, and “a picnic basket having both cheese and crackers.” Finally, when used herein to join a list of items, “and” denotes “all of the items of the list.” Thus, reference to “a picnic basket having cheese and crackers” describes “a picnic basket having cheese, wherein the picnic basket further has crackers,” as well as describes “a picnic basket having crackers, wherein the picnic basket further has cheese.”
Referring now to the drawings, in which like numerals represent like components throughout the several views, the preferred embodiments of the present invention are next described. The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The four post frame structure 12 may be of conventional design and construction. As shown and described, the four post frame structure 12 includes four vertical support posts 16, upper and lower front cross members 18, upper and lower rear cross members 20 and two pairs of upper and lower side cross members 22. Each vertical support post 16 includes a plurality of cross member attachment apertures at each end. Two of the vertical support posts 16 are connected together at their upper and lower ends by the upper and lower front cross members 18, respectively, and the other two support posts 16 are connected together at their upper and lower ends by the upper and lower rear cross members 20, respectively. The front cross members 18 and their respective support posts 16 thus define a front frame 24, and the rear cross members 20 and their respective support posts 16 define a rear frame 26. The front and rear frames 24,26 may then be connected together at their respective corners by the upper and lower side cross members 22.
Any known connection means may be used to join the various members together. One example of such a connection means is illustrated in
It will be evident to the Ordinary Artisan that other structures may be used to form a frame structure on which panels may be mounted to form an enclosure. For example, in at least one embodiment (not illustrated), a frame structure may be formed from only two support posts.
With particular reference to
With reference to
As perhaps best seen in
Front and back panels 54 of the exhaust air duct 14 include flanges 58 at side edges thereof. The flanges 58 of the front and back panels 54 fold around side edges of the right and left panels 56 at the corners of the rectangular shaped exhaust air duct 14. Any known connection means, such as screws, may be used to join the exhaust air duct panels 54,56 using the flanges 58 of the front and back panels 54. This arrangement further improves the rigidity of the exhaust air duct 14.
Each of the panels 54,56 of the exhaust air duct 14 has an additional flange 46 at a bottom edge 48 thereof for attachment to the top panel 38 of the enclosure 10 around a rim 50 of the top panel opening 42. Furthermore, a top edge 52 of the exhaust air duct 14 may be connected to a room's return air duct, as shown schematically in
In the telescoping duct 98, the second duct section 102 may include a flange 110 at bottom edges of the opposing panels that do not have the columns of openings 106. The telescoping duct 98 may be connected to the enclosure 10 using the flanges 110. In addition, the panels that include the columns of openings 106 may have a bottom edge that extends slightly lower than the bottom edges of the other panels. These bottom edges may extend into the opening 42 of the top panel 38 of the enclosure 10. As will be evident to the Ordinary Artisan, the dispositions of these elements may be changed as desired.
With the corner fittings 216 in place on the edges of the panels 212,213,222,223, the two duct sections 200,202 may be assembled by inserting the lower duct section 202 within the upper duct section 200. In order to accomplish this, the guide fingers 226 on the corner fittings 216 of the upper duct section 200 make contact with the latch fingers 228 on the corner fittings 216 of the lower duct section, thereby causing the guide fingers 226 of the upper duct section 200, and particularly the finger tips 232, to be deflected slightly as shown in
Once all four corner locks 238 are properly coupled to the lower corner fittings 216, the upper duct section 200 may be telescoped relative to the lower duct section 202 by loosening the lock screws 244 in all four corner locks 238, sliding the upper corner fittings 216, including the corner locks 238, relative to the lower corner fittings 216, and tightening the lock screws 244 to secure the corner locks 238 to the lower corner fittings 216 once more. In this way, the upper duct section 200 may be precisely extended any desired amount from the top of the lower duct section 202, thereby providing infinite adjustability along the extent of the upper and lower corner fittings 216.
With reference to
As described previously and illustrated in
Because of the positioning of the exhaust air duct 14 on the enclosure 10, the back panel 54 thereof is nearly vertically aligned with a vertical plane of the back panel 40 of the enclosure 10. Further, because the rectangular shape of the exhaust air duct 10 is similar to the rectangular shape of the back of the enclosure 10, exhaust air flows freely through the exhaust air duct 14. In contrast, in a conventional cylindrical exhaust air duct, air from the back of the angularly shaped enclosure, particularly the corners of the enclosure, must take a tortuous and winding path in order to exit the server enclosure. This relatively complex air flow scheme decreases the rate at which and the amount of air that may exit the enclosure. Further because the rectangular exhaust air duct 14 is similar in shape to the back of the enclosure 10 itself, it can be made larger in cross-section than conventional cylindrical ducts, thus allowing for more airflow through the exhaust air duct 14. This is illustrated in
As shown in
The enclosure 10 may be used in connection with a hot aisle/cold aisle configuration of a data center or computer room. If a series of enclosures 10 are arranged in a row in such configuration, the exhaust air ducts 14 form a vertical wall rising from the tops of the enclosures 10 due to their size and shape. This vertical wall may serve as a barrier to recirculation, thereby improving the performance of the hot aisle/cold aisle thermal system.
As seen in
The air diverter 60 has a width that at its maximum is substantially the same as the distance between the horizontal mounting rails 28. The air diverter 60 includes a pair of wing elements 80 disposed opposite one another on opposite side edges of the air diverter 60. The wing elements 80 extend beyond the side edges of the air diverter 60 such that they essentially span the entire distance between the horizontal mounting rails 28. A bottom edge 64 of the air diverter 60 has a flange 66 for connecting the air diverter 60 to the bottom panel 36 of the enclosure 10. Any known connection means may be used to join the air diverter 60 to the bottom panel 36 of the enclosure 10. Alternatively, the air diverter 60 may be left unfastened to the bottom panel 36, thereby permitting the air diverter 60 to be relocated forward or backward from the location illustrated in
The air diverter 60 further includes a “U”-shaped channel member 68 disposed at a top edge 70 thereof. The channel member 68 includes a top surface 72 and two side surfaces 74 extending from the top surface 72. One of the side surfaces 74 is attached to the top edge 70 of the air diverter 60. The channel member 68 is arranged such that the top surface 72 thereof extends away from a front surface 76 of the air diverter 60. The channel member 68 provides rigidity for the air diverter 60.
The channel member 68 also serves another purpose, as next described. As can be seen in
The air diverter 60 further includes a pair of connection tabs 78 disposed on the wing elements 80 thereof. The wing elements 80 are generally positioned at a height corresponding to the elevation of the lowermost horizontal mounting rail 28 within the enclosure 10, and the tabs 78 therefore provide a means for the air diverter 60 to be connected to a pair of horizontal mounting rails 28 of the enclosure 10 using the mounting rail slots, described previously and visible in
Notably, although not shown, because the wing elements 80 extend out from the side edges of the air diverter 60, the vertical mounting rails 30 may alternatively be disposed between the side edges of the air diverter 60 and the horizontal mounting rails 28 in the inset areas 83,85 located above and below the wing elements 80. Thus, the vertical mounting rails may be arranged by a user at nearly any location along the horizontal mounting rails 28 from the front to the back of the enclosure 10, other than where the wing elements 80 are present. The lower inset area 85 also provides another function, in that cables entering the bottom of the enclosure 10 may be routed forward almost immediately after entering the enclosure using the space provided by the lower inset area 85. In the absence of such a space, cables would have to be routed up and over the wing elements, thus making the cables unnecessarily long.
In use, the ducted exhaust equipment enclosure 10 is typically, though not always, installed on a raised floor 82.
At the same time, cool air, represented by arrows 94, flows up through the perforated tiles 84 and in through the front of the enclosure 10, thereby facilitating the flow of air through the enclosure 10 and cooling the equipment 86 mounted therein. Although not shown, cool air is often also guided through the openings directly beneath the enclosure 10. Care must be taken to force such air to the front of the equipment 86 to avoid letting it escape immediately up the back of the enclosure 10.
Thus, the ducted exhaust equipment enclosure 10 allows the components 86 stored therein to draw the required volume of air through the enclosure 10, and then directs the exhaust out of and away from the enclosure 10 thereby eliminating the problem of air recirculation. The ducted exhaust equipment enclosure 10 segregates hot exhaust air by directing it up an exhaust air duct 14 at the top rear of the enclosure 10. This approach delivers enhanced cooling of components resulting in a more efficient use of available cool air and better overall heat transfer away from components.
Preferably, and as shown in
Several benefits become obvious with this architecture. For example, enclosures 10 do not have to be oriented front-to-front and back-to-back along hot aisle/cold aisle rows, as they do with conventional hot aisle/cold aisle arrangements. This freedom allows enclosure arrangements to be driven by other infrastructure requirements. In addition, up to 100% of the exposed floor can be perforated. Perforated tiles 84 can be located anywhere in the room. Using ducted exhaust equipment enclosures 10 allows the entire data center to be cold, i.e., no more hot zones. Cold intake air can be pulled from anywhere in the room. An enclosure 10 no longer has to obtain all of the airflow needed from the raised floor tile directly in front or adjacent to it. As such, airflow balancing issues are significantly reduced, if not, alleviated. By enabling cold air to be delivered through 100% of the tile in the raised floor 82, it is contemplated that the airflow available to any given enclosure 10 can be doubled thereby doubling the heat load capacity of the enclosure 10.
It is important to note that because the ducted exhaust equipment enclosures can be used in data centers both with raised floors 82 or without raised floors 82, they are extremely versatile. The ducted exhaust equipment enclosures 10 can be used in rooms with or without a raised floor 82 and can be partially or completely cooled using a raised floor plenum or by an alternative cooling means such as ducts within a data center. Accordingly, the following scenarios are possible with the ducted exhaust equipment enclosures: 1) a data center wherein cold air is supplied using only a raised floor approach, 2) a data center wherein no raised floor is present and cold air is supplied using only alternative approaches to a raised floor, e.g., ducts in the room, 3) a data center wherein a raised floor 82 is present but cold air is supplied by ducts in the room, and 4) a data center wherein cold air is partially supplied by ducts in the room and partially supplied by a raised floor plenum.
Use of the ducted exhaust equipment enclosures 10 also creates the opportunity to deploy high density applications in a non-raised floor environment because cold air can be delivered directly into the room rather than through a raised floor. In addition, the use of ducted exhaust equipment enclosures 10 avoids any dependency on booster fans, with the accompanying concerns over additional heat loads, fan failure and redundancy, thereby reducing the cost of equipping a data center.
In the process described above, each air diverter 60 reduces or eliminates eddies that would otherwise be present in the hot return air at the bottom rear of the enclosure 10. Such eddies can cause computer components mounted at the bottom of the enclosure 10 to operate at a higher temperature than components mounted higher up in the enclosure 10. The air diverter 60 reduces or eliminates such eddies by turning hot return air upward in the direction of primary flow of hot return air. It is contemplated that intermediate half-scoop air diverters (not shown) may also be added at various vertical spacing locations along the back of the enclosure 10. These intermediate half-scoops of various sizes and shapes may be used to further improve air flow and air balance. Advantageously, although the exhaust air duct 14 may be used by itself, the various scoops help start the vertical flow of heated air up toward the duct 14, thereby making it function more efficiently than if used by itself.
The enclosure 10 may include additional features to aid in airflow management of the enclosure 10. One such feature is the inclusion of metal bracket seals 88 around the connection means used to connect the back door panel 40 to the enclosure 10. The seals 88 further ensure that exhaust air exits the enclosure 10 via the exhaust air duct 14 rather than through small openings around the connection means or edges of the door. Further, foam or rubber gaskets (not shown) may be added to, or may replace, the metal bracket seals 88 to create a further barrier to air release.
Another contemplated feature is a brush opening in the bottom panel 36 of the enclosure 10. Often an enclosure will have an opening in the bottom panel thereof for receipt of cables that provide power and other input or output to the components stored in the enclosure. Unfortunately, air is able to flow freely through the opening thereby altering the intended airflow scheme of the enclosure. It is possible to include a plurality of bristles extending inwardly from opposing sides of the opening such that exterior ends of the bristles are touching. The bristles essentially cover the opening thereby preventing air from flowing there through. In the same instance, the cables are still able to pass through the opening by displacing the bristles for their passage there through. Although, the brushes are not shown in
Based on the foregoing information, it is readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those specifically described herein, as well as many variations, modifications, and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing descriptions thereof, without departing from the substance or scope of the present invention.
Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for the purpose of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended to be construed to limit the present invention or otherwise exclude any such other embodiments, adaptations, variations, modifications or equivalent arrangements; the present invention being limited only by the claims appended hereto and the equivalents thereof. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purpose of limitation.
The present application is a U.S. continuation patent application of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 14/489,963, filed on Sep. 18, 2014, which '963 application published as U.S. Patent Application Publication No. US 2015/0065028 A1 on Mar. 5, 2015 and issued as U.S. Pat. No. 10,624,232 on Apr. 14, 2020, which '963 application, the application publication thereof, and the patent issuing therefrom are each incorporated herein by reference in their entirety, and which '963 application is a U.S. continuation patent application of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 13/243,408, filed on Sep. 23, 2011, which '408 application published as U.S. Patent Application Publication No. US 2012/0013229 A1 on Jan. 19, 2012 and is now abandoned, which '408 application and the application publication thereof are each incorporated herein by reference in their entirety, and which '408 application is a U.S. continuation patent application of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 12/892,176, filed on Sep. 28, 2010, which '176 application published as U.S. Patent Application Publication No. US 2011/0019362 A1 on Jan. 27, 2011 and issued as U.S. Pat. No. 8,040,673 on Oct. 18, 2011, which '176 application, the application publication thereof, and the patent issuing therefrom are each incorporated herein by reference in their entirety, and which '176 application is a U.S. continuation patent application of, and claims priority under 35 U.S.C. § 120 to, U.S. patent application Ser. No. 12/344,367, filed on Dec. 26, 2008, which '367 application published as U.S. Patent Application Publication No. US 2009/0190307 A1 on Jul. 30, 2009 and issued as U.S. Pat. No. 7,804,685 on Sep. 28, 2010, which '367 application, the application publication thereof, and the patent issuing therefrom are each incorporated herein by reference in their entirety, and which '367 application is a U.S. nonprovisional patent application of, and claims priority under 35 U.S.C. § 119(e) to, U.S. provisional patent application Ser. No. 61/095,147, filed on Sep. 8, 2008, which provisional application is incorporated herein by reference in its entirety. The present application also expressly incorporates by reference herein in their entireties the following patents, patent applications and patent application publications: (a) U.S. nonprovisional patent application Ser. No. 11/533,359, filed on Sep. 19, 2006, which nonprovisional patent application published as U.S. Patent Application Publication No. US 2007/0064389 A1; and(b) U.S. provisional patent application Ser. No. 60/718,548, filed on Sep. 19, 2005.
Number | Name | Date | Kind |
---|---|---|---|
228883 | Freeman | Jun 1880 | A |
1129040 | McClure | Feb 1915 | A |
1279978 | Brooks | Sep 1918 | A |
1484491 | Gutermann | Feb 1924 | A |
1889711 | Talley et al. | Nov 1932 | A |
1935690 | Zack | Nov 1933 | A |
2039886 | Cohn | May 1936 | A |
2201312 | Hauser | May 1940 | A |
2226523 | Peck | Dec 1940 | A |
2227587 | Jones et al. | Jan 1941 | A |
2330769 | Wichner | Sep 1943 | A |
2338801 | Callan | Jan 1944 | A |
2352876 | Wilson | Jul 1944 | A |
2378272 | Whitaker | Jun 1945 | A |
2457002 | Spiro | Dec 1948 | A |
2477315 | Smith | Jul 1949 | A |
2521351 | Dimmendaal | Sep 1950 | A |
2780981 | Miller | Feb 1957 | A |
2804066 | McCutchen | Aug 1957 | A |
2912013 | Freyholdt et al. | Nov 1959 | A |
2917128 | Tatay | Dec 1959 | A |
3143195 | Schroeder | Aug 1964 | A |
3192306 | Skonnord | Jun 1965 | A |
3198559 | Snyder | Aug 1965 | A |
3208236 | Frigerio | Sep 1965 | A |
3212529 | Ullman et al. | Oct 1965 | A |
3251382 | Tatsch | May 1966 | A |
3325585 | Brenneman | Jun 1967 | A |
3343567 | Mulligan et al. | Sep 1967 | A |
3362403 | Fleming et al. | Jan 1968 | A |
3363390 | Crane et al. | Jan 1968 | A |
3364838 | Bradley | Jan 1968 | A |
3387809 | Zwerling | Jun 1968 | A |
3407016 | Kronenberger | Oct 1968 | A |
3411427 | Graham et al. | Nov 1968 | A |
3482861 | Keating | Dec 1969 | A |
3493237 | Kleindienst | Feb 1970 | A |
3503166 | Lipper et al. | Mar 1970 | A |
3507085 | Kruschwitz | Apr 1970 | A |
3540758 | Torres | Nov 1970 | A |
3563627 | Whipps | Feb 1971 | A |
3638359 | Kruschwitz | Feb 1972 | A |
3638374 | Harby | Feb 1972 | A |
3665646 | Neimanns | May 1972 | A |
3672706 | Chilcoat | Jun 1972 | A |
3780473 | Kort et al. | Dec 1973 | A |
3787922 | Foy et al. | Jan 1974 | A |
3789589 | Delany et al. | Feb 1974 | A |
3818948 | Hedges | Jun 1974 | A |
3827342 | Hughes | Aug 1974 | A |
3886851 | Berner | Jun 1975 | A |
3915481 | Marsh, Jr. | Oct 1975 | A |
3937133 | Bertin et al. | Feb 1976 | A |
3960196 | Berner | Jun 1976 | A |
3975877 | Walton | Aug 1976 | A |
4007941 | Stancati | Feb 1977 | A |
4105814 | Eggert | Aug 1978 | A |
4218079 | Arnoldt | Aug 1980 | A |
4323110 | Rubbright et al. | Apr 1982 | A |
4347782 | Hoecke | Sep 1982 | A |
4357860 | Krzak | Nov 1982 | A |
4411941 | Azzola | Oct 1983 | A |
4458459 | Irrgang | Jul 1984 | A |
4480859 | Rueckl et al. | Nov 1984 | A |
4495234 | Tominaga et al. | Jan 1985 | A |
4495545 | Dufresne et al. | Jan 1985 | A |
4496186 | Tuchiya et al. | Jan 1985 | A |
4522669 | Nordin et al. | Jun 1985 | A |
4527807 | Urbanick | Jul 1985 | A |
4543677 | Haglund et al. | Oct 1985 | A |
4633766 | Nation et al. | Jan 1987 | A |
4648007 | Garner | Mar 1987 | A |
4745016 | Hashimoto et al. | May 1988 | A |
4774631 | Okuyama et al. | Sep 1988 | A |
4778705 | Kuwabara | Oct 1988 | A |
4781961 | Weaver et al. | Nov 1988 | A |
4791980 | Hagar et al. | Dec 1988 | A |
4859143 | Larrabee et al. | Aug 1989 | A |
4895378 | Newquist et al. | Jan 1990 | A |
4944082 | Jones et al. | Jul 1990 | A |
4952442 | Warner | Aug 1990 | A |
5107622 | Fuchs et al. | Apr 1992 | A |
5123874 | White, III | Jun 1992 | A |
5162976 | Moore et al. | Nov 1992 | A |
5216579 | Basara et al. | Jun 1993 | A |
5219403 | Murphy | Jun 1993 | A |
5256105 | Austin | Oct 1993 | A |
5294748 | Schwenk et al. | Mar 1994 | A |
5347430 | Curlee et al. | Sep 1994 | A |
5364163 | Hardison | Nov 1994 | A |
RE34874 | Newman et al. | Mar 1995 | E |
5460441 | Hastings et al. | Oct 1995 | A |
5473114 | Vogel et al. | Dec 1995 | A |
5488543 | Mazura et al. | Jan 1996 | A |
5515655 | Hoffmann | May 1996 | A |
5524104 | Iwata et al. | Jun 1996 | A |
5528454 | Niklos | Jun 1996 | A |
5536079 | Kostic | Jul 1996 | A |
5544012 | Koike | Aug 1996 | A |
5566954 | Hahn | Oct 1996 | A |
5570740 | Flores et al. | Nov 1996 | A |
5609467 | Lenhart et al. | Mar 1997 | A |
5619014 | Faulkner | Apr 1997 | A |
5639150 | Anderson et al. | Jun 1997 | A |
5647184 | Davis | Jul 1997 | A |
5660212 | Elder | Aug 1997 | A |
5671805 | Stahl et al. | Sep 1997 | A |
5851143 | Hamid | Dec 1998 | A |
5865478 | Lin | Feb 1999 | A |
5918644 | Haack et al. | Jul 1999 | A |
5941767 | Fukuda | Aug 1999 | A |
5943219 | Bellino et al. | Aug 1999 | A |
5957506 | Stepp | Sep 1999 | A |
5979854 | Lundgren et al. | Nov 1999 | A |
5995368 | Lee et al. | Nov 1999 | A |
5997009 | Geise | Dec 1999 | A |
5997117 | Krietzman | Dec 1999 | A |
6034873 | Stahl et al. | Mar 2000 | A |
6036290 | Jancsek et al. | Mar 2000 | A |
6044193 | Szetesi et al. | Mar 2000 | A |
6052277 | Liu et al. | Apr 2000 | A |
6067233 | English et al. | May 2000 | A |
6070363 | Vance | Jun 2000 | A |
6075698 | Hogan et al. | Jun 2000 | A |
6104003 | Jones | Aug 2000 | A |
D432098 | Nelson et al. | Oct 2000 | S |
6127663 | Jones | Oct 2000 | A |
6131960 | McHughs | Oct 2000 | A |
6163454 | Strickler | Dec 2000 | A |
6185098 | Benavides | Feb 2001 | B1 |
6198628 | Smith | Mar 2001 | B1 |
6209269 | Valderrama | Apr 2001 | B1 |
6222729 | Yoshikawa | Apr 2001 | B1 |
6226950 | Davis | May 2001 | B1 |
6231704 | Carpinetti | May 2001 | B1 |
6250727 | Kan et al. | Jun 2001 | B1 |
6304438 | Liu et al. | Oct 2001 | B1 |
6311735 | Small | Nov 2001 | B1 |
6321490 | Vance | Nov 2001 | B1 |
6322111 | Brady | Nov 2001 | B1 |
6333851 | Shih | Dec 2001 | B1 |
6364374 | Noone et al. | Apr 2002 | B1 |
6381147 | Hayward et al. | Apr 2002 | B1 |
6383242 | Rogers et al. | May 2002 | B1 |
6431609 | Andersson | Aug 2002 | B1 |
6459579 | Farmer et al. | Oct 2002 | B1 |
6462944 | Lin | Oct 2002 | B1 |
6490156 | Chen | Dec 2002 | B2 |
6494050 | Spinazzola et al. | Dec 2002 | B2 |
6525935 | Casebolt | Feb 2003 | B2 |
6529371 | Laio | Mar 2003 | B1 |
6532152 | White et al. | Mar 2003 | B1 |
6539677 | Lanka | Apr 2003 | B1 |
6554697 | Koplin | Apr 2003 | B1 |
6557357 | Spinazzola et al. | May 2003 | B2 |
6574970 | Spinazzola et al. | Jun 2003 | B2 |
6592448 | Williams | Jul 2003 | B1 |
6600100 | Ho et al. | Jul 2003 | B2 |
6616524 | Storck, Jr. et al. | Sep 2003 | B2 |
6646872 | Chen | Nov 2003 | B1 |
6646878 | Chan | Nov 2003 | B2 |
6652373 | Sharp et al. | Nov 2003 | B2 |
6668565 | Johnson et al. | Dec 2003 | B1 |
6669400 | Sergi | Dec 2003 | B1 |
6669552 | Beer | Dec 2003 | B1 |
6672955 | Charron | Jan 2004 | B2 |
6711870 | Richardson | Mar 2004 | B1 |
6745579 | Spinazzola et al. | Jun 2004 | B2 |
6766832 | DiMarco | Jul 2004 | B2 |
6788535 | Dodgen et al. | Sep 2004 | B2 |
6791841 | Tirrell et al. | Sep 2004 | B1 |
6801427 | Gan et al. | Oct 2004 | B2 |
6819563 | Chu et al. | Nov 2004 | B1 |
6843277 | Meguro et al. | Jan 2005 | B2 |
6848720 | Carns et al. | Feb 2005 | B2 |
6854284 | Bash et al. | Feb 2005 | B2 |
6867967 | Mok | Mar 2005 | B2 |
6896612 | Novotny | May 2005 | B1 |
6912131 | Kabat | Jun 2005 | B2 |
6957670 | Kajino | Oct 2005 | B1 |
7011576 | Sharp et al. | Mar 2006 | B2 |
7016194 | Wong | Mar 2006 | B1 |
7022008 | Crocker | Apr 2006 | B1 |
7033267 | Rasmussen | Apr 2006 | B2 |
7112131 | Rasmussen et al. | Sep 2006 | B2 |
7144320 | Turek et al. | Dec 2006 | B2 |
7154748 | Yamada | Dec 2006 | B2 |
7182208 | Tachibana | Feb 2007 | B2 |
7195290 | Duffy | Mar 2007 | B2 |
7212403 | Rockenfell | May 2007 | B2 |
7212787 | Wu et al. | May 2007 | B2 |
7236362 | Wang et al. | Jun 2007 | B2 |
7255640 | Aldag et al. | Aug 2007 | B2 |
7259961 | Lucero et al. | Aug 2007 | B2 |
7259963 | Germagian et al. | Aug 2007 | B2 |
7286345 | Casebolt | Oct 2007 | B2 |
7309279 | Sharp et al. | Dec 2007 | B2 |
7349209 | Campbell et al. | Mar 2008 | B2 |
7355850 | Baldwin | Apr 2008 | B2 |
7372695 | Coglitore et al. | May 2008 | B2 |
7427713 | Adducci et al. | Sep 2008 | B2 |
7430118 | Noteboom et al. | Sep 2008 | B1 |
7438124 | Bhatti et al. | Oct 2008 | B2 |
7438638 | Lewis, II et al. | Oct 2008 | B2 |
7476804 | Adducci et al. | Jan 2009 | B2 |
7485803 | Adducci et al. | Feb 2009 | B2 |
7486512 | Campbell et al. | Feb 2009 | B2 |
7490872 | Yamamoto et al. | Feb 2009 | B2 |
7495169 | Adducci et al. | Feb 2009 | B2 |
7498512 | Adducci et al. | Mar 2009 | B2 |
7500911 | Johnson et al. | Mar 2009 | B2 |
7504581 | Adducci et al. | Mar 2009 | B2 |
7508663 | Coglitore et al. | Mar 2009 | B2 |
7542287 | Lewis, II et al. | Jun 2009 | B2 |
7592541 | Adducci et al. | Sep 2009 | B2 |
7604535 | Germagian et al. | Oct 2009 | B2 |
7608779 | Adducci et al. | Oct 2009 | B2 |
7643291 | Mallia et al. | Jan 2010 | B2 |
7646602 | Tamarkin et al. | Jan 2010 | B1 |
7667135 | Adducci et al. | Feb 2010 | B2 |
7718891 | Adducci et al. | May 2010 | B2 |
7751188 | French et al. | Jul 2010 | B1 |
7752858 | Johnson et al. | Jul 2010 | B2 |
7764495 | Hruby et al. | Jul 2010 | B2 |
7772489 | Adducci et al. | Aug 2010 | B2 |
7781675 | Adducci et al. | Aug 2010 | B2 |
7795532 | Walker | Sep 2010 | B2 |
7800900 | Noteboom et al. | Sep 2010 | B1 |
7804685 | Krietzman | Sep 2010 | B2 |
7878888 | Rasmussen et al. | Feb 2011 | B2 |
7880084 | Adducci et al. | Feb 2011 | B2 |
7894190 | Davis et al. | Feb 2011 | B2 |
7895855 | Gooch | Mar 2011 | B2 |
7944692 | Grantham et al. | May 2011 | B2 |
7952869 | Lewis, II et al. | May 2011 | B2 |
7957139 | Davis et al. | Jun 2011 | B2 |
8035965 | Adducci et al. | Oct 2011 | B2 |
8040673 | Krietzman | Oct 2011 | B2 |
8087979 | Rasmussen | Jan 2012 | B2 |
8107238 | Krietzman et al. | Jan 2012 | B2 |
8217315 | Suetsugu | Jul 2012 | B2 |
8237052 | Adducci et al. | Aug 2012 | B2 |
8248792 | Wei | Aug 2012 | B2 |
8257155 | Lewis, II | Sep 2012 | B2 |
8395046 | Nicewicz et al. | Mar 2013 | B2 |
8403736 | Rasmussen et al. | Mar 2013 | B2 |
8405982 | Grantham et al. | Mar 2013 | B2 |
8405984 | Donowho et al. | Mar 2013 | B2 |
8425287 | Wexler | Apr 2013 | B2 |
8427830 | Absalom | Apr 2013 | B2 |
8523643 | Roy | Sep 2013 | B1 |
8628158 | Caveney | Jan 2014 | B2 |
8653363 | Behrens et al. | Feb 2014 | B2 |
8730665 | Lewis, II et al. | May 2014 | B2 |
8737068 | Krietzman et al. | May 2014 | B2 |
8867206 | Hruby et al. | Oct 2014 | B2 |
8888158 | Slessman | Nov 2014 | B2 |
8973951 | Nicewicz | Mar 2015 | B2 |
9066450 | Bednarcik et al. | Jun 2015 | B2 |
9084369 | Lewis, II et al. | Jul 2015 | B2 |
9119329 | Krietzman et al. | Aug 2015 | B2 |
9210833 | Caveney et al. | Dec 2015 | B2 |
9313927 | Krietzman | Apr 2016 | B2 |
9332863 | Ramey et al. | May 2016 | B2 |
9351427 | Lewis, II et al. | May 2016 | B2 |
9420727 | Lewis, II et al. | Aug 2016 | B2 |
9426903 | Morales | Aug 2016 | B1 |
9499211 | Brunard | Nov 2016 | B2 |
9549487 | Lewis, II et al. | Jan 2017 | B2 |
9572286 | Greeson et al. | Feb 2017 | B2 |
9585266 | Krietzman et al. | Feb 2017 | B2 |
9795060 | Greeson et al. | Oct 2017 | B2 |
9801309 | Krietzman et al. | Oct 2017 | B2 |
9949406 | Lewis, II et al. | Apr 2018 | B2 |
9955616 | Krietzman et al. | Apr 2018 | B2 |
9974198 | Lewis, II et al. | May 2018 | B2 |
10123462 | Krietzman et al. | Nov 2018 | B2 |
10133320 | Lewis, II et al. | Nov 2018 | B2 |
10306812 | Krietzman | May 2019 | B2 |
10334761 | Krietzman et al. | Jun 2019 | B2 |
10440847 | Lewis, II et al. | Oct 2019 | B2 |
10568239 | Krietzman et al. | Feb 2020 | B2 |
10568246 | Krietzman et al. | Feb 2020 | B2 |
10588227 | Donowho et al. | Mar 2020 | B2 |
10624232 | Krietzman | Apr 2020 | B2 |
10674634 | Lewis, II et al. | Jun 2020 | B2 |
10765037 | Lewis, II et al. | Sep 2020 | B2 |
10791640 | Lewis, II et al. | Sep 2020 | B2 |
11083108 | Lewis, II et al. | Aug 2021 | B2 |
11132035 | Lewis, II | Sep 2021 | B2 |
11166395 | Krietzman | Nov 2021 | B2 |
11212928 | Lewis, II et al. | Dec 2021 | B2 |
11259446 | Lewis et al. | Feb 2022 | B2 |
20010029163 | Spinazzola et al. | Oct 2001 | A1 |
20020007643 | Spinazzola et al. | Jan 2002 | A1 |
20020059804 | Spinazzola et al. | May 2002 | A1 |
20020101721 | Blood | Aug 2002 | A1 |
20020108386 | Spinazzola et al. | Aug 2002 | A1 |
20020153725 | Myers | Oct 2002 | A1 |
20020172013 | Chandler | Nov 2002 | A1 |
20030050003 | Charron | Mar 2003 | A1 |
20030116213 | DiMarco | Jun 2003 | A1 |
20040007348 | Stoller | Jan 2004 | A1 |
20040050808 | Krampotich et al. | Mar 2004 | A1 |
20040099747 | Johnson et al. | May 2004 | A1 |
20040105222 | Chen et al. | Jun 2004 | A1 |
20040182799 | Tachibana | Sep 2004 | A1 |
20040190270 | Aldag et al. | Sep 2004 | A1 |
20040190929 | Yoshiki | Sep 2004 | A1 |
20040201333 | Chen | Oct 2004 | A1 |
20040223300 | Fink et al. | Nov 2004 | A1 |
20040257766 | Rasmussen et al. | Dec 2004 | A1 |
20050054282 | Green et al. | Mar 2005 | A1 |
20050153649 | Bettridge et al. | Jul 2005 | A1 |
20050168945 | Coglitore | Aug 2005 | A1 |
20050170770 | Johnson et al. | Aug 2005 | A1 |
20050180770 | Wong | Aug 2005 | A1 |
20050207116 | Yatskov et al. | Sep 2005 | A1 |
20050225936 | Day | Oct 2005 | A1 |
20050237716 | Chu et al. | Oct 2005 | A1 |
20050280986 | Coglitore et al. | Dec 2005 | A1 |
20050286222 | Lucero | Dec 2005 | A1 |
20050286223 | Morales | Dec 2005 | A1 |
20060032455 | Bonner et al. | Feb 2006 | A1 |
20060089065 | Nash et al. | Apr 2006 | A1 |
20060130411 | Edgar et al. | Jun 2006 | A1 |
20060141921 | Turek et al. | Jun 2006 | A1 |
20060197287 | Farah et al. | Sep 2006 | A1 |
20060213498 | Sellwood | Sep 2006 | A1 |
20060214423 | Sandman et al. | Sep 2006 | A1 |
20060276121 | Rasmussen | Dec 2006 | A1 |
20060283816 | Moore et al. | Dec 2006 | A1 |
20060288651 | Zeng et al. | Dec 2006 | A1 |
20070025073 | Liu | Feb 2007 | A1 |
20070044416 | Van Dijk | Mar 2007 | A1 |
20070064389 | Lewis, II | Mar 2007 | A1 |
20070064391 | Lewis, II et al. | Mar 2007 | A1 |
20070129000 | Rasmussen et al. | Jun 2007 | A1 |
20070171610 | Lewis | Jul 2007 | A1 |
20070171613 | McMahan et al. | Jul 2007 | A1 |
20070173189 | Lewis | Jul 2007 | A1 |
20070183129 | Lewis, II et al. | Aug 2007 | A1 |
20070210679 | Adducci et al. | Sep 2007 | A1 |
20070210680 | Appino et al. | Sep 2007 | A1 |
20070210681 | Adducci et al. | Sep 2007 | A1 |
20070210683 | Adducci et al. | Sep 2007 | A1 |
20070210686 | Adducci et al. | Sep 2007 | A1 |
20070221393 | Adducci et al. | Sep 2007 | A1 |
20070254583 | Germagian et al. | Nov 2007 | A1 |
20070259616 | Scattolin et al. | Nov 2007 | A1 |
20070293138 | Adducci et al. | Dec 2007 | A1 |
20080002358 | Casebolt | Jan 2008 | A1 |
20080029081 | Gagas et al. | Feb 2008 | A1 |
20080067904 | Adducci et al. | Mar 2008 | A1 |
20080068791 | Ebermann | Mar 2008 | A1 |
20080074849 | Adducci et al. | Mar 2008 | A1 |
20080094797 | Coglitore et al. | Apr 2008 | A1 |
20080098763 | Yamaoka | May 2008 | A1 |
20080134745 | Hermanson | Jun 2008 | A1 |
20080148646 | Nozaki et al. | Jun 2008 | A1 |
20080174217 | Walker | Jul 2008 | A1 |
20080174954 | VanGilder et al. | Jul 2008 | A1 |
20080180908 | Wexler | Jul 2008 | A1 |
20080212265 | Mazura et al. | Sep 2008 | A1 |
20080266789 | Hruby et al. | Oct 2008 | A1 |
20090021907 | Mann et al. | Jan 2009 | A1 |
20090059523 | Mallia et al. | Mar 2009 | A1 |
20090061755 | Calder et al. | Mar 2009 | A1 |
20090190307 | Krietzman | Jul 2009 | A1 |
20090227197 | Lewis, II et al. | Sep 2009 | A1 |
20090230675 | Densmore | Sep 2009 | A1 |
20090239460 | Lucia et al. | Sep 2009 | A1 |
20090239461 | Lewis, II et al. | Sep 2009 | A1 |
20100003911 | Graczyk et al. | Jan 2010 | A1 |
20100044972 | Vila | Feb 2010 | A1 |
20100061059 | Krietzman et al. | Mar 2010 | A1 |
20100085707 | Moss | Apr 2010 | A1 |
20100114356 | Schmitt et al. | May 2010 | A1 |
20100172092 | Davis et al. | Jul 2010 | A1 |
20100172093 | Davis et al. | Jul 2010 | A1 |
20100178202 | Isobe et al. | Jul 2010 | A1 |
20100216388 | Tresh et al. | Aug 2010 | A1 |
20100248610 | Caveney et al. | Sep 2010 | A1 |
20100252233 | Absalom | Oct 2010 | A1 |
20110019362 | Krietzman | Jan 2011 | A1 |
20110035636 | Klisura et al. | Feb 2011 | A1 |
20110037236 | Klisura et al. | Feb 2011 | A1 |
20110148261 | Donowho et al. | Jun 2011 | A1 |
20110222241 | Shearman et al. | Sep 2011 | A1 |
20110237174 | Felisi et al. | Sep 2011 | A1 |
20110271610 | Cottuli et al. | Nov 2011 | A1 |
20110278250 | Malekmadani | Nov 2011 | A1 |
20110278999 | Caveney et al. | Nov 2011 | A1 |
20110287704 | Lewis, II et al. | Nov 2011 | A1 |
20110290553 | Behrens et al. | Dec 2011 | A1 |
20110307102 | Czamara et al. | Dec 2011 | A1 |
20120013229 | Krietzman | Jan 2012 | A1 |
20120015553 | Rosendahl | Jan 2012 | A1 |
20120049706 | Cottuli et al. | Mar 2012 | A1 |
20120063087 | Wei | Mar 2012 | A1 |
20120080984 | Watts | Apr 2012 | A1 |
20120112612 | Krietzman | May 2012 | A1 |
20120194999 | Krietzman et al. | Aug 2012 | A1 |
20120267991 | Adducci et al. | Oct 2012 | A1 |
20130029579 | Lewis, II | Jan 2013 | A1 |
20130160271 | Krietzman et al. | Jun 2013 | A1 |
20130165035 | Krietzman et al. | Jun 2013 | A1 |
20130276389 | Marrs et al. | Oct 2013 | A1 |
20130309957 | Fleming et al. | Nov 2013 | A1 |
20140196394 | Greeson et al. | Jul 2014 | A1 |
20140323029 | Lewis, II et al. | Oct 2014 | A1 |
20140334099 | Krietzman et al. | Nov 2014 | A1 |
20150065028 | Krietzman | Mar 2015 | A1 |
20150173253 | Lewis, II et al. | Jun 2015 | A1 |
20150181750 | Bailey et al. | Jun 2015 | A1 |
20150208554 | Leigh et al. | Jul 2015 | A1 |
20150264839 | Lewis, II et al. | Sep 2015 | A1 |
20150282390 | Lewis, II et al. | Oct 2015 | A1 |
20150319872 | Lewis, II et al. | Nov 2015 | A1 |
20150351289 | Krietzman et al. | Dec 2015 | A1 |
20150366094 | Segroves et al. | Dec 2015 | A1 |
20160088773 | Greeson et al. | Mar 2016 | A1 |
20160249488 | Krietzman | Aug 2016 | A1 |
20160302317 | Lewis, II et al. | Oct 2016 | A1 |
20170042057 | Segroves et al. | Feb 2017 | A1 |
20170127569 | Rimler et al. | May 2017 | A1 |
20170127570 | Lewis, II et al. | May 2017 | A1 |
20170150652 | Greeson et al. | May 2017 | A1 |
20180035570 | Greeson et al. | Feb 2018 | A1 |
20180042143 | Krietzman et al. | Feb 2018 | A1 |
20180263127 | Lewis, II et al. | Sep 2018 | A1 |
20190073004 | Lewis, II | Mar 2019 | A1 |
20190075685 | Krietzman et al. | Mar 2019 | A1 |
20190313551 | Krietzman et al. | Oct 2019 | A1 |
20190343023 | Lewis, II et al. | Nov 2019 | A1 |
20190350108 | Davis | Nov 2019 | A1 |
20190350110 | Krietzman | Nov 2019 | A1 |
20200113074 | Lewis, II et al. | Apr 2020 | A1 |
20200187387 | Lewis, II et al. | Jun 2020 | A1 |
20200205317 | Davis | Jun 2020 | A1 |
20200288605 | Lewis, II et al. | Sep 2020 | A1 |
20200396868 | Lewis, II et al. | Dec 2020 | A1 |
20210014988 | Lewis, II et al. | Jan 2021 | A1 |
20210385976 | Lewis, II et al. | Dec 2021 | A1 |
20220035426 | Lewis, II | Feb 2022 | A1 |
20220053672 | Krietzman | Feb 2022 | A1 |
20220061188 | Greeson et al. | Feb 2022 | A1 |
20220124924 | Lewis, II et al. | Apr 2022 | A1 |
Number | Date | Country |
---|---|---|
2008254682 | Nov 2012 | AU |
2509487 | Sep 1976 | DE |
2205054 | Jul 2010 | EP |
2156473 | Oct 1985 | GB |
2354066 | Mar 2001 | GB |
2366084 | Sep 2002 | GB |
H1048950 | Feb 1998 | JP |
2000-193792 | Jul 2000 | JP |
2000-286580 | Oct 2000 | JP |
2003-056993 | Feb 2003 | JP |
2004-200594 | Jul 2004 | JP |
2004-252758 | Sep 2004 | JP |
2007-212092 | Aug 2007 | JP |
1999048305 | Sep 1999 | WO |
2006055506 | May 2006 | WO |
2009089008 | Jul 2009 | WO |
2009103090 | Aug 2009 | WO |
2009103090 | Oct 2009 | WO |
2010028384 | Mar 2010 | WO |
2010028384 | May 2010 | WO |
2010117699 | Oct 2010 | WO |
Entry |
---|
Machine translation of Kawashima (JPH1048950A), retrieved Feb. 3, 2022. (Year: 1998). |
Kratz, Alonzo P., and Julian R. Fellows. “Pressure losses resulting from changes in cross-sectional area in airducts.” University of Illinois at Urbana Champaign, College of Engineering. Engineering Experiment Station., 1938, pp. 9 and 33. (Year: 1938). |
Information Disclosure Statement (IDS) Letter Regarding Common Patent Application(s), dated May 28, 2020. |
“International Search Report” and “Written Opinion of the International Search Authority” (European Patent Office) in Corning Cable Systems LLC, International Patent Application Serial No. PCT/US2009/000075, dated Aug. 7, 2009 (21 pages). |
“International Search Report” and “Written Opinion” of the International Search Authority (Korean Intellectual Property Office) in Chatsworth Products, Inc et al., International Patent Application Serial No. PCT/US2009/034338, dated Sep. 1, 2009 (7 pages). |
“International Search Report” and “Written Opinion of the International Search Authority” (Korean Intellectual Property Office) in Chatsworth Products, Inc. et al., International Patent Application Serial No. PCT/US2009/056256, dated Apr. 7, 2010 (7 pages). |
Rasmussen, Neil, “Air Distribution Architecture Options for Mission Critical Facilities”, White Paper #55, Revision 1, American Power Conversion (APC), West Kingston, Rhode Island, 2003 (13 pages). |
Chatsworth Products, Inc., “Thermal Management Solutions,” Signature Solutions Brochure, available at Internet Web Page <www.chatsworth.com/passivecooling>, dated Mar. 2008 (6 pages). |
Rack Technologies PTY LTD, Product Catalog, Internet Web Page <http://racktechnologies.com.au/files/rt2005.pdf>, Jun. 16, 2005, retrieved from Internet Archive Wayback Machine <http://web.archive.org/web/20050616212856/http://racktechnologies.com.au/files/rt2005.pdf> as reviewed as of Apr. 29, 2016 (73 pages). |
Emerson Network Power, Smart Cooling Solutions Data Center, Oct. 2012, Internet Web Page <http://www.emersonnetworkpower.com/en-EMEA/Products/RACKSANDINTEGRATEDCABINETS/Documents/Knurr%20DCD/Smart-Cooling-Solutions-Data-Center-EN.pdf> (51 pages). |
Eaton Corporation, Eaton Airflow Management Solutions: Installation Guide for Telescopic Chimney for SSeries Enclosures, Publication No. MN160007EN, dated 2014 (13 pages). |
Eaton Corporation, Data Center Products: Eaton Telescopic Chimney, dated 2014 (2 pages). |
Hewlett-Packard Development Company, LP, HP 10000 G2 42U Rack Air Duct Installation Guide, dated Aug. 2008 (23 pages). |
Panduit Corporation, Panduit Net-Access Vertical Exhaust Duct (VED) Instructions, dated 2009 (4 pages). |
Panduit Corporation, Panduit Net-Access Vertical Exhaust System (VES) Specification Sheet, dated 2011 (4 pages). |
Panduit Corporation, Panduit Vertical Exhaust Duct for N-Type and S-Type Cabinets: Installation Instructions, dated 2012 (14 pages). |
Information Disclosure Statement (IDS) Letter Regarding Common Patent Application(s), dated Jan. 5, 2022. |
Information Disclosure Statement (IDS) Letter Regarding Common Patent Application(s), dated Sep. 8, 2020. |
Information Disclosure Statement (IDS) Letter Regarding Common Patent Application(s), dated Oct. 21, 2021. |
Number | Date | Country | |
---|---|---|---|
20200245494 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
61095147 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14489963 | Sep 2014 | US |
Child | 16847135 | US | |
Parent | 13243408 | Sep 2011 | US |
Child | 14489963 | US | |
Parent | 12892176 | Sep 2010 | US |
Child | 13243408 | US | |
Parent | 12344367 | Dec 2008 | US |
Child | 12892176 | US |