1. Field of the Invention
This invention relates generally to thin films and, more particularly, to ductile multilayer films of silicone resins with or without other polymers.
2. Description of the Related Art
Silicone resin films can be used in a variety of different technologies. For example, silicon resin films may be used as substrates for electronic devices or solar cells, to encapsulate devices, as barrier layers, and the like. However, silicone resins are typically brittle in the bulk state and so silicone resin films may be fragile and difficult to handle. Consequently, the applicability of silicone resin films may be limited to contexts in which the fragile nature of the silicone resin films does not prevent or inhibit use of the film.
Techniques exist for making silicone resin films more ductile. For example, rubber particles may be incorporated into the silicone resin before, during, or after forming the silicone resin layer. For another example, rubber segments may be incorporated into the silicone resin before, during, or after forming the silicone resin layer. However, these techniques have a number of drawbacks. For example, conventional techniques for making silicone resin films more ductile tend to result in a lower modulus, an increased coefficient of thermal expansion, and a lower glass transition temperature. The conventional techniques for making silicone resin films more ductile may also decrease the thermal stability and/or the rigidity of the silicone resin film.
The present invention is directed to addressing the effects of one or more of the problems set forth above. The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an exhaustive overview of the invention. It is not intended to identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
In one embodiment of the present invention, a method is provided for forming ductile multilayer silicone resin films. The method may include forming a silicone resin film including at least two polymer layers. At least one of the polymer layers is a silicone resin layer and the thickness of the silicone resin layer(s) is less than a corresponding ductile transition thickness.
In another embodiment of the present invention, ductile multilayer silicone resin films are formed by layering at least two polymer layers. At least one of the polymer layers is a silicone resin layer and the thickness of the silicone resin layer(s) is less than a corresponding ductile transition thickness.
In yet another embodiment of the present invention, ductile multilayer silicone resin films are provided. The silicone resin film includes at least two polymer layers. At least one of the polymer layers is a silicone resin layer and the thickness of the silicone resin layer(s) is less than a corresponding ductile transition thickness.
The invention may be understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions should be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present invention will now be described with reference to the attached figures. Various structures, systems and devices are schematically depicted in the drawings for purposes of explanation only and so as to not obscure the present invention with details that are well known to those skilled in the art. Nevertheless, the attached drawings are included to describe and explain illustrative examples of the present invention. The words and phrases used herein should be understood and interpreted to have a meaning consistent with the understanding of those words and phrases by those skilled in the relevant art. No special definition of a term or phrase, a definition that is different from the ordinary and customary meaning as understood by those skilled in the art, is intended to be implied by consistent usage of the term or phrase herein. To the extent that a term or phrase is intended to have a special meaning, i.e., a meaning other than that understood by skilled artisans, such a special definition will be expressly set forth in the specification in a definitional manner that directly and unequivocally provides the special definition for the term or phrase.
For example a silicone resin formed by co-hydrolyzing a mixture of PhSiCl3, MeSiCl3, PhMeSiCl2, and Ph2SiCl2 in toluene with water, washing the hydrolyzate with deionized water, and heat bodying the hydrolyzate and drying the resin (Resin-1), can be dissolved in methyl isobutyl ketone (MIBK). The MIBK solution of the resin is mixed with 0.2 wt. % zinc octoate, and is coated onto a stainless steel foil by dipping, spin coating, drawing down coating, extrusion coating, reverse graveur coating, or any other coating method. The coated stainless steel foil can be cured in air in an oven. The curing temperature ranges from 177° C. to 350° C. Curing time is from 30 minutes to 2 hours. Another example is a TMe/SiO2 resin. The resin is a partially condensed resin dispersion of the hydrolyzate of MeSi(OMe)3 in a isopropal alcohol dispersion of nano silica particles of 15 nm in diameter. The resin is coated similarly onto a substrate, such as stainless steel, and cured in air in an oven at 125° C. for 1 hour.
The (cured or partially cured) silicone resin layer 105 is formed to have a thickness (T) that is less than a ductile transition thickness (Td) of the cured or partially cured silicone resin that is used to form the silicone resin layer 105. As used herein and in accordance with common usage in the art, the term “ductile transition thickness” will be used to refer to the thickness at which a layer formed of a silicone resin transitions from a brittle state to a more ductile state. As used herein and in accordance with common usage in the art, the term “brittle” will refer to materials that exhibit an approximately linear relationship between an applied force and a displacement during a tensile strength test up to a critical point at which the material begins cracking, breaking, or crazing. In contrast, the term “ductile” will be used herein in accordance with common usage in the art to refer to materials that exhibit significant elongation before break and/or shear yielding in response to an applied force during a tensile strength test.
The actual value of the ductile transition thickness depends upon the composition of the silicone resin as well as the curing process used to form the silicone resin layer. For example, when cured at a temperature of approximately 250° C., a silicone resin layer 105 formed of Resin-1 may be brittle at thicknesses larger than a ductile transition thickness of approximately 10 μm and may be ductile at thicknesses less than the ductile transition thickness of approximately 10 μm. In contrast, when cured at a temperature of 200° C., the ductile transition thickness of Resin-1 may decrease to approximately 2-3 μm. The ductile transition thickness varies with the type of resin also. For example, the TMe/SiO2 resin mentioned above, when cured with the mentioned conditions, will have a ductile transition thickness of approximately 200 nm.
The curable silicone resin composition described above is only one example of a composition that may be used to form the silicone resin layer 105. In alternative embodiments, the curable silicone resin composition may be a hydrosilylation-curable silicone composition that can be any hydrosilylation-curable silicone composition comprising a silicone resin. Such compositions typically contain a silicone resin having silicon-bonded alkenyl groups or silicon-bonded hydrogen atoms, a cross-linking agent having silicon-bonded hydrogen atoms or silicon-bonded alkenyl groups capable of reacting with the silicon-bonded alkenyl groups or silicon-bonded hydrogen atoms in the resin, and a hydrosilylation catalyst. The silicone resin is typically a copolymer containing T and/or Q siloxane units in combination with M and/or D siloxane units. Moreover, the silicone resin can be a rubber-modified silicone resin, described below for the fifth and sixth embodiments of the silicone composition. As discussed above, the value of the ductile transition thickness of layers formed using the curable silicone resin compositions described below may depend upon the composition of the silicone resin as well as the curing process used to form the layer.
According to a first embodiment, the hydrosilylation-curable silicone composition comprises (A) a silicone resin having the formula (R1R22SiO1/2)w(R22SiO2/2)x (R1SiO3/2)y(SiO4/2)z (I), wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R2 is R1 or alkenyl, w is from 0 to 0.8, x is from 0 to 0.6, y is from 0 to 0.99, z is from 0 to 0.75, w+x+y+z=1, y+z/(w+x+y+z) is from 0.2 to 0.99, and w+x/(w+x+y+z) is from 0.01 to 0.8, provided the silicone resin has an average of at least two silicon-bonded alkenyl groups per molecule; (B) an organosilicon compound having an average of at least two silicon-bonded hydrogen atoms per molecule in an amount sufficient to cure the silicone resin; and (C) a catalytic amount of a hydrosilylation catalyst.
Component (A) is at least one silicone resin having the formula (R1R22SiO1/2)w(R22SiO2/2)x(R1SiO3/2)y(SiO4/2)z (I), wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R2 is R1 or alkenyl, w is from 0 to 0.8, x is from 0 to 0.6, y is from 0 to 0.99, z is from 0 to 0.75, w+x+y+z=1, y+z/(w+x+y+z) is from 0.2 to 0.99, and w+x/(w+x+y+z) is from 0.01 to 0.8, provided the silicone resin has an average of at least two silicon-bonded alkenyl groups per molecule.
The hydrocarbyl and halogen-substituted hydrocarbyl groups represented by R1 are free of aliphatic unsaturation and typically have from 1 to 10 carbon atoms, alternatively from 1 to 6 carbon atoms. Acyclic hydrocarbyl and halogen-substituted hydrocarbyl groups containing at least 3 carbon atoms can have a branched or unbranched structure. Examples of hydrocarbyl groups represented by R1 include, but are not limited to, alkyl, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 1-ethylpropyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, hexyl, heptyl, octyl, nonyl, and decyl; cycloalkyl, such as cyclopentyl, cyclohexyl, and methylcyclohexyl; aryl, such as phenyl and naphthyl; alkaryl, such as tolyl and xylyl; and aralkyl, such as benzyl and phenethyl. Examples of halogen-substituted hydrocarbyl groups represented by R1 include, but are not limited to, 3,3,3-trifluoropropyl, 3-chloropropyl, chlorophenyl, dichlorophenyl, 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoropropyl, and 2,2,3,3,4,4,5,5-octafluoropentyl.
The alkenyl groups represented by R2, which may be the same or different, typically have from 2 to about 10 carbon atoms, alternatively from 2 to 6 carbon atoms, and are exemplified by, but not limited to, vinyl, allyl, butenyl, hexenyl, and octenyl.
In the formula (I) of the silicone resin, the subscripts w, x, y, and z are mole fractions. The subscript w typically has a value of from 0 to 0.8, alternatively from 0.02 to 0.75, alternatively from 0.05 to 0.3; the subscript x typically has a value of from 0 to 0.6, alternatively from 0 to 0.45, alternatively from 0 to 0.25; the subscript y typically has a value of from 0 to 0.99, alternatively from 0.25 to 0.8, alternatively from 0.5 to 0.8; the subscript z typically has a value of from 0 to 0.75, alternatively from 0 to 0.55, alternatively from 0 to 0.25. Also, the ratio y+z/(w+x+y+z) is typically from 0.2 to 0.99, alternatively from 0.5 to 0.95, alternatively from 0.65 to 0.9. Further, the ratio w+x/(w+x+y+z) is typically from 0.01 to 0.80, alternatively from 0.05 to 0.5, alternatively from 0.1 to 0.35.
Typically at least 50 mol %, alternatively at least 65 mol %, alternatively at least 80 mol % of the groups R2 in the silicone resin are alkenyl.
The silicone resin typically has a number-average molecular weight (Mn) of from 500 to 50,000, alternatively from 500 to 10,000, alternatively 1,000 to 3,000, where the molecular weight is determined by gel permeation chromatography employing a low angle laser light scattering detector, or a refractive index detector and silicone resin (MQ) standards.
The viscosity of the silicone resin at 25° C. is typically from 0.01 to 100,000 Pa·s, alternatively from 0.1 to 10,000 Pa·s, alternatively from 1 to 100 Pa·s.
The silicone resin typically contains less than 10% (w/w), alternatively less than 5% (w/w), alternatively less than 2% (w/w), of silicon-bonded hydroxy groups, as determined by 29Si NMR.
The silicone resin contains R1SiO3/2 units (i.e., T units) and/or SiO4/2 units (i.e., Q units) in combination with R1R22SiO1/2 units (i.e., M units) and/or R22SiO2/2 units. (i.e., D units), where R1 and R2 are as described and exemplified above. For example, the silicone resin can be a DT resin, an MT resin, an MDT resin, a DTQ resin, and MTQ resin, and MDTQ resin, a DQ resin, an MQ resin, a DTQ resin, an MTQ resin, or an MDQ resin.
Examples of silicone resins include, but are not limited to, resins having the following formulae:
(Vi2MeSiO1/2)0.25(PhSiO3/2)0.75, (ViMe2SiO1/2)0.25(PhSiO3/2)0.75) (ViMe2SiO1/2)0.25(MeSiO3/2)0.25(PhSiO3/2)0.50, (ViMe2SiO1/2)0.15(PhSiO3/2)0.75 (SiO4/2)0.1, and (Vi2MeSiO1/2)0.15(ViMe2SiO1/2)0.1(PhSiO3/2)0.75, where Me is methyl, Vi is vinyl, Ph is phenyl, and the numerical subscripts outside the parenthesis denote mole fractions. Also, in the preceding formulae, the sequence of units is unspecified.
Component (A) can be a single silicone resin or a mixture comprising two or more different silicone resins, each as described above.
Methods of preparing silicone resins are well known in the art; many of these resins are commercially available. Silicone resins are typically prepared by cohydrolyzing the appropriate mixture of chlorosilane precursors in an organic solvent, such as toluene. For example, a silicone resin consisting essentially of R1R22SiO1/2 units and R1SiO3/2 units can be prepared by cohydrolyzing a compound having the formula R1R22SiCl and a compound having the formula R1SiCl3 in toluene, where R1 and R2 are as defined and exemplified above. The aqueous hydrochloric acid and silicone hydrolyzate are separated and the hydrolyzate is washed with water to remove residual acid and heated in the presence of a mild condensation catalyst to “body” the resin to the requisite viscosity. If desired, the resin can be further treated with a condensation catalyst in an organic solvent to reduce the content of silicon-bonded hydroxy groups. Alternatively, silanes containing hydrolysable groups other than chloro, such —Br, —I, —OCH3, —OC(O)CH3, —N(CH3)2, NHCOCH3, and —SCH3, can be utilized as starting materials in the cohydrolysis reaction. The properties of the resin products depend on the types of silanes, the mole ratio of silanes, the degree of condensation, and the processing conditions.
Component (B) is at least one organosilicon compound having an average of at least two silicon-bonded hydrogen atoms per molecule in an amount sufficient to cure the silicone resin of component (A).
The organosilicon compound has an average of at least two silicon-bonded hydrogen atoms per molecule, alternatively at least three silicon-bonded hydrogen atoms per molecule. It is generally understood that cross-linking occurs when the sum of the average number of alkenyl groups per molecule in component (A) and the average number of silicon-bonded hydrogen atoms per molecule in component (B) is greater than four.
The organosilicon compound can be an organohydrogensilane or an organohydrogensiloxane. The organohydrogensilane can be a monosilane, disilane, trisilane, or polysilane. Similarly, the organohydrogensiloxane can be a disiloxane, trisiloxane, or polysiloxane. The structure of the organosilicon compound can be linear, branched, cyclic, or resinous. Cyclosilanes and cyclosiloxanes typically have from 3 to 12 silicon atoms, alternatively from 3 to 10 silicon atoms, alternatively from 3 to 4 silicon atoms. In acyclic polysilanes and polysiloxanes, the silicon-bonded hydrogen atoms can be located at terminal, pendant, or at both terminal and pendant positions.
Examples of organohydrogensilanes include, but are not limited to, diphenylsilane, 2-chloroethylsilane, bis[(p-dimethylsilyl)phenyl]ether, 1,4-dimethyldisilylethane, 1,3,5-tris(dimethylsilyl)benzene, 1,3,5-trimethyl-1,3,5-trisilane, poly(methylsilylene)phenylene, and poly(methylsilylene)methylene.
The organohydrogensilane can also have the formula HR12Si—R3—SiR12H, wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, and R3 is a hydrocarbylene group free of aliphatic unsaturation having a formula selected from:
wherein g is from 1 to 6. The hydrocarbyl and halogen-substituted hydrocarbyl groups represented by R1 are as defined and exemplified above for the silicone resin of component (A).
Examples of organohydrogensilanes having the formula HR12Si—R3—SiR12H, wherein R1 and R3 are as described and exemplified above include, but are not limited to, silanes having the following formulae:
Examples of organohydrogensiloxanes include, but are not limited to, 1,1,3,3-tetramethyldisiloxane, 1,1,3,3-tetraphenyldisiloxane, phenyltris(dimethylsiloxy)silane, 1,3,5-trimethylcyclotrisiloxane, a trimethyl siloxy-terminated poly(methylhydrogensiloxane), a trimethylsiloxy-terminated poly(dimethylsiloxane/methylhydrogensiloxane), a dimethylhydrogensiloxy-terminated poly(methylhydrogensiloxane), and a resin consisting essentially of HMe2SiO1/2 units, Me3SiO1/2 units, and SiO4/2 units, wherein Me is methyl.
The organohydrogensiloxane can also be an organohydrogenpolysiloxane resin having the formula (R1R42SiO1/2)w(R42SiO2/2)x(R1SiO3/2)y(SiO4/2)z (II), wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R4 is R1 or an organosilylalkyl group having at least one silicon-bonded hydrogen atom, w is from 0 to 0.8, x is from 0 to 0.6, y is from 0 to 0.99, z is from 0 to 0.75, w+x+y+z=1, y+z/(w+x+y+z) is from 0.2 to 0.99, and w+x/(w+x+y+z) is from 0.01 to 0.8, provided at least 50 mol % of the groups R4 are organosilylalkyl.
The hydrocarbyl and halogen-substituted hydrocarbyl groups represented by R1 are as described and exemplified above for the silicone resin of component (A). Examples of organosilylalkyl groups represented by R4 include, but are not limited to, groups having the following formulae:
—CH2CH2SiMe2H,
—CH2CH2SiMe2CnH2nSiMe2H,
—CH2CH2SiMe2CnH2nSiMePhH,
—CH2CH2SiMePhH,
—CH2CH2SiPh2H,
—CH2CH2SiMePhCnH2nSiPh2H,
—CH2CH2SiMePhCnH2nSiMe2H,
—CH2CH2SiMePhOSiMePhH, and
—CH2CH2SiMePhOSiPh(OSiMePhH)2, where Me is methyl, Ph is phenyl, and the subscript n has a value of from 2 to 10.
In the formula (II) of the organohydrogenpolysiloxane resin, the subscripts w, x, y, and z are mole fractions. The subscript w typically has a value of from 0 to 0.8, alternatively from 0.02 to 0.75, alternatively from 0.05 to 0.3; the subscript x typically has a value of from 0 to 0.6, alternatively from 0 to 0.45, alternatively from 0 to 0.25; the subscript y typically has a value of from 0 to 0.99, alternatively from 0.25 to 0.8, alternatively from 0.5 to 0.8; the subscript z typically has a value of from 0 to 0.75, alternatively from 0 to 0.55, alternatively from 0 to 0.25. Also, the ratio y+z/(w+x+y+z) is typically from 0.2 to 0.99, alternatively from 0.5 to 0.95, alternatively from 0.65 to 0.9. Further, the ratio w+x/(w+x+y+z) is typically from 0.01 to 0.80, alternatively from 0.05 to 0.5, alternatively from 0.1 to 0.35.
Typically, at least 50 mol %, alternatively at least 65 mol %, alternatively at least 80 mol % of the groups R4 in the organohydrogenpolysiloxane resin are organosilylalkyl groups having at least one silicon-bonded hydrogen atom.
The organohydrogenpolysiloxane resin typically has a number-average molecular weight (Mn) of from 500 to 50,000, alternatively from 500 to 10,000, alternatively 1,000 to 3,000, where the molecular weight is determined by gel permeation chromatography employing a low angle laser light scattering detector, or a refractive index detector and silicone resin (MQ) standards.
The organohydrogenpolysiloxane resin typically contains less than 10% (w/w), alternatively less than 5% (w/w), alternatively less than 2% (w/w), of silicon-bonded hydroxy groups, as determined by 29Si NMR.
The organohydrogenpolysiloxane resin contains R1SiO3/2 units (i.e., T units) and/or SiO4/2 units (i.e., Q units) in combination with R1R42SiO1/2 units (i.e., M units) and/or R42SiO2/2 units (i.e., D units), where R1 and R4 are as described and exemplified above. For example, the organohydrogenpolysiloxane resin can be a DT resin, an MT resin, an MDT resin, a DTQ resin, and MTQ resin, and MDTQ resin, a DQ resin, an MQ resin, a DTQ resin, an MTQ resin, or an MDQ resin.
Examples of organohydrogenpolysiloxane resins include, but are not limited to, resins having the following formulae:
((HMe2SiC6H4SiMe2CH2CH2)2MeSiO1/2)0.12(PhSiO3/2)0.88,
((HMe2SiC6H4SiMe2CH2CH2)2MeSiO1/2)0.17(PhSiO3/2)0.83,
((HMe2SiC6H4SiMe2CH2CH2)2MeSiO1/2)0.17(MeSiO3/2)0.17(PhSiO3/2)0.66, ((HMe2SiC6H4SiMe2CH2CH2)2MeSiO1/2)0.15(PhSiO3/2)0.75(SiO4/2)0.10, and ((HMe2SiC6H4SiMe2CH2CH2)2MeSiO1/2)0.08((HMe2SiC6H4SiMe2CH2CH2)Me2SiO1/2)0.06 (PhSiO3/2)0.86, where Me is methyl, Ph is phenyl, C6H4 denotes a para-phenylene group, and the numerical subscripts outside the parenthesis denote mole fractions. Also, in the preceding formulae, the sequence of units is unspecified.
Component (B) can be a single organosilicon compound or a mixture comprising two or more different organosilicon compounds, each as described above. For example, component (B) can be a single organohydrogensilane, a mixture of two different organohydrogensilanes, a single organohydrogensiloxane, a mixture of two different organohydrogensiloxanes, or a mixture of an organohydrogensilane and an organohydrogensiloxane. In particular, component (B) can be a mixture comprising at least 0.5% (w/w), alternatively at least 50% (w/w), alternatively at least 75% (w/w), based on the total weight of component (B), of the organohydrogenpolysiloxane resin having the formula (II), and an organohydrogensilane and/or organohydrogensiloxane, the latter different from the organohydrogenpolysiloxane resin.
The concentration of component (B) is sufficient to cure (cross-link) the silicone resin of component (A). The exact amount of component (B) depends on the desired extent of cure, which generally increases as the ratio of the number of moles of silicon-bonded hydrogen atoms in component (B) to the number of moles of alkenyl groups in component (A) increases. The concentration of component (B) is typically sufficient to provide from 0.4 to 2 moles of silicon-bonded hydrogen atoms, alternatively from 0.8 to 1.5 moles of silicon-bonded hydrogen atoms, alternatively from 0.9 to 1.1 moles of silicon-bonded hydrogen atoms, per mole of alkenyl groups in component (A).
Methods of preparing organosilicon compounds containing silicon-bonded hydrogen atoms are well known in the art. For example, organohydrogensilanes can be prepared by reaction of Grignard reagents with alkyl or aryl halides. In particular, organohydrogensilanes having the formula HR12Si—R3—SiR12H can be prepared by treating an aryl dihalide having the formula R3X2 with magnesium in ether to produce the corresponding Grignard reagent and then treating the Grignard reagent with a chlorosilane having the formula HR12SiCl, where R1 and R3 are as described and exemplified above.
Methods of preparing organohydrogensiloxanes, such as the hydrolysis and condensation of organohalosilanes, are also well known in the art.
In addition, the organohydrogenpolysiloxane resin having the formula (II) can be prepared by reacting (a) a silicone resin having the formula (R1R22SiO1/2)w(R22SiO2/2)x(R1SiO3/2)y(SiO4/2)z (I) with (b) an organosilicon compound having an average of from two to four silicon-bonded hydrogen atoms per molecule and a molecular weight less than 1,000, in the presence of (c) a hydrosilylation catalyst and, optionally, (d) an organic solvent, wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R2 is R1 or alkenyl, w is from 0 to 0.8, x is from 0 to 0.6, y is from 0 to 0.99, z is from 0 to 0.75, w+x+y+z=1, y+z/(w+x+y+z) is from 0.2 to 0.99, and w+x/(w+x+y+z) is from 0.01 to 0.8, provided the silicone resin (a) has an average of at least two silicon-bonded alkenyl groups per molecule, and the mole ratio of silicon-bonded hydrogen atoms in (b) to alkenyl groups in (a) is from 1.5 to 5.
Silicone resin (a) is as described and exemplified above for component (A) of the silicone composition. Silicone resin (a) can be the same as or different than the silicone resin used as component (A) in the hydrosilylation-curable silicone composition.
Organosilicon compound (b) is at least one organosilicon compound having an average of from two to four silicon-bonded hydrogen atoms per molecule. Alternatively, the organosilicon compound has an average of from two to three silicon-bonded hydrogen atoms per molecule. The organosilicon compound typically has a molecular weight less than 1,000, alternatively less than 750, alternatively less than 500. The silicon-bonded organic groups in the organosilicon compound are selected from hydrocarbyl and halogen-substituted hydrocarbyl groups, both free of aliphatic unsaturation, which are as described and exemplified above for R1 in the formula of the silicone resin of component (A).
Organosilicon compound (b) can be an organohydrogensilane or an organohydrogensiloxane. The organohydrogensilane can be a monosilane, disilane, trisilane, or polysilane. Similarly, the organohydrogensiloxane can be a disiloxane, trisiloxane, or polysiloxane. The structure of the organosilicon compound can be linear, branched, or cyclic. Cyclosilanes and cyclosiloxanes typically have from 3 to 12 silicon atoms, alternatively from 3 to 10 silicon atoms, alternatively from 3 to 4 silicon atoms. In acyclic polysilanes and polysiloxanes, the silicon-bonded hydrogen atoms can be located at terminal, pendant, or at both terminal and pendant positions.
Examples of organohydrogensilanes include, but are not limited to, diphenylsilane, 2-chloroethylsilane, bis[(p-dimethylsilyl)phenyl]ether, 1,4-dimethyldisilylethane, 1,3,5-tris(dimethylsilyl)benzene, and 1,3,5-trimethyl-1,3,5-trisilane. The organohydrogensilane can also have the formula HR12Si—R3—SiR12H, wherein R1 and R3 are as described and exemplified above.
Examples of organohydrogensiloxanes include, but are not limited to, 1,1,3,3-tetramethyldisiloxane, 1,1,3,3-tetraphenyldisiloxane, phenyltris(dimethylsiloxy)silane, and 1,3,5-trimethylcyclotrisiloxane.
Organosilicon compound (b) can be a single organosilicon compound or a mixture comprising two or more different organosilicon compounds, each as described above. For example, component (B) can be a single organohydrogensilane, a mixture of two different organohydrogensilanes, a single organohydrogensiloxane, a mixture of two different organohydrogensiloxanes, or a mixture of an organohydrogensilane and an organohydrogensiloxane.
Methods of preparing organohydrogensilanes, such as the reaction of Grignard reagents with alkyl or aryl halides, described above, are well known in the art. Similarly, methods of preparing organohydrogensiloxanes, such as the hydrolysis and condensation of organohalosilanes, are well known in the art.
Hydrosilylation catalyst (c) can be any of the well-known hydrosilylation catalysts comprising a platinum group metal (i.e., platinum, rhodium, ruthenium, palladium, osmium and iridium) or a compound containing a platinum group metal. Preferably, the platinum group metal is platinum, based on its high activity in hydrosilylation reactions.
Hydrosilylation catalysts include the complexes of chloroplatinic acid and certain vinyl-containing organosiloxanes disclosed by Willing in U.S. Pat. No. 3,419,593, which is hereby incorporated by reference. A catalyst of this type is the reaction product of chloroplatinic acid and 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane.
The hydrosilylation catalyst can also be a supported hydrosilylation catalyst comprising a solid support having a platinum group metal on the surface thereof. A supported catalyst can be conveniently separated from the organohydrogenpolysiloxane resin product, for example, by filtering the reaction mixture. Examples of supported catalysts include, but are not limited to, platinum on carbon, palladium on carbon, ruthenium on carbon, rhodium on carbon, platinum on silica, palladium on silica, platinum on alumina, palladium on alumina, and ruthenium on alumina.
Organic solvent (d) is at least one organic solvent. The organic solvent can be any aprotic or dipolar aprotic organic solvent that does not react with silicone resin (a), organosilicon compound (b), or the organohydrogenpolysiloxane resin under the conditions of the present method, and is miscible with components (a), (b), and the organohydrogenpolysiloxane resin.
Examples of organic solvents include, but are not limited to, saturated aliphatic hydrocarbons such as n-pentane, hexane, n-heptane, isooctane and dodecane; cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene; cyclic ethers such as tetrahydrofuran (THF) and dioxane; ketones such as methyl isobutyl ketone (MIBK); halogenated alkanes such as trichloroethane; and halogenated aromatic hydrocarbons such as bromobenzene and chlorobenzene. Organic solvent (d) can be a single organic solvent or a mixture comprising two or more different organic solvents, each as described above.
The reaction can be carried out in any standard reactor suitable for hydrosilylation reactions. Suitable reactors include glass and Teflon-lined glass reactors. Preferably, the reactor is equipped with a means of agitation, such as stirring. Also, preferably, the reaction is carried out in an inert atmosphere, such as nitrogen or argon, in the absence of moisture.
The silicone resin, organosilicon compound, hydrosilylation catalyst, and, optionally, organic solvent, can be combined in any order. Typically, organosilicon compound (b) and hydrosilylation catalyst (c) are combined before the introduction of the silicone resin (a) and, optionally, organic solvent (d).
The reaction is typically carried out at a temperature of from 0 to 150° C., alternatively from room temperature (˜23±2° C.) to 115° C. When the temperature is less than 0° C., the rate of reaction is typically very slow.
The reaction time depends on several factors, such as the structures of the silicone resin and the organosilicon compound, and the temperature. The time of reaction is typically from 1 to 24 h at a temperature of from room temperature (˜23±2° C.) to 150° C. The optimum reaction time can be determined by routine experimentation
The mole ratio of silicon-bonded hydrogen atoms in organosilicon compound (b) to alkenyl groups in silicone resin (a) is typically from 1.5 to 5, alternatively from 1.75 to 3, alternatively from 2 to 2.5.
The concentration of hydrosilylation catalyst (c) is sufficient to catalyze the addition reaction of silicone resin (a) with organosilicon compound (b). Typically, the concentration of hydrosilylation catalyst (c) is sufficient to provide from 0.1 to 1000 ppm of a platinum group metal, alternatively from 1 to 500 ppm of a platinum group metal, alternatively from 5 to 150 ppm of a platinum group metal, based on the combined weight of silicone resin (a) and organosilicon compound (b). The rate of reaction is very slow below 0.1 ppm of platinum group metal. The use of more than 1000 ppm of platinum group metal results in no appreciable increase in reaction rate, and is therefore uneconomical.
The concentration of organic solvent (d) is typically from 0 to 99% (w/w), alternatively from 30 to 80% (w/w), alternatively from 45 to 60% (w/w), based on the total weight of the reaction mixture.
The organohydrogenpolysiloxane resin can be used without isolation or purification in the first embodiment of the hydrosilylation-curable silicone composition or the resin can be separated from most of the solvent by conventional methods of evaporation. For example, the reaction mixture can be heated under reduced pressure. Moreover, when the hydrosilylation catalyst used to prepare the organohydrogenpolysiloxane resin is a supported catalyst, described above, the resin can be readily separated from the hydrosilylation catalyst by filtering the reaction mixture. However, when the organohydrogenpolysiloxane resin is not separated from the hydrosilylation catalyst used to prepare the resin, the catalyst may be used as component (C) of the first embodiment of the hydrosilylation-curable silicone composition.
Component (C) of the hydrosilylation-curable silicone composition is at least one hydrosilylation catalyst that promotes, the addition reaction of component (A) with component (B). The hydrosilylation catalyst can be any of the well-known hydrosilylation catalysts comprising a platinum group metal, a compound containing a platinum group metal, or a microencapsulated platinum group metal-containing catalyst. Platinum group metals include platinum, rhodium, ruthenium, palladium, osmium and iridium. Preferably, the platinum group metal is platinum, based on its high activity in hydrosilylation reactions.
Preferred hydrosilylation catalysts include the complexes of chloroplatinic acid and certain vinyl-containing organosiloxanes disclosed by Willing in U.S. Pat. No. 3,419,593, which is hereby incorporated by reference. A preferred catalyst of this type is the reaction product of chloroplatinic acid and 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane.
The hydrosilylation catalyst can also be a microencapsulated platinum group metal-containing catalyst comprising a platinum group metal encapsulated in a thermoplastic resin. Compositions containing microencapsulated hydrosilylation catalysts are stable for extended periods of time, typically several months or longer, under ambient conditions, yet cure relatively rapidly at temperatures above the melting or softening point of the thermoplastic resin(s). Microencapsulated hydrosilylation catalysts and methods of preparing them are well known in the art, as exemplified in U.S. Pat. No. 4,766,176 and the references cited therein; and U.S. Pat. No. 5,017,654.
Component (C) can be a single hydrosilylation catalyst or a mixture comprising two or more different catalysts that differ in at least one property, such as structure, form, platinum group metal, complexing ligand, and thermoplastic resin.
The concentration of component (C) is sufficient to catalyze the addition reaction of component (A) with component (B). Typically, the concentration of component (C) is sufficient to provide from 0.1 to 1000 ppm of a platinum group metal, preferably from 1 to 500 ppm of a platinum group metal, and more preferably from 5 to 150 ppm of a platinum group metal, based on the combined weight of components (A) and (B). The rate of cure is very slow below 0.1 ppm of platinum group metal. The use of more than 1000 ppm of platinum group metal results in no appreciable increase in cure rate, and is therefore uneconomical.
According to a second embodiment, the hydrosilylation-curable silicone composition comprises (A′) a silicone resin having the formula (R1R52SiO1/2)w(R52SiO2/2)x(R5SiO3/2)y(SiO4/2)z (III), wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R5 is R1 or —H, w is from 0 to 0.8, x is from 0 to 0.6, y is from 0 to 0.99, z is from 0 to 0.75, w+x+y+z=1, y+z/(w+x+y+z) is from 0.2 to 0.99, and w+x/(w+x+y+z) is from 0.01 to 0.8, provided the silicone resin has an average of at least two silicon-bonded hydrogen atoms per molecule; (B′) an organosilicon compound having an average of at least two silicon-bonded alkenyl groups per molecule in an amount sufficient to cure the silicone resin; and (C) a catalytic amount of a hydrosilylation catalyst.
Component (A′) is at least one silicone resin having the formula (R1R52SiO1/2)w(R52SiO2/2)x(R5SiO3/2)y(SiO4/2)z (III), wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R5 is R1 or —H, w is from 0 to 0.8, x is from 0 to 0.6, y is from 0 to 0.99, z is from 0 to 0.75, w+x+y+z=1, y+z/(w+x+y+z) is from 0.2 to 0.99, and w+x/(w+x+y+z) is from 0.01 to 0.8, provided the silicone resin has an average of at least two silicon-bonded hydrogen atoms per molecule. In the formula (III), R1, w, x, y, z, y+z/(w+x+y+z), and w+x/(w+x+y+z) are as described and exemplified above for the silicone resin having the formula (I).
Typically at least 50 mol %, alternatively at least 65 mol %, alternatively at least 80 mol % of the groups R5 in the silicone resin are hydrogen.
The silicone resin typically has a number-average molecular weight (Mn) of from 500 to 50,000, alternatively from 500 to 10,000, alternatively 1,000 to 3,000, where the molecular weight is determined by gel permeation chromatography employing a low angle laser light scattering detector, or a refractive index detector and silicone resin (MQ) standards.
The viscosity of the silicone resin at 25° C. is typically from 0.01 to 100,000 Pa·s, alternatively from 0.1 to 10,000 Pa·s, alternatively from 1 to 100 Pa·s.
The silicone resin typically contains less than 10% (w/w), alternatively less than 5% (w/w), alternatively less than 2% (w/w), of silicon-bonded hydroxy groups, as determined by 29Si NMR.
The silicone resin contains R5SiO3/2 units (i.e., T units) and/or SiO4/2 units (i.e., Q units) in combination with R1R52SiO1/2 units (i.e., M units) and/or R52SiO2/2 units (i.e., D units). For example, the silicone resin can be a DT resin, an MT resin, an MDT resin, a DTQ resin, and MTQ resin, and MDTQ resin, a DQ resin, an MQ resin, a DTQ resin, an MTQ resin, or an MDQ resin.
Examples of silicone resins suitable for use as component (A′) include, but are not limited to, resins having the following formulae:
(HMe2SiO1/2)0.25(PhSiO3/2)0.75, (HMeSiO2/2)0.3(PhSiO3/2)0.6(MeSiO3/2)0.1 and (Me3SiO1/2)0.1(H2SiO2/2)0.1(MeSiO3/2)0.4(PhSiO3/2)0.4, where Me is methyl, Ph is phenyl, and the numerical subscripts outside the parenthesis denote mole fractions. Also, in the preceding formulae, the sequence of units is unspecified.
Component (A′) can be a single silicone resin or a mixture comprising two or more different silicone resins, each as described above.
Methods of preparing silicone resins containing silicon-bonded hydrogen atoms are well known in the art; many of these resins are commercially available. Silicone resins are typically prepared by cohydrolyzing the appropriate mixture of chlorosilane precursors in an organic solvent, such as toluene. For example, a silicone resin consisting essentially of R1R52SiO1/2 units and R5SiO3/2 units can be prepared by cohydrolyzing a compound having the formula R1R52SiCl and a compound having the formula R5SiCl3 in toluene, where R1 and R5 are as described and exemplified above. The aqueous hydrochloric acid and silicone hydrolyzate are separated and the hydrolyzate is washed with water to remove residual acid and heated in the presence of a mild non-basic condensation catalyst to “body” the resin to the requisite viscosity. If desired, the resin can be further treated with a non-basic condensation catalyst in an organic solvent to reduce the content of silicon-bonded hydroxy groups. Alternatively, silanes containing hydrolysable groups other than chloro, such —Br, —I, —OCH3, —OC(O)CH3, —N(CH3)2, NHCOCH3, and —SCH3, can be utilized as starting materials in the cohydrolysis reaction. The properties of the resin products depend on the types of silanes, the mole ratio of silanes, the degree of condensation, and the processing conditions.
Component (B′) is at least one organosilicon compound having an average of at least two silicon-bonded alkenyl groups per molecule in an amount sufficient to cure the silicone resin of component (A′).
The organosilicon compound contains an average of at least two silicon-bonded alkenyl groups per molecule, alternatively at least three silicon-bonded alkenyl groups per molecule. It is generally understood that cross-linking occurs when the sum of the average number of silicon-bonded hydrogen atoms per molecule in component (A′) and the average number of silicon-bonded alkenyl groups per molecule in component (B′) is greater than four.
The organosilicon compound can be an organosilane or an organosiloxane. The organosilane can be a monosilane, disilane, trisilane, or polysilane. Similarly, the organosiloxane can be a disiloxane, trisiloxane, or polysiloxane. The structure of the organosilicon compound can be linear, branched, cyclic, or resinous. Cyclosilanes and cyclosiloxanes typically have from 3 to 12 silicon atoms, alternatively from 3 to 10 silicon atoms, alternatively from 3 to 4 silicon atoms. In acyclic polysilanes and polysiloxanes, the silicon-bonded alkenyl groups can be located at terminal, pendant, or at both terminal and pendant positions.
Examples of organosilanes suitable for use as component (B′) include, but are not limited to, silanes having the following formulae:
Vi4Si, PhSiVi3, MeSiVi3, PhMeSiVi2, Ph2SiVi2, and PhSi(CH2CH═CH2)3, where Me is methyl, Ph is phenyl, and Vi is vinyl.
Examples of organosiloxanes suitable for use as component (B′) include, but are not limited to, siloxanes having the following formulae:
PhSi(OSiMe2Vi)3, Si(OSiMe2Vi)4, MeSi(OSiMe2Vi)3, and Ph2Si(OSiMe2Vi)2, where Me is methyl, and Ph is phenyl.
Component (B′) can be a single organosilicon compound or a mixture comprising two or more different organosilicon compounds, each as described above. For example component (B′) can be a single organosilane, a mixture of two different organosilanes, a single organosiloxane, a mixture of two different organosiloxanes, or a mixture of an organosilane and an organosiloxane.
The concentration of component (B′) is sufficient to cure (cross-link) the silicone resin of component (A′). The exact amount of component (B′) depends on the desired extent of cure, which generally increases as the ratio of the number of moles of silicon-bonded alkenyl groups in component (B′) to the number of moles of silicon-bonded hydrogen atoms in component (A′) increases. The concentration of component (B′) is typically sufficient to provide from 0.4 to 2 moles of silicon-bonded alkenyl groups, alternatively from 0.8 to 1.5 moles of silicon-bonded alkenyl groups, alternatively from 0.9 to 1.1 moles of silicon-bonded alkenyl groups, per mole of silicon-bonded hydrogen atoms in component (A′).
Methods of preparing organosilanes and organosiloxanes containing silicon-bonded alkenyl groups are well known in the art; many of these compounds are commercially available.
Component (C) of the second embodiment of the silicone composition is as described and exemplified above for component (C) of the first embodiment.
According to a third embodiment, the hydrosilylation-curable silicone composition comprises (A) a silicone resin having the formula (R1R22SiO1/2)w(R22SiO2/2)x (R1SiO3/2)y(SiO4/2)z (I); (B) an organosilicon compound having an average of at least two silicon-bonded hydrogen atoms per molecule in an amount sufficient to cure the silicone resin; (C) a catalytic amount of a hydrosilylation catalyst; and (D) a silicone rubber having a formula selected from (i) R1R22SiO(R22SiO)aSiR22R1 (IV) and (ii) R5R12SiO(R1R5SiO)bSiR12R5 (V); wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R2 is R1 or alkenyl, R5 is R1 or —H, subscripts a and b each have a value of from 1 to 4, w is from 0 to 0.8, x is from 0 to 0.6, y is from 0 to 0.99, z is from 0 to 0.75, w+x+y+z=1, y+z/(w+x+y+z) is from 0.2 to 0.99, and w+x/(w+x+y+z) is from 0.01 to 0.8, provided the silicone resin and the silicone rubber (D)(i) each have an average of at least two silicon-bonded alkenyl groups per molecule, the silicone rubber (D)(ii) has an average of at least two silicon-bonded hydrogen atoms per molecule, and the mole ratio of silicon-bonded alkenyl groups or silicon-bonded hydrogen atoms in the silicone rubber (D) to silicon-bonded alkenyl groups in the silicone resin (A) is from 0.01 to 0.5.
Components (A), (B), and (C) of the third embodiment of the silicone composition are as described and exemplified above for the first embodiment.
The concentration of component (B) is sufficient to cure (cross-link) the silicone resin of component (A). When component (D) is (D)(i), the concentration of component (B) is such that the ratio of the number of moles of silicon-bonded hydrogen atoms in component (B) to the sum of the number of moles of silicon-bonded alkenyl groups in component (A) and component (D)(i) is typically from 0.4 to 2, alternatively from 0.8 to 1.5, alternatively from 0.9 to 1.1. Furthermore, when component (D) is (D)(ii), the concentration of component (B) is such that the ratio of the sum of the number of moles of silicon-bonded hydrogen atoms in component (B) and component (D)(ii) to the number of moles of silicon-bonded alkenyl groups in component (A) is typically from 0.4 to 2, alternatively from 0.8 to 1.5, alternatively from 0.9 to 1.1.
Component (D) is a silicone rubber having a formula selected from (i) R1R22SiO(R22SiO)aSiR22R1 (IV) and (ii) R5R12SiO(R1R5SiO)a SiR12R5 (V); wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R2 is R1 or alkenyl, R5 is R1 or —H, and subscripts a and b each have a value of from 1 to 4, provided the silicone rubber (D)(i) has an average of at least two silicon-bonded alkenyl groups per molecule, and the silicone rubber (D)(ii) has an average of at least two silicon-bonded hydrogen atoms per molecule.
Component (D)(i) is at least one silicone rubber having the formula R1R22SiO(R22SiO)aSiR22R1 (IV), wherein R1 and R2 are as described and exemplified above and the subscript a has a value of from 1 to 4, provided the silicone rubber (D)(i) has an average of at least two silicon-bonded alkenyl groups per molecule. Alternatively, the subscript a has a value of from 2 to 4 or from 2 to 3.
Examples of silicone rubbers suitable for use as component (D)(i) include, but are not limited to, silicone rubbers having the following formulae:
ViMe2SiO(Me2SiO)aSiMe2Vi, ViMe2SiO(Ph2SiO)aSiMe2Vi, and ViMe2SiO(PhMeSiO)aSiMe2Vi, where Me is methyl, Ph is phenyl, Vi is vinyl, and the subscript a has a value of from 1 to 4.
Component (D)(i) can be a single silicone rubber or a mixture comprising two or more different silicone rubbers, each having the formula (IV).
Component (D)(ii) is at least one silicone rubber having the formula R5R12SiO (R1R5SiO)bSiR12R5 (V); wherein R1 and R5 are as described and exemplified above, and the subscript b has a value of from 1 to 4, provided the silicone rubber (D)(ii) has an average of at least two silicon-bonded hydrogen atoms per molecule. Alternatively, the subscript b has a value of from 2 to 4 or from 2 to 3.
Examples of silicone rubbers suitable for use as component (D)(ii) include, but are not limited to, silicone rubbers having the following formulae:
HMe2SiO(Me2SiO)bSiMe2H, HMe2SiO(Ph2SiO)bSiMe2H, HMe2SiO(PhMeSiO)b SiMe2H, and HMe2SiO(Ph2SiO)2(Me2SiO)2SiMe2H, where Me is methyl, Ph is phenyl, and the subscript b has a value of from 1 to 4.
Component (D)(ii) can be a single silicone rubber or a mixture comprising two or more different silicone rubbers, each having the formula (V).
The mole ratio of silicon-bonded alkenyl groups or silicon-bonded hydrogen atoms in the silicone rubber (D) to silicon-bonded alkenyl groups in the silicone resin (A) is typically from 0.01 to 0.5, alternatively from 0.05 to 0.4, alternatively from 0.1 to 0.3.
Methods of preparing silicone rubbers containing silicon-bonded alkenyl groups or silicon-bonded hydrogen atoms are well known in the art; many of these compounds are commercially available.
According to a fourth embodiment, the hydrosilylation-curable silicone composition comprises (A′) a silicone resin having the formula (R1R52SiO1/2)w(R52SiO2/2)x (R5SiO3/2)y(SiO4/2)z (III); (B′) an organosilicon compound having an average of at least two silicon-bonded alkenyl groups per molecule in an amount sufficient to cure the silicone resin; (C) a catalytic amount of a hydrosilylation catalyst; and (D) a silicone rubber having a formula selected from (i) R1R22SiO(R22SiO)aSiR22R1 (IV) and (ii) R5R12SiO(R1R5SiO)bSiR12R5 (V); wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R2 is R1 or alkenyl, R5 is R1 or —H, subscripts a an b each have a value of from 1 to 4, w is from 0 to 0.8, x is from 0 to 0.6, y is from 0 to 0.99, z is from 0 to 0.75, w+x+y+z=1, y+z/(w+x+y+z) is from 0.2 to 0.99, and w+x/(w+x+y+z) is from 0.01 to 0.8, provided the silicone resin and the silicone rubber (D)(ii) each have an average of at least two silicon-bonded hydrogen atoms per molecule, the silicone rubber (D)(i) has an average of at least two silicon-bonded alkenyl groups per molecule, and the mole ratio of silicon-bonded alkenyl groups or silicon-bonded hydrogen atoms in the silicone rubber (D) to silicon-bonded hydrogen atoms in the silicone resin (A′) is from 0.01 to 0.5.
Components (A′), (B′), and (C) of the fourth embodiment of the silicone composition are as described and exemplified above for the second embodiment, and component (D) of the fourth embodiment is as described and exemplified above for the third embodiment.
The concentration of component (B′) is sufficient to cure (cross-link) the silicone resin of component (A′). When component (D) is (D)(i), the concentration of component (B′) is such that the ratio of the sum of the number of moles of silicon-bonded alkenyl groups in component (B′) and component (D)(i) to the number of moles of silicon-bonded hydrogen atoms in component (A′) is typically from 0.4 to 2, alternatively from 0.8 to 1.5, alternatively from 0.9 to 1.1. Furthermore, when component (D) is (D)(ii), the concentration of component (B′) is such that the ratio of the number of moles of silicon-bonded alkenyl groups in component (B′) to the sum of the number of moles of silicon-bonded hydrogen atoms in component (A′) and component (D)(ii) is typically from 0.4 to 2, alternatively from 0.8 to 1.5, alternatively from 0.9 to 1.1.
The mole ratio of silicon-bonded alkenyl groups or silicon-bonded hydrogen atoms in the silicone rubber (D) to silicon-bonded hydrogen atoms in the silicone resin (A′) is typically from 0.01 to 0.5, alternatively from 0.05 to 0.4, alternatively from 0.1 to 0.3.
According to a fifth embodiment, the hydrosilylation-curable silicone composition comprises (A″) a rubber-modified silicone resin prepared by reacting a silicone resin having the formula (R1R22SiO1/2)w(R22SiO2/2)x(R1SiO3/2)y(SiO4/2)z (I) and a silicone rubber having the formula R5R12SiO(R1R5SiO)cSiR12R5 (VI) in the presence of a hydrosilylation catalyst and, optionally, an organic solvent to form a soluble reaction product, wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R2 is R1 or alkenyl, R5 is R1 or —H, c has a value of from greater than 4 to 1,000, w is from 0 to 0.8, x is from 0 to 0.6, y is from 0 to 0.99, z is from 0 to 0.75, w+x+y+z=1, y+z/(w+x+y+z) is from 0.2 to 0.99, and w+x/(w+x+y+z) is from 0.01 to 0.8, provided the silicone resin (I) has an average of at least two silicon-bonded alkenyl groups per molecule, the silicone rubber (VI) has an average of at least two silicon-bonded hydrogen atoms per molecule, and the mole ratio of silicon-bonded hydrogen atoms in the silicone rubber (VI) to silicon-bonded alkenyl groups in silicone resin (I) is from 0.01 to 0.5; (B) an organosilicon compound having an average of at least two silicon-bonded hydrogen atoms per molecule in an amount sufficient to cure the rubber-modified silicone resin; and (C) a catalytic amount of a hydrosilylation catalyst.
Components (B) and (C) of the fifth embodiment of the silicone composition are as described and exemplified above for the first embodiment.
The concentration of component (B) is sufficient to cure (cross-link) the rubber-modified silicone resin. The concentration of component (B) is such that the ratio of the sum of the number of moles of silicon-bonded hydrogen atoms in component (B) and the silicone rubber (VI) to the number of moles of silicon-bonded alkenyl groups in the silicone resin (I) is typically from 0.4 to 2, alternatively from 0.8 to 1.5, alternatively from 0.9 to 1.1.
Component (N) is a rubber-modified silicone resin prepared by reacting at least one silicone resin having the formula (R1R22SiO1/2)w(R22SiO2/2)x(R1SiO3/2)y(SiO4/2)z (I) and at least one silicone rubber having the formula R5R12SiO(R1R5SiO)cSiR12R5 (VI) in the presence of a hydrosilylation catalyst and, optionally, an organic solvent to form a soluble reaction product, wherein R1, R2, R5, w, x, y, z, y+z/(w+x+y+z), and w+x/(w+x+y+z) are as described and exemplified above, and the subscript c has a value of from greater than 4 to 1,000.
The silicone resin having the formula (I) is as described and exemplified above for the first embodiment of the silicone composition. Also, the hydrosilylation catalyst and organic solvent are as described and exemplified above in the method of preparing the organohydrogenpolysiloxane resin having the formula (II). As used herein the term “soluble reaction product” means when organic solvent is present, the product of the reaction for preparing component (A″) is miscible in the organic solvent and does not form a precipitate or suspension.
In the formula (VI) of the silicone rubber, R1 and R5 are as described and exemplified above, and the subscript c typically has a value of from greater than 4 to 1,000, alternatively from 10 to 500, alternatively from 10 to 50.
Examples of silicone rubbers having the formula (VI) include, but are not limited to, silicone rubbers having the following formulae:
HMe2SiO(Me2SiO)50SiMe2H, HMe2SiO(Me2SiO)10SiMe2H, HMe2SiO(PhMeSiO)25SiMe2H, and Me3SiO(MeHSiO)10SiMe3, wherein Me is methyl, Ph is phenyl, and the numerical subscripts indicate the number of each type of siloxane unit.
The silicone rubber having the formula (VI) can be a single silicone rubber or a mixture comprising two or more different silicone rubbers, each having the formula (VI).
Methods of preparing silicone rubbers containing silicon-bonded hydrogen atoms are well known in the art; many of these compounds are commercially available.
The silicone resin (I), silicone rubber (VI), hydrosilylation catalyst, and organic solvent can be combined in any order. Typically, the silicone resin, silicone rubber, and organic solvent are combined before the introduction of the hydrosilylation catalyst.
The reaction is typically carried out at a temperature of from room temperature (˜23±2° C.) to 150° C., alternatively from room temperature to 100° C.
The reaction time depends on several factors, including the structures of the silicone resin and the silicone rubber, and the temperature. The components are typically allowed to react for a period of time sufficient to complete the hydrosilylation reaction. This means the components are typically allowed to react until at least 95 mol %, alternatively at least 98 mol %, alternatively at least 99 mol %, of the silicon-bonded hydrogen atoms originally present in the silicone rubber have been consumed in the hydrosilylation reaction, as determined by FTIR spectrometry. The time of reaction is typically from 0.5 to 24 h at a temperature of from room temperature (˜23±2° C.) to 100° C. The optimum reaction time can be determined by routine experimentation using the methods set forth in the Examples section below.
The mole ratio of silicon-bonded hydrogen atoms in the silicone rubber (VI) to silicon-bonded alkenyl groups in the silicone resin (I) is typically from 0.01 to 0.5, alternatively from 0.05 to 0.4, alternatively from 0.1 to 0.3.
The concentration of the hydrosilylation catalyst is sufficient to catalyze the addition reaction of the silicone resin (I) with the silicone rubber (VI). Typically, the concentration of the hydrosilylation catalyst is sufficient to provide from 0.1 to 1000 ppm of a platinum group metal, based on the combined weight of the resin and the rubber.
The concentration of the organic solvent is typically from 0 to 95% (w/w), alternatively from 10 to 75% (w/w), alternatively from 40 to 60% (w/w), based on the total weight of the reaction mixture.
The rubber-modified silicone resin can be used without isolation or purification in the fifth embodiment of the hydrosilylation-curable silicone composition or the resin can be separated from most of the solvent by conventional methods of evaporation. For example, the reaction mixture can be heated under reduced pressure. Moreover, when the hydrosilylation catalyst is a supported catalyst, described above, the rubber-modified silicone resin can be readily separated from the hydrosilylation catalyst by filtering the reaction mixture. However, when the rubber-modified silicone resin is not separated from the hydrosilylation catalyst used to prepare the resin, the catalyst may be used as component (C) of the fifth embodiment of the hydrosilylation-curable silicone composition.
According to a sixth embodiment, the hydrosilylation-curable silicone composition comprises (A′″) a rubber-modified silicone resin prepared by reacting a silicone resin having the formula (R1R52SiO1/2)w(R52SiO2/2)x(R5SiO3/2)y(SiO4/2)z (III) and a silicone rubber having the formula R1R22SiO(R22SiO)dSiR22R1 (VII) in the presence of a hydrosilylation catalyst and, optionally, an organic solvent to form a soluble reaction product, wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R2 is R1 or alkenyl, R5 is R1 or —H, subscript d has a value of from greater than 4 to 1,000, w is from 0 to 0.8, x is from 0 to 0.6, y is from 0 to 0.99, z is from 0 to 0.75, w+x+y+z=1, y+z/(w+x+y+z) is from 0.2 to 0.99, and w+x/(w+x+y+z) is from 0.01 to 0.8, provided the silicone resin (III) has an average of at least two silicon-bonded hydrogen atoms per molecule, the silicone rubber (VII) has an average of at least two silicon-bonded alkenyl groups per molecule, and the mole ratio of silicon-bonded alkenyl groups in the silicone rubber (VII) to silicon-bonded hydrogen atoms in the silicone resin (III) is from 0.01 to 0.5; (B′) an organosilicon compound having an average of at least two silicon-bonded alkenyl groups per molecule in an amount sufficient to cure the rubber-modified silicone resin; and (C) a catalytic amount of a hydrosilylation catalyst.
Components (B′) and (C) of the sixth embodiment of the silicone composition are as described and exemplified above for the second embodiment.
The concentration of component (B′) is sufficient to cure (cross-link) the rubber-modified silicone resin. The concentration of component (B′) is such that the ratio of the sum of the number of moles of silicon-bonded alkenyl groups in component (B′) and the silicone rubber (VII) to the number of moles of silicon-bonded hydrogen atoms in the silicone resin (III) is typically from 0.4 to 2, alternatively from 0.8 to 1.5, alternatively from 0.9 to 1.1.
Component (A′″) is a rubber-modified silicone resin prepared by reacting at least one silicone resin having the formula (R1R52SiO1/2)w(R52SiO2/2)x(R5SiO3/2)y(SiO4/2)z (III) and at least one silicone rubber having the formula R1R22SiO(R22SiO)dSiR22R1 (VII) in the presence of a hydrosilylation catalyst and an organic solvent to form a soluble reaction product, wherein R1, R2, R5, w, x, y, z, y+z/(w+x+y+z), and w+x/(w+x+y+z) are as described and exemplified above, and the subscript d has a value of from greater than 4 to 1,000.
The silicone resin having the formula (III) is as described and exemplified above for the second embodiment of the hydrosilylation-curable silicone composition. Also, the hydrosilylation catalyst and organic solvent are as described and exemplified above in the method of preparing the organohydrogenpolysiloxane resin having the formula (II). As in the previous embodiment of the silicone composition, the term “soluble reaction product” means when organic solvent is present, the product of the reaction for preparing component (A′″) is miscible in the organic solvent and does not form a precipitate or suspension.
In the formula (VII) of the silicone rubber, R1 and R2 are as described and exemplified above, and the subscript d typically has a value of from 4 to 1,000, alternatively from 10 to 500, alternatively form 10 to 50.
Examples of silicone rubbers having the formula (VII) include, but are not limited to silicone rubbers having the following formulae:
ViMe2SiO(Me2SiO)50SiMe2Vi, ViMe2SiO(Me2SiO)10SiMe2Vi, ViMe2SiO(PhMeSiO)25SiMe2Vi, and Vi2MeSiO(PhMeSiO)25SiMe2Vi, wherein Me is methyl, Ph is phenyl, Vi is vinyl, and the numerical subscripts indicate the number or each type of siloxane unit.
The silicone rubber having the formula (VII) can be a single silicone rubber or a mixture comprising two or more different silicone rubbers, each having the formula (VII).
Methods of preparing silicone rubbers containing silicon-bonded alkenyl groups are well known in the art; many of these compounds are commercially available.
The reaction for preparing component (A′″) can be carried out in the manner described above for preparing component (A″) of the fifth embodiment of the silicone composition, except the silicone resin having the formula (I) and the silicone rubber having the formula (VI) are replaced with the resin having the formula (III) and the rubber having the formula (VII), respectively. The mole ratio of silicon-bonded alkenyl groups in the silicone rubber (VII) to silicon-bonded hydrogen atoms in the silicone resin (III) is from 0.01 to 0.5, alternatively from 0.05 to 0.4, alternatively from 0.1 to 0.3. Moreover, the silicone resin and the silicone rubber are typically allowed to react for a period of time sufficient to complete the hydrosilylation reaction. This means the components are typically allowed to react until at least 95 mol %, alternatively at least 98 mol %, alternatively at least 99 mol %, of the silicon-bonded alkenyl groups originally present in the rubber have been consumed in the hydrosilylation reaction, as determined by FTIR spectrometry.
The hydrosilylation-curable silicone composition of the present method can comprise additional ingredients, provided the ingredient does not prevent the silicone composition from curing to form a cured silicone resin having low coefficient of thermal expansion, high tensile strength, and high modulus, as described below. Examples of additional ingredients include, but are not limited to, hydrosilylation catalyst inhibitors, such as 3-methyl-3-penten-1-yne, 3,5-dimethyl-3-hexen-1-yne, 3,5-dimethyl-1-hexyn-3-ol, 1-ethynyl-1-cyclohexanol, 2-phenyl-3-butyn-2-ol, vinylcyclosiloxanes, and triphenylphosphine; adhesion promoters, such as the adhesion promoters taught in U.S. Pat. Nos. 4,087,585 and 5,194,649; dyes; pigments; anti-oxidants; heat stabilizers; UV stabilizers; flame retardants; flow control additives; and diluents, such as organic solvents and reactive diluents.
For example, the hydrosilylation-curable silicone composition can contain (E) a reactive diluent comprising (i) an organosiloxane having an average of at least two silicon-bonded alkenyl groups per molecule and a viscosity of from 0.001 to 2 Pa·s at 25° C., wherein the viscosity of (E)(i) is not greater than 20% of the viscosity of the silicone resin, e.g., component (A), (A′), (A″), or (A′″) above, of the silicone composition and the organosiloxane has the formula (R1R22SiO1/2)m(R22SiO2/2)n(R1SiO3/2)p(SiO4/2)q, wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R2 is R1 or alkenyl, m is 0 to 0.8, n=0 to 1, p=0 to 0.25, q=0 to 0.2, m+n+p+q=1, and m+n is not equal to 0, provided when p+q=0, n is not equal to 0 and the alkenyl groups are not all terminal, and (ii) an organohydrogensiloxane having an average of at least two silicon-bonded hydrogen atoms per molecule and a viscosity of from 0.001 to 2 Pa·s at 25° C., in an amount sufficient to provide from 0.5 to 3 moles of silicon-bonded hydrogen atoms in (E)(ii) per mole of alkenyl groups in (E)(i), wherein the organohydrogensiloxane has the formula (HR12SiO1/2)s(R1SiO3/2)t(SiO4/2)v, wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, s is from 0.25 to 0.8, t is from 0 to 0.5, v is from 0 to 0.3, s+t+v=1, and t+v is not equal to 0.
Component (E)(i) is at least one organosiloxane having an average of at least two alkenyl groups per molecule and a viscosity of from 0.001 to 2 Pa·s at 25° C., wherein the viscosity of (E)(i) is not greater than 20% of the viscosity of the silicone resin of the silicone composition and the organosiloxane has the formula (R1R22SiO1/2)m (R22SiO2/2)n(R1SiO3/2)p(SiO4/2)q, wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, R2 is R1 or alkenyl, m is 0 to 0.8, n=0 to 1, p=0 to 0.25, q=0 to 0.2, m+n+p+q=1, and m+n is not equal to 0, provided when p+q=0, n is not equal to 0 and the alkenyl groups are not all terminal (i.e., not all the alkenyl groups in the organosiloxane are in the R1R22SiO1/2 units). Further, organosiloxane (E)(i) can have a linear, branched, or cyclic structure. For example, when the subscripts m, p, and q in the formula of organosiloxane (E)(i) are each equal to 0, the organosiloxane is an organocyclosiloxane.
The viscosity of organosiloxane (E)(i) at 25° C. is typically from 0.001 to 2 Pa·s, alternatively from 0.001 to 0.1 Pa·s, alternatively from 0.001 to 0.05 Pa·s. Further, the viscosity of organosiloxane (E)(i) at 25° C. is typically not greater than 20%, alternatively not greater than 10%, alternatively not greater than 1%, of the viscosity of the silicone resin in the hydrosilylation-curable silicone composition.
Examples of organosiloxanes suitable for use as organosiloxane (E)(i) include, but are not limited to, organosiloxanes having the following formulae:
(ViMeSiO)3, (ViMeSiO)4, (ViMeSiO)5, (ViMeSiO)6, (ViPhSiO)3, (ViPhSiO)4, (ViPhSiO)5, (ViPhSiO)6, ViMe2SiO(ViMeSiO)nSiMe2Vi, Me3SiO(ViMeSiO)nSiMe3, and (ViMe2SiO)4Si, where Me is methyl, Ph is phenyl, Vi is vinyl, and the subscript n has a value such that the organosiloxane has a viscosity of from 0.001 to 2 Pa·s at 25° C.
Component (E)(i) can be a single organosiloxane or a mixture comprising two or more different organosiloxanes, each as described above. Methods of making alkenyl-functional organosiloxanes are well known in the art.
Component (E)(ii) is at least one organohydrogensiloxane having an average of at least two silicon-bonded hydrogen atoms per molecule and a viscosity of from 0.001 to 2 Pa·s at 25° C., in an amount sufficient to provide from 0.5 to 3 moles of silicon-bonded hydrogen atoms in (E)(ii) to moles of alkenyl groups in (E)(i), wherein the organohydrogensiloxane has the formula (HR12SiO1/2)s(R1SiO3/2)t(SiO4/2)v, wherein R1 is C1 to C10 hydrocarbyl or C1 to C10 halogen-substituted hydrocarbyl, both free of aliphatic unsaturation, s is from 0.25 to 0.8, t is from 0 to 0.5, v is from 0 to 0.3, s+t+v=1, and t+v is not equal to 0.
The viscosity of organohydrogensiloxane (E)(ii) at 25° C. is typically from 0.001 to 2 Pa·s, alternatively from 0.001 to 0.1 Pa·s, alternatively from 0.001 to 0.05 Pa·s.
Examples of organohydrogensiloxanes suitable for use as organohydrogensiloxane (E)(ii) include, but are not limited to, organohydrogensiloxanes having the following formulae:
PhSi(OSiMe2H)3, Si(OSiMe2H)4, MeSi(OSiMe2H)3, (HMe2SiO)3SiOSi(OSiMe2H)3, and (HMe2SiO)3SiOSi(Ph)(OSiMe2H)2, where Me is methyl and Ph is phenyl.
Component (E)(ii) can be a single organohydrogensiloxane or a mixture comprising two or more different organohydrogensiloxanes, each as described above. Methods of making organohydrogensiloxanes are well known in the art.
The concentration of component (E)(ii) is sufficient to provide from 0.5 to 3 moles of silicon-bonded hydrogen atoms, alternatively from 0.6 to 2 moles of silicon-bonded hydrogen atoms, alternatively from 0.9 to 1.5 moles of silicon-bonded hydrogen atoms, per mole of alkenyl groups in component (E)(i).
The concentration of the reactive diluent (E), component (E)(i) and (E)(ii) combined, in the hydrosilylation-curable silicone composition is typically from 0 to 90% (w/w), alternatively from 0 to 50% (w/w), alternatively from 0 to 20% (w/w), alternatively from 0 to 10% (w/w), based on the combined weight of the silicone resin, component (A), (A′), (A″), or (A′″), and the organosilicon compound, component (B) or (B′) in the embodiments above.
The silicone composition can be a one-part composition comprising the silicone resin, organosilicon compound, and hydrosilylation catalyst in a single part or, alternatively, a multi-part composition comprising these components in two or more parts. For example, a multi-part silicone composition can comprise a first part containing a portion of the silicone resin and all of the hydrosilylation catalyst, and a second part containing the remaining portion of the silicone resin and all of the organosilicon compound.
The one-part silicone composition is typically prepared by combining the principal components and any optional ingredients in the stated proportions at ambient temperature, with or without the aid of an organic solvent. Although the order of addition of the various components is not critical if the silicone composition is to be used immediately, the hydrosilylation catalyst is preferably added last at a temperature below about 30° C. to prevent premature curing of the composition. Also, the multi-part silicone composition can be prepared by combining the components in each part.
Mixing can be accomplished by any of the techniques known in the art such as milling, blending, and stirring, either in a batch or continuous process. The particular device is determined by the viscosity of the components and the viscosity of the final silicone composition.
As an alternative to the hydrosilylation-curable silicone composition, condensation-curable silicone compositions are also suitable for the silicone composition of the present invention.
The condensation-curable silicone composition typically includes a silicone resin (A″″) having silicon-bonded hydroxy or hydrolysable groups and, optionally, a cross-linking agent (B″) having silicon-bonded hydrolysable groups and/or a condensation catalyst (C′). The silicone resin (A″″) is typically a copolymer containing T and/or Q siloxane units in combination with M and/or D siloxane units.
According to one embodiment, the silicone resin (A″″) has the formula:
(R1R62SiO1/2)w′(R62SiO2/2)x′(R6SiO3/2)y′(SiO4/2)z′ (VIII)
wherein R1 is as defined and exemplified above, R6 is R1, —H, —OH, or a hydrolysable group, and w′ is from 0 to 0.8, preferably from 0.02 to 0.75, and more preferably from 0.05 to 0.3, x′ is from 0 to 0.95, preferably from 0.05 to 0.8, and more preferably from 0.1 to 0.3, y′ is from 0 to 1, preferably from 0.25 to 0.8, and more preferably from 0.5 to 0.8, and z′ is from 0 to 0.99, preferably from 0.2 to 0.8, and more preferably from 0.4 to 0.6, and the silicone resin (A″″) has an average of at least two silicon-bonded hydrogen atoms, hydroxy groups, or hydrolysable groups per molecule. As used herein the term “hydrolysable group” means the silicon-bonded group reacts with water in the absence of a catalyst at any temperature from room temperature (˜23±2° C.) to 100° C. within several minutes, for example thirty minutes, to form a silanol (Si—OH) group. Examples of hydrolysable groups represented by R6 include, but are not limited to, —Cl, —Br, —OR7, —OCH2CH2OR7, CH3C(═O)O—, Et(Me)C═N—O—, CH3C(═O)N(CH3)—, and —ONH2, wherein R7 is C1 to C8 hydrocarbyl or C1 to C8 halogen-substituted hydrocarbyl.
The hydrocarbyl and halogen-substituted hydrocarbyl groups represented by R7 typically have from 1 to 8 carbon atoms, alternatively from 3 to 6 carbon atoms. Acyclic hydrocarbyl and halogen-substituted hydrocarbyl groups containing at least 3 carbon atoms can have a branched or unbranched structure. Examples of hydrocarbyl groups represented by R7 include, but are not limited to, unbranched and branched alkyl, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 1-ethylpropyl, 2-methylbutyl, 3-methylbutyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, hexyl, heptyl, and octyl; cycloalkyl, such as cyclopentyl, cyclohexyl, and methylcyclohexyl; phenyl; alkaryl, such as tolyl and xylyl; aralkyl, such as benzyl and phenethyl; alkenyl, such as vinyl, allyl, and propenyl; arylalkenyl, such as styryl; and alkynyl, such as ethynyl and propynyl. Examples of halogen-substituted hydrocarbyl groups represented by R7 include, but are not limited to, 3,3,3-trifluoropropyl, 3-chloropropyl, chlorophenyl, and dichlorophenyl.
Typically, at least 5 mol %, alternatively at least 15 mol %, alternatively at least 30 mol % of the groups R6 in the silicone resin are hydrogen, hydroxy, or a hydrolysable group. As used herein, the mol % of groups in R6 is defined as a ratio of the number of moles of silicon-bonded groups in the silicone resin (A″″) to the total number of moles of the R6 groups in the silicone resin (A″″), multiplied by 100.
Specific examples of silicone resins (A″″) include, but are not limited to, silicone resins having the following formulae:
(MeSiO3/2)n, (PhSO3/2)n, (Me3SiO1/2)0.8(SiO4/2)0.2, (MeSiO3/2)0.67(PhSiO3/2)0.33, (MeSiO3/2)0.45(PhSiO3/2)0.40(Ph2SiO2/2)0.1(PhMeSiO2/2)0.05, (PhSiO3/2)0.4(MeSiO3/2)0.45(PhSiO3/2)0.1(PhMeSiO2/2)0.05, and (PhSiO3/2)0.4(MeSiO3/2)0.1(PhMeSiO2/2)0.5,
wherein Me is methyl, Ph is phenyl, the numerical subscripts outside the parenthesis denote mole fractions, and the subscript n has a value such that the silicone resin has a number-average molecular weight of from 500 to 50,000. The sequence of units in the preceding formulae is not to be viewed in any way as limiting to the scope of the invention. These formulae represent the fully condensed forms of the resins. Before curing they will have —H, —OH, and/or other hydrolysable groups in the amount specified above.
As set forth above, the silicone resin (A″″) represented by formula (VIII) typically has a number-average molecular weight (Mn) of from 500 to 50,000. Alternatively, the silicone resin (A″″) may have a Mn of from 300 to non-measurable, alternatively 1,000 to 3,000, where the molecular weight is determined by gel permeation chromatography employing a low angle laser light scattering detector, or a refractive index detector and silicone resin (MQ) standards.
The viscosity of the silicone resin (A″″) at 25° C. is typically from 0.01 Pa·s to a solid, alternatively from 0.1 to 100,000 Pa·s, alternatively from 1 to 1,000 Pa·s.
Methods of preparing silicone resins (A″″) represented by formula (VIII) are well known in the art; many of these resins are commercially available. Silicone resins (A″″) represented by formula (VIII) are typically prepared by cohydrolyzing the appropriate mixture of chlorosilane precursors in an organic solvent, such as toluene. For example, a silicone resin including R1R62SiO1/2 units and R6SiO3/2 units can be prepared by cohydrolyzing a first compound having the formula R1R62SiCl and a second compound having the formula R6SiCl3 in toluene, where R1 and R6 are as defined and exemplified above. The cohydrolyzing process is described above in terms of the hydrosilylation-curable silicone composition. The cohydrolyzed reactants can be further “bodied” to a desired extent to control the amount of crosslinkable groups and viscosity.
The Q units in formula (VIII) and their combination in any ratio with the M units can also be in the form of discrete particles in the resin (A″″). The particle size is typically from 1 nm to 20 μm. Examples of these particles include, but not limited to, silica (SiO4/2) particles of 15 nm in diameter. The condensation curable silicone resin can further contain inorganic fillers such as silica, alumina, calcium carbonate, and mica.
In another embodiment, the condensation-curable silicone composition comprises a rubber-modified silicone resin (A″″) prepared by reacting an organosilicon compound selected from (i) a silicone resin having the formula (R1R62SiO1/2)w (R62Si)2/2)x(R6SiO3/2)y(SiO4/2)z and (ii) hydrolysable precursors of (i), and (iii) a silicone rubber having the formula R83SiO(R1R8SiO)mSiR83 in the presence of water, (iv) a condensation catalyst, and (v) an organic solvent, wherein R1 and R6 are as defined and exemplified above, R8 is R1 or a hydrolysable group, m is from 2 to 1,000, alternatively from 4 to 500, alternatively from 8 to 400, and w, x, y, and z are as defined and exemplified above, and silicone resin (i) has an average of at least two silicon-bonded hydroxy or hydrolysable groups per molecule, the silicone rubber (iii) has an average of at least two silicon-bonded hydrolysable groups per molecule, and the mole ratio of silicon-bonded hydrolysable groups in the silicone rubber (iii) to silicon-bonded hydroxy or hydrolysable groups in the silicone resin (i) is from 0.01 to 1.5, alternatively from 0.05 to 0.8, alternatively from 0.2 to 0.5.
Typically at least 5 mol %, alternatively at least 15 mol %, alternatively at least 30 mol % of the groups R6 in the silicone resin (i) are hydroxy or hydrolysable groups.
The silicone resin (i) typically has a number-average molecular weight (Mn) of from 300 to non-measurable, alternatively from 500 to 10,000, alternatively 1,000 to 3,000, where the molecular weight is determined by gel permeation chromatography employing a low angle laser light scattering detector, or a refractive index detector and silicone resin (MQ) standards.
Specific examples of silicone resins suitable for use as silicone resin (i) include, but are not limited to, resins having the following formulae:
(MeSiO3/2)n, (PhSiO3/2)n, (PhSiO3/2)0.4(MeSiO3/2)0.45(PhSiO3/2)0.1(PhMeSiO2/2)0.05, and (PhSiO3/2)0.3(SiO4/2)0.1(Me2SiO2/2)0.2(Ph2SiO2/2)0.4, where Me is methyl, Ph is phenyl, the numerical subscripts outside the parenthesis denote mole fractions, and the subscript n has a value such that the silicone resin has a number-average molecular weight of from 500 to 50,000. The sequence of units in the preceding formulae is not to be viewed in any way as limiting to the scope of the invention. Silicone resin (i) can be a single silicone resin or a mixture comprising two or more different silicone resins, each having the specified formula.
These formulae represent the fully condensed forms of the resins. Before curing they will have —H, —OH, and/or other hydrolysable groups in the amount specified above.
As used herein, the term “hydrolysable precursors” refers to silanes having hydrolysable groups that are suitable for use as starting materials (precursors) for preparation of the silicone resin (i). The hydrolysable precursors (ii) can be represented by the formulae R1R82SiX, R82SiX2, R8SiX3, and SiX4, wherein R1, R8, and X are as defined and exemplified above.
Specific examples of hydrolysable precursors (ii) include, but are not limited to, silanes having the formulae:
Me2ViSiCl, Me3SiCl, MeSi(OEt)3, PhSiCl3, MeSiCl3, Me2SiCl2, PhMeSiCl2, SiCl4, Ph2SiCl2, PhSi(OMe)3, MeSi(OMe)3, PhMeSi(OMe)2, and Si(OEt)4,
wherein Me is methyl, Et is ethyl, and Ph is phenyl.
Specific examples of silicone rubbers (iii) include, but are not limited to, silicone rubbers having the following formulae:
(EtO)3SiO(Me2SiO)55Si(OEt)3, (EtO)3SiO(Me2SiO)16Si(OEt)3, (EtO)3SiO(Me2SiO)386Si(OEt)3, and (EtO)2MeSiO(PhMeSiO)10SiMe(OEt)2,
wherein Me is methyl and Et is ethyl.
The reaction is typically carried out at a temperature of from room temperature (˜23±2° C.) to 180° C., alternatively from room temperature to 100° C.
The reaction time depends on several factors, including the structures of the silicone resin (i) and the silicone rubber (iii), and the temperature. The components are typically allowed to react for a period of time sufficient to complete the condensation reaction. This means the components are allowed to react until at least 95 mol %, alternatively at least 98 mol %, alternatively at least 99 mol %, of the silicon-bonded hydrolysable groups originally present in the silicone rubber (iii) have been consumed in the condensation reaction, as determined by 29Si NMR spectrometry. The time of reaction is typically from 1 to 30 h at a temperature of from room temperature (˜23±2° C.) to 100° C. The optimum reaction time can be determined by routine experimentation.
Suitable condensation catalysts (iv) are described in further detail below, and suitable organic solvents (v) are described above in the context of rubber-modified silicone resin (A′) above. The concentration of the condensation catalyst (iv) is sufficient to catalyze the condensation reaction of the silicone resin (i) with the silicone rubber (iii). Typically, the concentration of the condensation catalyst (iv) is from 0.01 to 2% (w/w), alternatively from 0.01 to 1% (w/w), alternatively from 0.05 to 0.2% (w/w), based on the weight of the silicon resin (i). The concentration of the organic solvent (v) is typically from 10 to 95% (w/w), alternatively from 20 to 85% (w/w), alternatively from 50 to 80% (w/w), based on the total weight of the reaction mixture.
The concentration of water in the reaction mixture depends on the nature of the groups R8 in the organosilicon compound and the nature of the silicon-bonded hydrolysable groups in the silicone rubber. When the silicone resin (i) contains hydrolysable groups, the concentration of water is sufficient to effect hydrolysis of the hydrolysable groups in the silicon resin (i) and the silicone rubber (iii). For example, the concentration of water is typically from 0.01 to 3 moles, alternatively from 0.05 to 1 moles, per mole of hydrolysable group in the silicone resin (i) and the silicone rubber (iii) combined. When the silicone resin (i) does not contain hydrolysable groups, only a trace amount, e.g., 100 ppm, of water is required in the reaction mixture. Trace amounts of water are normally present in the reactants and/or solvent.
As set forth above, the condensation-curable silicone composition can further comprise the cross-linking agent (B″). The cross-linking agent (B″) can have the formula R7qSiX4-q, wherein R7 is C1 to C8 hydrocarbyl or C1 to C8 halogen-substituted hydrocarbyl, X is a hydrolysable group, and q is 0 or 1. The hydrocarbyl and halogen-substituted hydrocarbyl groups represented by R7, and the hydrolysable groups represented by X are as described and exemplified above.
Specific examples of cross-linking agents (B″) include, but are not limited to, alkoxy silanes such as MeSi(OCH3)3, CH3Si(OCH2CH3)3, CH3Si(OCH2CH2CH3)3, CH3Si[O(CH2)3CH3]3, CH3CH2Si(OCH2CH3)3, C6H5Si(OCH3)3, C6H5CH2Si(OCH3)3, C6H5Si(OCH2CH3)3, CH2═CHSi(OCH3)3, CH2═CHCH2Si(OCH3)3, CF3CH2CH2Si(OCH3)3, CH3Si(OCH2CH2OCH3)3, CF3CH2CH2Si(OCH2CH2OCH3)3, CH2═CHSi(OCH2CH2OCH3)3, CH2═CHCH2Si(OCH2CH2OCH3)3, C6H5Si(OCH2CH2OCH3)3, Si(OCH3)4, Si(OC2H5)4, and Si(OC3H7)4; organoacetoxysilanes such as CH3Si(OCOCH3)3, CH3CH2Si(OCOCH3)3, and CH2═CHSi(OCOCH3)3; organoiminooxysilanes such as CH3Si[O—N═C(CH3)CH2CH3]3, Si[O—N═C(CH3)CH2CH3]4, and CH2═CHSi[O—N═C(CH3)CH2CH3]3; organoacetamidosilanes such as CH3Si[NHC(═O)CH3]3 and C6H5Si[NHC(═O)CH3]3; amino silanes such as CH3Si[NH(s-C4H9)]3 and CH3Si(NHC6H11)3; and organoaminooxysilanes.
The cross-linking agent (B″) can be a single silane or a mixture of two or more different silanes, each as described above. Also, methods of preparing tri- and tetra-functional silanes are well known in the art; many of these silanes are commercially available.
When present, the concentration of the cross-linking agent (B″) in the condensation-curable silicone composition is sufficient to cure (cross-link) the condensation-curable silicone resin. The exact amount of the cross-linking agent (B″) depends on the desired extent of cure, which generally increases as the ratio of the number of moles of silicon-bonded hydrolysable groups in the cross-linking agent (B″) to the number of moles of silicon-bonded hydrogen atoms, hydroxy groups, or hydrolysable groups in the silicone resin (A″″) increases. Typically, the concentration of the cross-linking agent (B″) is sufficient to provide from 0.2 to 4 moles of silicon-bonded hydrolysable groups per mole of silicon-bonded hydrogen atoms, hydroxy groups, or hydrolysable groups in the silicone resin (A″″). The optimum amount of the cross-linking agent (B′) can be readily determined by routine experimentation.
Condensation catalyst (C′) can be any condensation catalyst typically used to promote condensation of silicon-bonded hydroxy(silanol) groups to form Si—O—Si linkages. Examples of condensation catalysts include, but are not limited to, amines; and complexes of lead, tin, zinc, and iron with carboxylic acids. In particular, the condensation catalyst (C′) can be selected from tin(II) and tin(IV) compounds such as tin dilaurate, tin dioctoate, and tetrabutyl tin; and titanium compounds such as titanium tetrabutoxide.
When present, the concentration of the condensation catalyst (C′) is typically from 0.1 to 10% (w/w), alternatively from 0.5 to 5% (w/w), alternatively from 1 to 3% (w/w), based on the total weight of the silicone resin (A″″).
When the condensation-curable silicone composition includes the condensation catalyst (C′), the condensation-curable silicone composition is typically a two-part composition where the silicone resin (A″″) and condensation catalyst (C′) are in separate parts.
The condensation-curable silicone composition of the present invention can comprise additional ingredients, as known in the art and as described above for the hydrosilylation-curable silicone composition.
In the illustrated embodiment, the silicone resin layer 105 may be treated or modified to increase adhesion between the silicone resin layer 105 and layers that may be subsequently formed or placed adjacent the silicone resin layer 105, as indicated by the arrows 115 in
A second silicone resin layer 120 may then be formed or deployed adjacent the silicone resin layer 105, as shown in
The (cured or partially cured) silicone resin layer 120 is formed to have a thickness (T) that is less than a ductile transition thickness (Td) of the cured or partially cured silicone resin that is used to form the silicone resin layer 120. In one embodiment, the silicone resin layers 105, 120 are formed using the same curable silicone resin composition and therefore may have the same ductile transition thickness. However, the actual thicknesses of the silicone resin layers 105, 120 may not be the same. Furthermore, in alternative embodiments, the silicone resin layers 105, 120 may be formed using different curable silicone resin compositions (or different curing processes) and so they may have different ductile transition thicknesses. The silicone resin layer 120 can also be a layer of composition other than a silicone resin. For example, it can be a curable silicone rubber. Alternatively, it can be an organic polymer, deposited either by solvent casting, or any other coating techniques, or by laminating a preformed film. The organic polymer film can be either thermoplastic or thermosett in nature. Examples of them include epoxy resins, polyurethane, polyester, polyimide, cyanate ester resins, polyacrylates, polyethylene, polypropylene, polystyrene, polyetherethersulfone, etc. The silicone resin film 125 formed of the silicone resin layers 105, 120 may then be removed from the substrate 110, e.g., by peeling up the silicone resin film 125, as shown in
The flexibility and/or durability of the silicone resin film 125 may be improved by forming the silicone resin film 125 of multiple silicone resin layers 105, 120 that have thicknesses less than their corresponding ductile transition thicknesses. For example, a nine layer film 125 constructed by laying five layers of a rubber toughened version of the aforementioned Resin-1 by spin coating a 50 wt. % of it in MIBK onto stainless steel, and four layers of a hydrosilylation cured silicone rubber. The resin and rubber layers are arranged in an alternating fashion. The toughened Resin-1 can be prepared by reacting 10 wt. % of triethoxysiloxy terminated PDMS of degree of polymerization of 55 with the uncured Resin-1 with 0.2 wt. % Ti(OBu)4 as the catalyst. Each layer is cured at 200° C. for 1 hour after it is laid down and before the next layer is deposited. The rubber layer is treated with O2 plasma before the deposition of the next layer, the toughened Resin-1. After curing the nine layers, the multilayer film is peeled off from the stainless steel. The total thickness of the film is 66 micrometers. The tensile strain at break of the multilayer film is 9.4±3.9%, the tensile modulus is 716.6±85.4 MPa. In contrast, a cured single layer film of the same toughened 4-3136 has a strain at break of only 2.0%.
Although the embodiment of the multilayer silicone resin film 125 illustrated in
The (cured or partially cured) silicone resin layer 205 is formed to have a thickness (T) that is less than a ductile transition thickness (Td) of the cured or partially cured silicone resin that is used to form the silicone resin layer 205. In one embodiment, the silicone resin layer 205 may be treated or modified to improve adhesion between the silicone resin layer 205 and any layers that are subsequently formed or deployed adjacent the silicone resin layer 205. However, as discussed above, whether or not to treat or modify the silicone resin layer 205, as well as the techniques that may be used to treat or modify the silicone resin layer 205 if such treatment or modification is performed, is a matter of design choice and not material to the present invention.
One or more additional layers 215 may be formed or deployed adjacent the silicone resin layer 205, as shown in
A second silicone resin layer 220 may then be formed or deployed adjacent the silicone resin layer 105, as shown in
The (cured or partially cured) silicone resin layer 220 has a thickness (T) that is less than a ductile transition thickness (Td) of the cured or partially cured silicone resin that is used to form the silicone resin layer 220. In one embodiment, the silicone resin layers 205, 220 are formed using the same curable silicone resin composition and therefore may have the same ductile transition thickness. However, the actual thicknesses of the silicone resin layers 205, 220 may differ. Furthermore, in alternative embodiments, the silicone resin layers 205, 220 may be formed using different curable silicone resin compositions (or different curing processes) and so they may have different ductile transition thicknesses.
Although the embodiment of the multilayer silicone resin film illustrated in
Referring back to
A die insert may then be formed from the two portions 1500, 1505 by joining the first and second die insert components 1500, 1505 so that one (unbent) leg of the L-shaped sheet 1515 in the first die insert component 1500 is parallel to and adjacent one (unbent) leg of the L-shaped sheet 1525 in the second die insert component 1505. One (unbent) leg of the L-shaped sheet 1510 in the first die insert component 1500 is also parallel to and adjacent one (unbent) leg of the L-shaped sheet 1520 in the second die insert component 1505.
The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2007/013135 | 6/4/2007 | WO | 00 | 7/12/2010 |
Number | Date | Country | |
---|---|---|---|
60811019 | Jun 2006 | US |