Information
-
Patent Grant
-
6612007
-
Patent Number
6,612,007
-
Date Filed
Tuesday, May 16, 200024 years ago
-
Date Issued
Tuesday, September 2, 200321 years ago
-
Inventors
-
-
Examiners
Agents
- Kirton & McConkie
- Krieger; Michael F.
-
CPC
-
US Classifications
Field of Search
US
- 029 211
- 029 2435
- 029 521
- 029 5221
- 029 798
- 029 2835
-
International Classifications
-
Abstract
The present invention relates to a clinch joiner (1) for clinch joining ductile layers of material (7,8), such as metal sheets, and in particular to and a joiner including a die (4) and a punch (2). The die comprises: a die anvil (44) with a body portion (48) and an anvil surface (46); at least two die blades (56) that extend transverse to the anvil surface (46) to form a die aperture (57), the separation between the blades (56) defining a die aperture width and the extension of the die blades above the anvil surface (46) defining a die aperture depth; at least one pivot recess (68) in the body portion (48); a protrusion (58) on each of the die blades (56) that is seated in a matching pivot recess (68) to form a pivot joint by which each die blade (56) may pivot to constrict and dilate the die aperture (57); at least one biasing member (70) by which the die blades (56) are biased to constrict the die aperture (57); and a die shield (14) that limits the extent by which the die blades (56) may pivot to dilate the die aperture (57). The pivot joints (58,68) extend underneath the anvil surface (46) so that when the die aperture (57) is dilated the depth of the die aperture is decreased.
Description
BACKGROUND
a. Field of the Invention
The present invention relates to a joiner for clinch joining ductile materials, such as metal sheets, and in particular to a joiner including a die and a punch assembly.
b. Related Art
It is known to join a plurality of sheets of ductile material by causing these to be deformed into an interlocking configuration in a local area. Such joins are made by ductile material joining tools comprising a die with an aperture that is opposite a punch assembly comprising a punch surrounded by a stripper mechanism. Layers of ductile material are sandwiched between the punch assembly and when the punch is pressed towards the aperture, material is drawn into the aperture. The material undergoes plastic deformation in the aperture to flow into a shape in which two or more layers are interlocked, for example by the forming of one layer around another layer.
The aperture has a base with an anvil having an anvil surface and at least two side walls formed from movable blades. The blades are generally transverse to the anvil surface and extend in the direction in which the die and punch are pressed together. The blades help define the local area, for example a circular, square or rectangular area, in which the deformation of the layers of sheet material takes place. Once the material has been drawn and flows into the aperture, the blades move away from each other in a radial direction as sheet material flows laterally.
The outward movement of the blades is constrained by a die shield, which may be separate from but held in a fixed relationship with the die. In order to provide a compact die, the die shield can be joined to or integral with the die.
A circular die and punch can be used to form a clinch joint in which sheet material is symmetrically deformed both axially and radially to form a leak-proof button, for example as disclosed in patent document U.S. Pat. No. 5,150,513. A rectangular die and punch can be used to form a trapezoidal clinch joint (also called a lance joint), in which the sheet material is cut through by the punch along a pair of parallel opposed lines, with the layers of sheet material deformed laterally outwards underneath each of the cuts.
One commercially available example of a joining tool for forming a circular clinch joint is the SR 504 Series die and punch tool set from Bollhoff Fastenings Limited of Willenhall, West Midlands, UK. This tool set has a nominal 5 mm aperture with four movable die blades constrained by a separate die shield having an inner diameter of 16 mm.
A more compact die and punch would be desirable, for example allowing the sheet material joining tool to get further into corners or other awkward locations when fabricating a structure from the sheet material. However, there is a trade off between the strength of the tool and the maximum thickness of sheet material that may be joined, and the overall size, particularly in the direction transverse to the direction in which pressure is applied.
The die shield is arranged so that much of the pressure between the die and punch assembly is born by the die shield and stripper mechanism. However, the die blades experience increasing pressure as material is pressed into the aperture. This pressure can result in restriction of the movement of the die blades, resulting in a bad joint and/or damage to the die blades, particularly if the die blades are made thinner to reduce the lateral extent of the die.
A further constraint results from the necessity to include in the die some means of biasing the die blade back towards the anvil surface after the drawing operation by the punch is completed. For this, a coil spring or o-ring can be provided extending around the outside of the die blades. As the die blades move outwards to dilate the aperture, the spring or o-ring becomes stretched or compressed. When the joined sheet material is withdrawn from the aperture, the die blades return to their start position owing to the tension or compression in the spring or o-ring.
Because the spring or o-ring extends around the outside of the die blades usually between the die blades and the surrounding die shield, lateral space must be provided for the spring or o-ring. This again limits further reduction in the lateral extent of the die. Furthermore, lateral clearance space can result in a die blade being dislodged from between the anvil and die shield, and being lost from the die. This is very inconvenient in a production environment, as any machine using the sheet metal joiner would then have to be stopped to repair or replace the faulty die. If the faulty die were not spotted immediately, a great deal of rework to joined fabrications might then be required.
In some dies, the die blades slide laterally outwards, in which case the aperture depth is unchanged as the die blades move. However, the pressure imparted on the die blades can inhibit such a sliding motion, unless a die shield is used. Such a die shield will increase the lateral extent of the die.
Sometimes the die blades pivot outwards about a pivot mechanism below the level of the anvil surface. The pivot mechanism has a pivot axis or pivot point below and laterally outside an edge of the anvil surface. Because of this and the requirement that die blades should have a wide base or pivot with sufficient surface area to withstand the pressures during drawing, the die blades tend to rise when pivoted outwards. This tends to increase the pressure on the die blades, and again limits the amount by which the lateral dimensions of the die can be reduced.
SUMMARY OF THE INVENTION
The present invention addresses the problems cited above, and provides a die for a ductile material joiner, and also a ductile material joiner for clinch joining two or more layers of ductile material, which addresses these issues.
Accordingly, the invention provides a die for a ductile material clinch joiner, comprising:
a) a die anvil, the anvil having a body portion and an anvil surface;
b) at least two die blades, the blades extending generally transverse above and below the anvil surface and forming with the anvil surface a die aperture for a die punch, the separation between the blades defining a die aperture width or diameter and the extension of the die blades above the anvil surface defining a die aperture depth;
c) at least one pivot recess in the body portion;
d) a protrusion on each of the die blades, each protrusion being seated in a matching pivot recess to form with the recess a pivot joint by which each die blade may pivot with respect to the anvil body portion in order to constrict and dilate the aperture width or diameter;
e) at least one biasing member by which the die blades are biased to constrict the die aperture; and
f) a die shield around the die blades;
wherein the pivot joints extend underneath the anvil surface so that when the die aperture is dilated the aperture depth is decreased.
Also according to the invention, there is provided a ductile material joiner for clinch joining two or more layers of ductile material, comprising a punch tip and a die according to the invention, the die having an aperture matching the punch tip.
In a round clinch joint, the punch tip should match the die aperture with clearance that is sufficient so that ductile material is drawn down between the punch tip and die blades prior to compression of the material against the anvil surface and consequent lateral flow of the ductile material.
In a lance joint, the punch tip should match the die aperture with a close clearance so that ductile material is cut along the die blades prior to compression of the material against the anvil surface and consequent lateral flow of the ductile material under the cut.
The provision of the pivot joint underneath the anvil surface can be used to reduce the lateral extent of the die blade. This is because the joint then extends laterally further inwards, for example towards a central longitudinal axis of symmetry of the die.
At the same time, this arrangement permits the depth of the aperture to be decreased when the aperture is dilated, and this helps to permit a reduction in pressures borne by the die blades as the die blades move outwards during the joining of the sheet material. This facilitates movement of the die blades and hence formation of the joint. For example, the pivot joint will have a pivot point or pivot axis, and provision of at least a part of the pivot joint underneath the anvil surface permitting this axis to be moved inwards. Bringing the pivot axis laterally inwards allows the die blade to pivot so that as the aperture dilates, the depth of the aperture decreases.
It is not necessary however, for the aperture depth to decrease as the die blades first start to pivot laterally outwards. For example, the pivot point or pivot axis may be laterally between a pair of longitudinal axes defined by the limits of travel of tips of the dies blades extending above a substantially flat anvil surface, the pair of longitudinal axes being transverse to the anvil surface. Then, the height of the die blade tips above a plane defined by the anvil surface will fall as the die blade become fully dilated. If the pivot point or pivot axis is approximately central between the pair of longitudinal axes, then this height will initially rise as the die blades begin to move laterally outwards, then fall as the die blades move fully outwards. Preferably, the pivot point or axis will be closer to the innermost of the pair of longitudinal axes, so that height of the tip of the die blade above the plane defined by the anvil surface is lower when the aperture is fully dilated than when the aperture is constricted. In any event, depth of the aperture may increase as the aperture is partially dilated, and then decrease as the aperture is fully dilated.
The pressure on the die blade is then partially relieved during the time when a maximum pressure would be expected to be exerted on the die blades, i.e. as the sheet material joint forming process completes formation of the joint.
The recess underneath the anvil surface may be a part spherical or a part cylindrical pivot socket, in which case the die blade protrusion may be a convex surface matching the pivot socket so that the convex surface rotates in the pivot socket when the die blade is pivoted. The surfaces may be essentially spherical, with clearance provided for manufacturing tolerances. Additional clearance may be required if the pivot joint is not cylindrical. For example, the pivot joint can be part-toroidal with the blade protrusion having a similar part-toroidal shape. Additional clearance must then be provided between the protrusion and the recess to allow for the fact that as the protrusion pivots in the recess, the central part and end parts along the arc of the protrusion will move relatively apart in a longitudinal direction.
Preferably, the anvil has a shoulder that extends in a plane below the anvil surface and that supports a die blade endmost portion. The die blade endmost portion may be a portion of the die blade protrusion. In a preferred embodiment of the invention, the shoulder extends tangentially from the pivot recess.
It is advantageous if the biasing member is provided between the die blade and the shoulder. The biasing member then does not add to the lateral extent of the laterally biased die blades. The biasing member is preferably a resilient ring, for example a nitrile o-ring, that is compressed between the die blade and the shoulder when the die blade is pivoted to dilate the aperture.
There may however, be alternatively or additionally a resilient biasing member, for example a coil spring or an o-ring, stretched around laterally outwards facing surfaces of the die blades below the level of the anvil surface. The effect of a biasing member provided between the die blade and the shoulder may permit a reduction in the size of a second biasing member stretched around laterally outwards facing surfaces of the die blades. This facilitates a reduction in the lateral extent of the die, whilst at the same time maintaining good inward biasing of the die blades.
In one embodiment of the invention, the anvil surface is bounded by a generally circular periphery, the die blades extending in an arc around at least part of said periphery.
In an alternative embodiment of the invention, the anvil surface is bounded by a generally square or rectangular periphery, the die blades extending along at least two opposed sides of said periphery.
It is advantageous if the die shield remains in close proximity with a portion of the die blade adjacent the protrusion at the die blade is pivoted to dilate and constrict the aperture. This helps to keep each die blade retained to the die.
In one embodiment, the die shield is integral with the body portion, and the die blades are removably inserted in an opening in a side of the body portion. In another embodiment of the invention, the die shield is removably attached to the body portion and the die shield prevents the die blades from being removed from the die when the die shield is attached to the body portion.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a view in partial cross section through a sheet material clinch joiner comprising a punch with a retracted punch tip on one side of a pair of metal sheets, and opposite this a die according to a first embodiment of the invention;
FIG. 2
is a view in partial cross section through a sheet material clinch joiner comprising a punch with an extended punch tip on one side of a pair of metal sheets, and opposite this a die according to a second embodiment of the invention, and showing the punch tip deforming the layers of sheet metal into an aperture of the die;
FIGS. 3
,
4
and
5
are views of the die of
FIG. 2
showing, respectively, a view facing into the die aperture and showing a cylindrical symmetry of the die, a cross-sectional view in a plane through a cylindrical axis of the die, and an enlarged view of a portion of the die showing a number of die blades moveable between a central die anvil and a peripheral die shield;
FIGS. 6 and 7
are, respectively, views of the die of
FIG. 1
, facing into the aperture and along a central cylindrical axis of the die;
FIGS. 8
,
9
and
10
are views showing how the punch tip and second embodiment the die co-operate to form a clinch joint in the two sheets of metal as the punch tip is driven towards the anvil surface;
FIG. 11
shows a cross-sectional view through a punch tip and a die according to a third embodiment of the invention, the die having a pair of parallel die blades either side of a central rectangular die anvil and a pair of parallel and integrally formed die shields laterally outwards of the die blades;
FIG. 12
is a cross-section through the die of
FIG. 11
, taken along lines XII—XII; and
FIG. 13
is a cross-section through the die of
FIG. 11
, taken along lines XIII—XIII.
DETAILED DESCRIPTION
FIG. 1
shows a first embodiment of a sheet metal clinch joiner
1
, comprising a punch assembly
2
and a die
4
. The punch assembly
2
and die
4
are cylindrically symmetric and are aligned along common cylindrical axes
5
,
6
. Between the punch assembly
2
and die
4
are a pair of thin metal sheets
7
,
8
which are aligned transverse to the punch assembly and die axes
5
,
6
. The sheets
7
,
8
are in contact along a common interface
9
. In a sheet material joining operation, the punch assembly
2
is brought towards the pair of sheets
7
,
8
as indicated by arrows
10
until a forward hollow stripper tip
12
of the punch assembly
2
comes into contact with one of the metal sheets
7
, thereby pressing the other metal sheet
8
against a cylindrical die shield
14
of the die
4
.
FIG. 2
shows a second embodiment of a sheet metal joiner
101
in which parts common with the first embodiment
1
are indicated by reference numerals incremented by
100
. The operation of the first and second embodiments
1
,
101
is essentially the same. The punch assembly
2
,
102
has a main cylindrical housing
16
,
116
referred to herein as a stripper can. The end of the stripper can
16
,
116
away from the metal sheets
7
,
8
;
107
,
108
has an open end plugged with a punch holder
18
,
118
. The other end of the stripper can
16
,
116
has a radially inwards directed lip
20
,
120
which terminates in a central circular aperture from which the stripper tip
12
,
112
extends. The stripper tip
12
,
112
has an outwardly directed flange
22
,
122
. An outer cylindrical surface
24
,
124
of the stripper tip
12
is a close sliding fit with a matching cylindrical surface
25
,
125
of the stripper can lip
20
,
120
. In addition, the stripper tip flange
22
,
122
has an outer cylindrical surface
26
,
126
which has a close sliding fit with an inner cylindrical surface
27
,
127
of the stripper can
16
,
116
. The stripper tip
12
,
112
is therefore free to slide axially with respect to the stripper can
16
,
116
.
The sliding fit of the stripper tip
12
,
112
within the stripper can
16
,
116
is limited in an outwards direction by contact between the stripper can lip
20
,
120
and the stripper tip flange
22
,
122
. A coil spring
28
,
128
is retained within the stripper can
16
,
116
between the punch holder
18
,
118
and the stripper tip flange
22
,
122
. The coil spring
28
,
128
biases the stripper tip
12
,
112
outwards so that in a rest condition the stripper tip flange
22
,
122
remains in contact with the stripper can lip
20
,
120
. The axial sliding movement of the stripper tip with respect to the stripper can is limited in an axially inwards direction by compression of the spring
28
,
128
against the punch holder
18
,
118
.
A cylindrically symmetric punch
30
,
130
is axially centered on the punch axis
5
,
105
, and is set into a cylindrical recess
32
,
132
in the punch holder
18
,
118
. The punch
30
,
130
extends axially along the centre of the stripper can
16
,
116
into the stripper tip
12
,
112
, where the punch
30
,
130
tapers down to a punch tip
34
,
134
. The stripper tip
12
,
112
terminates in a neck
36
,
136
with a cylindrical inner surface
37
,
137
that is a close sliding fit with the cylindrical stripper tip
34
,
134
.
When the punch assembly
2
,
102
is moved
10
,
110
up against the metal sheet
7
,
107
the stripper tip
12
,
112
comes first into contact with the metal sheet
7
,
107
. Further movement
10
,
110
then causes the stripper tip
12
,
112
to slide axially with respect to the stripper can
16
,
116
, with the result that the spring
28
,
128
begins to be compressed whilst the punch tip
34
,
134
continues with the motion
10
,
110
towards the metal sheet
7
,
107
.
As this is happening, the die
4
,
104
provides a restoring force against the other metal sheet
8
,
108
. Most of the restoring force is provided through the die shield
14
,
114
.
The die shield
14
,
114
stands higher than the die blades
56
,
156
with sufficient clearance that the die blades may pivot outwards as the metal layers
7
,
8
;
107
;
108
are drawn down by the punch tip
34
,
134
.
The first and second embodiments of the die
4
,
104
are shown in more detail in
FIGS. 3-7
. The die
4
,
104
has a unitary anvil body
40
,
140
which is cylindrically symmetric about die axis
6
,
106
. The anvil body
40
,
140
has at one end a lower stem
42
,
142
that in use is seated in a tool holder (not shown). At the opposite end of the anvil body
40
,
140
is a die anvil
44
,
144
with an anvil surface
46
,
146
. A die main body portion
48
,
148
with a diameter greater than that of the die stem
42
,
142
and die anvil
44
,
144
extends between the die stem and die anvil.
The die shield
14
,
114
extends around and is spaced from the die anvil
44
,
144
by a gap
50
,
150
, and is securely attached to the die main body portion
48
,
148
by an interference fit with a rebate
52
,
152
in the die main body portion
48
,
148
. The rebate
52
,
152
has a ledge
54
,
154
that faces in a direction axially towards the die anvil
44
,
144
, so that when the die shield bears the pressure of the punch assembly
2
,
102
, the die shield
14
,
114
is retained by the ledge
54
,
154
.
The gap
50
,
150
between the die shield
14
,
114
and the die anvil
44
,
144
is substantially filled by a number of die blades
56
,
156
. The first embodiment of the die
4
has seven die blades
56
equally spaced around the circular periphery of the anvil
44
. The die blades
56
are each separated from adjacent die blades by a short gap
57
.
The second embodiment of the die
104
has eight equally spaced die blades
156
around the circular periphery of the die anvil
144
. As can be seen in
FIG. 3
, there are no gaps between the die blades
156
when the die blades are up against the die anvil
144
.
The die anvil surface
146
is flat, except for a peripheral region
161
that is angled
165
down at about 3° in order to relieve pressure on the peripheral region when sheet material
108
is drawn down onto the anvil surface
146
. This helps to avoid abrasion or chipping of the anvil surface peripheral region
161
.
The die blades
56
,
156
extend generally transverse above and below the anvil surface
46
,
146
and form with the anvil surface an aperture
57
,
157
for the punch tip
34
,
134
. The separation between the blades
56
,
156
defines the aperture width
59
,
159
, and the extension of the die blades above the anvil surface
46
,
146
defines an aperture depth
60
,
160
.
As can be seen best in
FIG. 5
, each die blade
56
,
156
has a tip
62
,
162
which is recessed a short distance
163
below the level of the die shield
14
,
114
. The die shield
14
,
114
therefore bears most of the pressure imparted by the punch assembly
2
,
102
.
Each die blade
56
,
156
has a base
64
,
164
at the opposite end from the die blade tip
62
,
162
. The die blade base
64
,
164
is seated on a shoulder
66
,
166
between the die main body portion
48
,
148
and die anvil
44
,
144
. The shoulder
66
,
166
extends in a plane transverse to the die axis
6
,
106
between the die shield
14
,
114
and a pivot recess
68
,
168
that extends directly underneath the die anvil surface
46
,
146
. Each die blade
56
,
156
has a protrusion
58
,
158
that extends into the recess
68
,
168
, so that the protrusion and recess form a pivot joint by which each die blade
56
,
156
may pivot at its tip
62
,
162
laterally towards and away from the die anvil surface
46
,
146
respectively to constrict and dilate the die aperture
57
,
157
.
The recess
68
,
168
is essentially part-toroidal in shape, with the die blade protrusions
58
,
158
having a similar matching part-toroidal shape. There is provided normal manufacturing clearance between the protrusions and the recess, but also an additional clearance along an upper portion of the interface between the protrusions
58
,
158
and the recess
68
,
168
, to allow for the fact that as the die blades pivot, the arcuate ends of each toroidal protrusion will tend to rise and fall slightly whilst the central part of the die blade base
64
,
164
remains in contact with the shoulder
66
,
166
.
The first embodiment of the die
4
is provided with one resilient nitrile o-ring
70
that extends around the periphery of the shoulder
66
,
166
in a matching channel formed by a rebate
72
in a lower outer corner of each die blade lower portion
64
. As each die blade
56
pivots outwards, the rebate
72
compresses the o-ring against the shoulder
66
. This biases each die blade
56
back towards the die anvil
44
.
The second embodiment of the die
104
has a similar o-ring
170
and rebate
172
, and also a second o-ring
174
which is stretched around and seated in a groove
176
in a laterally outward facing surface
178
of each die blade
156
. The second o-ring
174
is preferably provided proximate the die blade tip
162
in order to provide for a maximum of lateral outwards movement for each die blade
156
in the gap
150
between each die blade
156
and the die shield
114
.
FIG. 5
shows in phantom outline how the die blade
156
compresses the second o-ring
174
as each die blade
156
is moved towards the surrounding die shield
114
. This compression and also the stretching of the second o-ring owing to the increased circumference around the die blades
156
, provides an additional biasing force to return each die blade
156
towards the die anvil
146
.
It should be noted that the pivot formed by each die blade protrusion
58
,
158
in the recess
68
,
168
is a slightly greater radius from the die axis
6
,
106
than the outer radius of the die anvil surface
46
,
146
and also the inner radius of the die blade tip
62
,
162
. Therefore, as each die blade
56
,
156
pivots laterally outwards, each die tip
62
,
162
rises slightly, but not so far that each die tip
62
,
162
rises above the level of the surrounding die shield
114
.
In the first embodiment of the die
4
, the outwards pivoting of each die blade
56
is limited by the contact of each die blade
56
and the surrounding die shield
14
.
In the second embodiment of the die
104
the outwards pivoting of each die blade
156
is limited by the contact of the second o-ring
174
and the surrounding die shield
114
. As shown in
FIG. 5
, at this point the tip
162
of each die blade
156
has dropped by a distance
180
further below the rim of the surrounding die shield
114
and the distance
163
of the die blades when up against the die anvil
144
. This is possible because at the outermost pivot of each die blade
156
, the die blade tip
162
is radially outwards of the effective pivot point or pivot axis of the die blade protrusion
158
in the recess
168
. The maximum outwards deflection for the die blades
56
of the first embodiment of the die
4
is up against the surrounding die shield
14
. Because each die blade
56
in the first embodiment of the die
4
can pivot radially further outwards than each die blade
156
of the second embodiment
104
, the die blade tips
62
of the first embodiment
4
drop further below the level of the surrounding die shield
14
than indicated in FIG.
5
.
The first embodiment of the die
4
therefore provides a greater reduction in compressive force on the die blade tips
62
whilst the second embodiment of the die
104
provides an increased radially inwards biasing force to return each die blade
156
to the die anvil
144
. In both embodiments, the radial extent of the die
4
,
104
is minimized by the provision of the recess
68
,
168
under the die anvil
46
,
146
, and also by minimising the gap
50
,
150
between the die shield
14
,
114
and each die blade
56
,
156
.
An important benefit of minimising the gap
50
,
150
is that the die shield
14
,
114
can be arranged to be in contact with a heel
82
,
182
of the die blade near the o-ring rebate
72
,
172
. The die
4
,
104
is assembled by first placing each die blade
56
,
156
, and o-ring
70
,
170
,
174
in place around the die anvil
44
,
144
. The die shield
14
,
114
is then inserted over the die blades and die body rebate
52
,
152
. Each die blade
56
,
156
is then securely held by the die shield
14
,
114
which keeps each die blade protrusion
58
,
158
securely engaged in its recess
68
,
168
.
Reference is now made to
FIGS. 8
,
9
and
10
which show for the second embodiment of the invention the operation of the die punch tool
102
and die
104
. In
FIG. 8
the punch assembly
102
is being moved
110
towards the metal sheets
107
,
108
. When the stripper tip
112
comes into contact with the upper metal sheet
107
, the punch
130
continues to move towards the upper metal sheet until the punch tip
134
comes into contact with the upper metal sheet
107
and begins to deform plastically both metal sheets
107
,
108
into the die aperture
157
. When the two sheets of metal
107
,
108
have filled the die aperture
157
as shown in
FIG. 9
, further movement of the punch tip
134
into the die aperture
157
causes lateral plastic deformation of the metal sheets
107
,
108
as shown in FIG.
10
. The lateral movement of the metal sheets
107
,
108
causes each die blade
156
to pivot outwards thereby compressing the o-ring
170
between each die blade
156
and the die shoulder
166
, and also stretching and extending the second o-ring
174
that extends around all of the die blades
156
.
In the plastic deformation process, the metal sheets
107
,
108
are deformed into a button shape with the interface
109
doubling back on itself in an s-shape at the edges of the button shape. This locks the two sheets of metal
107
,
108
together at this localized area.
When the drawing pressure is relieved, the die tip
134
is withdrawn under the action of the coil spring
128
that was compressed in the drawing process. The punch tip
112
is then removed from the upper metal sheet
107
, and at the same time the die
104
is removed from the lower metal sheet
108
, whereupon each die blade
156
springs back against the die anvil
144
under the biasing action of the o-rings
170
,
174
.
FIGS. 11
,
12
and
13
show a third embodiment of a sheet metal clinch joiner
201
. For convenience, components of the joiner
201
similar in function to those of a second embodiment
104
are represented by reference numerals incremented by
100
.
The joiner
201
has a rectangular symmetry with a pair of straight parallel die blades
256
arranged either side of a rectangular die anvil
244
. The die blades
256
are assembled by slotting each die blade
256
into a gap
250
between the die anvil
244
and a pair of straight parallel die shields
214
. Because the die blades
256
are straight and can be slotted in from one side of the die
204
, the die shields
214
are integral with a main die body portion
248
which is also integral with a die stem
242
.
The die
244
could be provided with an o-ring which is compressed between a base portion
264
of each die blade
256
and a suitable internal shoulder. In this example however, just one o-ring
274
is wrapped around the die blades
256
seated in a channel
276
in a laterally outward facing surface
278
of each die blade
256
. The o-ring
274
is also seated in a pair of channels
275
in open ends
277
of the die anvil
244
. The operation of the joiner
201
is similar to that for the first and second embodiments
1
,
101
and so will not be described in detail. The type of joint formed by the die tool
201
is a lance type joint in which sheet material is cut along two parallel lines formed by the scissor-like contact between the die tip
234
and each die blade
256
. The die tip
234
has between the die blades
256
two tapered ends
235
which form a ramp in the sheet materials which are deformed into a die aperture
257
. Compression of sheet materials into the die aperture
257
results in lateral flow of the sheet materials mainly in two opposite lateral directions towards each die blade
256
. This flow causes the sheet materials to flow underneath the cuts initially formed in the materials.
Because each die blade
256
has a protrusion
258
extending into a recess
268
underneath an anvil surface
246
, each die blade
256
is able to pivot in a similar manner to the first and second embodiments
1
,
101
, so that each die blade tip
262
drops as the aperture
257
is fully dilated. Because of the cylindrical symmetry of the pivot joint formed by the die blade protrusion
258
in the anvil recess
268
, there is no need as in the first and second embodiments for additional clearance between the die blade protrusion
258
and anvil recess
268
beyond normal manufacturing tolerances.
The clinch joining tools described above have a compact lateral dimension relative to the size of the joint made in sheet materials. For example, in the first and second embodiments
1
,
101
, the diameter of the constricted die aperture may be between 2 to 12 mm, in which case the outer diameter of the die shield
14
,
114
will be between, respectively, 7 to 18 mm. The depth of the aperture will depend on the separation between the die blades and thickness of sheet material to be joined, but typically will be between 0.5 to 2 mm. The die blade tips
62
,
262
will when the aperture is constricted be about 0.05 mm below the level of the surrounding die shield
14
,
114
. When the die aperture
57
,
157
is fully dilated, then each die blade tip will be between about 0.10 and 0.15 mm beneath the level of the surrounding die shield
14
,
114
.
It is to be recognized that various alterations, modifications, and/or additions may be introduced into the constructions and arrangements of parts described above without departing from the spirit or ambit of the present invention.
Claims
- 1. A die for a ductile material clinch joiner, comprising:a) a die anvil, the anvil having a body portion and an anvil surface; b) at least two die blades, the blades extending generally transverse above and below the anvil surface and forming with the anvil surface a die aperture for a die punch, the separation between the blades defining a die aperture width or diameter and the extension of the die blades above the anvil surface defining a die aperture depth; c) at least one pivot recess in the body portion of the anvil; d) a protrusion on each of the die blades, each protrusion being seated in a matching relationship with the pivot recess to form a pivot joint by which each die blade may pivot with respect to the body portion of the anvil in order to constrict and dilate the aperture width or diameter, the pivot joint having a pivot axis; e) at least one biasing member by which the die blades are biased to constrict the die aperture; and f) a die shield around the die blades; wherein the pivot joints extends directly underneath the anvil surface permitting the pivot axis to move inwards so that when the die aperture is dilated the aperture depth is decreased.
- 2. A die as claimed in claim 1, in which the recess is a part spherical or a part cylindrical pivot socket, and the die blade protrusion has a convex surface matching the pivot socket so that the convex surface rotates in the pivot socket when the die blade is pivoted.
- 3. A die as claimed in claim 2, in which the convex surface is part-parabolic.
- 4. A die as claimed claim 1, in which the anvil has a shoulder that extends in a plane below the anvil surface and that supports a die blade endmost portion.
- 5. A die as claimed in claim 4, in which the die blade endmost portion is a portion of the die blade protrusion.
- 6. A die as claimed in claim 4, in which the shoulder extends tangentially from the pivot recess.
- 7. A die as claimed in claim 4, in which the biasing member is provided between the die blade and the shoulder.
- 8. A die as claimed in claim 7, in which the biasing member is a resilient ring that is compressed between the die blade and the shoulder when the die blade is pivoted to dilate the die aperture.
- 9. A die as claimed in claim 1, in which the anvil surface is bounded by a generally circular periphery, the die blades extending in an arc around at least part of said periphery.
- 10. A die as claimed in claim 1, in which the anvil surface is bounded by a generally square or rectangular periphery, the die blades extending along at least two opposed sides of said periphery.
- 11. A die as claimed in claim 1, in which the die shield remains in close proximity with a portion of the die blade adjacent the protrusion as the die blade is pivoted to dilate and constrict the die aperture.
- 12. A die as claimed in claim 11, in which the die shield is removably attached to the body portion, the die shield preventing the die blades from being removed from the die when the die shield is attached to the body portion.
- 13. A die as claimed in claim 1, in which the die shield limits the extent by which the die blades may pivot to dilate the aperture.
- 14. A ductile material for clinch joining two or more layers of ductile material, comprising a punch tip and a die with a die aperture matching the punch tip, wherein the die comprises:a) a die anvil, the anvil having a body portion and an anvil surface; b) at least two die blades, the blades extending generally transverse above and below the anvil surface and forming with the anvil surface a die aperture for a die punch, the separation between the blades defining a die aperture width or diameter and the extension of the die blades above the anvil surface defining a die aperture depth; c) at least one pivot recess in the body portion; d) a protrusion on each of the die blades, each protrusion being seated in a matching relationship with the pivot recess to form a pivot joint by which each die blade may pivot with respect to the anvil body portion in order to constrict and dilate the aperture width; e) at least one biasing member by which the die blades are biased to constrict the die aperture; and f) a die shield around the die blade; wherein the pivot joint extends directly underneath the anvil surface permitting the pivot axis to move inwards so that when the die aperture is dilated the aperture depth is decreased.
- 15. A ductile material joiner as claimed in claim 14, in which the depth of the die aperture increases as the die aperture is partially dilated, and then decreases as the die aperture is fully dilated.
US Referenced Citations (12)
Foreign Referenced Citations (3)
Number |
Date |
Country |
0 398 959 |
Aug 1993 |
EP |
2 069 394 |
Feb 1981 |
GB |
WO 9422613 |
Oct 1994 |
WO |