The embodiments herein relate generally to engine design.
Prior to embodiments of the disclosed invention, jet engines suffered from excessive noise, fuel consumption, speed limitations and air volume limitations. Embodiments of the disclosed invention solve this problem by pushing energy forward with exhaust.
An engine assembly is configured to exceed Mach. The engine assembly has a casing mechanically coupled to a jet engine such that ducting exists between the casing and the jet engine. The jet engine further includes a low pressure compression stage configured to compress a gasses. A high pressure compression stage is connected to the low pressure compression stage and configured to further compress the gasses. A combustion stage is connected to the high pressure compression stage and configured to heat the gasses to three thousand degrees Fahrenheit by back pressure. A low pressure turbine is connected to the combustion stage and configured to utilize energy in the gasses so that there is very little emission from the low pressure turbine. A shaft is connected to the low pressure turbine and configured to turn as a result of the low pressure turbine. A ducted impeller has blades wherein the blades are widest at a blade tip, narrowing down to a hub, while not over lapping and beginning with a rotation of at least 45 degrees to the shaft and of a steeper angle going toward the hub to create an even air pressure along an entire length of each blade.
In some embodiments, the low pressure compression stage can further include a first low pressure compressor a second low pressure compressor and a third low pressure compressor connected to the shaft. The high pressure compression stage can further include a first high pressure compressor, a second high pressure compressor, a third high pressure compressor, a fourth high pressure compressor and a fifth high pressure compressor connected to the shaft. The combustion stage can further include a burner that burns fuel to heat the gasses in the combustion stage. The turbine stage can further include a first low pressure turbine, a second low pressure turbine and a third low pressure turbine, which operate to turn the shaft.
The detailed description of some embodiments of the invention is made below with reference to the accompanying figures, wherein like numerals represent corresponding parts of the figures.
By way of example, and referring to
Turning to those components in more detail, low pressure compression stage 24 further comprises first low pressure compressor 72, second low pressure compressor 74 and third low pressure compressor 76. High pressure compressor 26 further comprises first high pressure compressor 82, second high pressure compressor 84, third high pressure compressor 86, fourth high pressure compressor 88 and fifth high pressure compressor 90. Combustion stage 28 comprises burner 34 that burns fuel to heat the air in the combustion stage. Turbine stage 30 comprises first low pressure turbine 104, second low pressure turbine 106 and third low pressure turbine 108, which operate to turn shaft 40. While passing through turbine 30, the gasses pass through gradually smaller areas, increasing the pressure into the final compressor, expanding into the final turbine which increases combustion temperature to about three thousand degrees Fahrenheit by back pressure, all the while producing more torque, where thrust was once needed and burning exhaust emissions again in the turbine stage which is a sequence of small to larger turbines. The larger turbines are to capture torque still available in the spent hot engine exhaust, gases pass out of the exhaust nozzle at lower speed and mix with fresh air to complete burning of emissions giving the engine very little added thrust and very little emissions.
Shaft 40 is mechanically coupled to impeller fan 52, which is further attached to tip 54 in nacelle 50. In addition to powering the compressors, the shaft turns impeller fan 52 which causes air to pass through duct 60 and around jet engine 34. In an improvement over the prior art impeller fan 52 can rotate at a high speed and produce thrust over Mach impeller blade tip speed thus resulting in a Mach speed aircraft. Air passing through duct 60 both produces thrust and cools jet engine 34. Impeller fan 52 further comprises blades that are arranged as follows: no two blades are to overlap. The blades are to be at the widest at the blade tip, narrowing down to the hub, all the while not over lapping and begin at minimum 45 degrees to shaft and of a steeper angle going towards the hub this is to create even air pressure along the entire length of each blade.
In some embodiments, the ducted fan dramatically reduces fuel consumption, turbine size, noise and pollution. The highest to date combustion temperature during a complete fuel burn is now possible due to the increased work and torque or lugging the shaft 40 is now subjected to via the compressor fans. In some embodiments, the impeller or turbo fan blade tip speed can exceed the speed of sound. In some embodiments, the engine is a sub-mock design. This design can be a low RPM turbine. Turbine RPM can be the manufacturer model option.
Persons of ordinary skill in the art may appreciate that numerous design configurations may be possible to enjoy the functional benefits of the inventive systems. Thus, given the wide variety of configurations and arrangements of embodiments of the present invention the scope of the invention is reflected by the breadth of the claims below rather than narrowed by the embodiments described above.
This application claims priority to provisional patent application U.S. Ser. No. 61/833,752 filed on Jun. 11, 2013, the entire contents of which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5141400 | Murphy | Aug 1992 | A |
7472543 | Papamoschou | Jan 2009 | B2 |
20020157378 | Vogeler | Oct 2002 | A1 |
20040011057 | Huber | Jan 2004 | A1 |
20040147798 | MacWhinnie | Jul 2004 | A1 |
20050188702 | Bachovchin | Sep 2005 | A1 |
20060228206 | Decker | Oct 2006 | A1 |
20130145769 | Norris | Jun 2013 | A1 |
20160097290 | Fulayter | Apr 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
61833752 | Jun 2013 | US |