This application claims the benefit of the Korean Patent Application No. 10-2007-0017172, filed on Feb. 20, 2007, which is hereby incorporated by reference in its entirety as if fully set forth herein.
1. Field of the Invention
The present invention relates to a ductless dryer, and particularly, to a ductless dryer in which noise is attenuated completely by attenuating the noise transferred through an exhaust duct exposed into a room.
2. Description of the Related Art
In general, a dryer, e.g. a clothes dryer, is an apparatus performing a drying operation on objects such as wet laundry to be dried by blowing hot air generated by a heater into a drum to absorb moisture from the objects therewithin. Dryers can be categorized as exhausting (e.g. vented) type dryers and condensing (e.g. ventless) type dryers depending on the method employed for dealing with the humid air generated as the objects are dried by absorbing moisture therefrom.
In the exhausting type dryer, humid air exhausted from a drum in which the objects to be dried are held is exhausted i.e., vented outside the dryer. However, an exhaust vent or duct is required for exhausting the moisture evaporated from the objects in the drum to the outside of the dryer, and especially, in the case of a dryer heated by gas, the exhaust duct should be installed being extended a long distance to the outside of a room or building, because products of combustion such as carbon monoxide etc. are exhausted together with the moisture.
Meanwhile, in the condensing type dryer, the moisture in the humid air exhausted from the drum is condensed at a heat exchange unit to remove the moisture therefrom, and the dried air is recirculated back into the drum. However, a condensing type dryer does not facilitate to use gas as a heating source because a closed loop may be formed due to the recirculating flowing of the drying air.
In a ductless dryer, these disadvantages of the exhausting type and the condensing type dryers may be improved upon. That is, the ductless dryer can use gas as its heating source, and accordingly it can be maintained inexpensively, although it is required to have an exhaust duct installed to be extended a long distance to the outside of the room.
However, in the case of the ductless dryer, because the exhaust duct is exposed into the room, accordingly noise may emanate into the room through the exhaust duct, and thereby, the room in which such ductless dryer is situated may not be quiet.
Therefore, it is an object of the present invention to provide a noise-attenuated ductless dryer. Further, it is another object of the present invention to provide ductless dryer attenuating the noise which is propagated through an exhaust duct exposed into a room.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, there is provided a ductless dryer including: a main body; a drum rotatably installed at the main body; a heat exchanger for removing moisture included in air exhausted from the drum; a circulation duct to conduct the air exhausted from the drum to the heat exchanger; an exhaust duct to conduct the air exhausted from the heat exchanger outside the dryer; and a noise reduction portion to attenuate noise from being propagated through the exhaust duct.
Herein, preferably, the noise reduction portion may be installed between the circulation duct and the heat exchanger in consideration of space limitations. Further, preferably, the noise reduction portion is connected with the heat exchanger in a straight line in order for the air from the noise reduction portion to be directly introduced to the heat exchanger. Further, preferably, in the noise reduction portion, first, second and third pipes are sequentially connected, and a cross-sectional area of the second pipe is larger than the cross-sectional areas of the other pipes, the first and the third pipes.
Herein, more preferably, the first and the third pipes have the same cross-sectional area as each other.
Further, preferably, the noise loss transfer function (LT) through the noise reduction portion can be determined by the following formula:
wherein, I: noise at an inlet of the second pipe T: noise at an outlet of the second pipe A1: cross-sectional areas of the first and the third pipes A2: cross-sectional area of the second pipe l: length of the second pipe c: speed of sound f: frequency n=1, 2, 3 . . . f1: target noise frequency (n=1).
Meanwhile, the noise reduction portion may include an inner pipe; and an outer pipe enclosing the inner pipe to form a noise space, and the inner pipe may be provided with a plurality of noise openings therein in communication with the noise space. Herein, preferably, the outer pipe entirely or partly encloses the inner pipe. If the outer pipe encloses only a part of the inner pipe, the enclosing angle (Θ) is 120° or less, preferably. Herein, preferably, the outer pipe includes an outer wall enclosing the inner pipe and being spaced therefrom in a radial direction; and lateral walls forming the noise space by closing front and rear ends of the outer wall. Further, preferably, the target noise frequency to be attenuated through the noise reduction portion is determined by the following formula.
wherein, p: percentage of the area of the openings in the area of the inner pipe forming an interior surface of the space
l: separation distance between the inner pipe and the outer pipe
t: thickness of the inner pipe
d: diameter of each opening
fres: target noise resonant frequency
The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
Hereinafter, description will now be given in detail of a ductless dryer having a noise reduction portion in accordance with a first embodiment of the present invention.
Referring to
A door 111 may be installed at the front surface of the main body 110 so as to permit the loading of clothes into the drum 120, and feet 113 are installed at the under side thereof for supporting the main body 110. A belt 131 rotating the drum 120, a fan 133 installed inside the circulation duct 114 blowing the air inside the ductless dryer and a motor 135 providing driving power to the belt 131 and the fan 133 may be installed inside the main body 110. Herein, the belt 131 and the fan 133 may each be provided with driving power, respectively, by separate motors 135. Meanwhile, a filter (not shown) may be installed at the circulation duct 114 so as to filter lint debris such as fluff or waste thread included in the hot and humid air flowing from the drum 120.
The drum 120 may be a barrel provided with an inner space so as for objects to be dried such as clothes to be loaded thereinto, in the interior of which a plurality of lifters or baffles 121 may be installed to lift the clothes for exposing them to the flow of hot air.
The hot air supplying unit 140 may include a valve 141 supplying and shutting off the supply of gas, a gas burner 143 mixing the gas admitted from the valve 141 with air provided from outside and then igniting the mixture to generate hot air and a hot air supplying duct 145 communicating the gas burner 143 with the drum 120 so as to supply the hot air into the drum 120. A flame rod (not shown) may be installed in the hot air supplying unit 140, being installed extendingly to the edge of a flame region there in order to monitor the burner flame so as for a burner control unit (not shown) to indirectly measure the emitted amount of carbon monoxide (CO) through a detected value of a current flowing in the flame rod. The burner control unit functions to regulate the operation of the valve 41, and thereby to regulate the combustion of the gas-air mixture in the burner 143, by sensing the current flowing in the flame rod, and upon sensing a flame rod current valve signifying interrupted or abnormal combustion, the burner control unit operates to cause immediate closure of valve 141 in a known manner.
Preferably, a solenoid valve is used for the valve 141 so as to enable the burner control unit to sensitively adjust the supplied amount of gas.
The gas burner 143 may be connected with the valve 141 to heat air with heat generated by burning a mixture of the gas supplied from the valve 141 and outside air. And then, the hot air is supplied to the drum 120 through the hot air supplying duct 145.
The heat exchanger 150 is composed of fins 151 and tubes 153, and makes the hot and humid air from the drum 120 dry by condensing the moisture from the air with low-temperature water using a method of heat exchange between the air and water. An inlet of the heat exchanger 150 is connected with the drum 120 by the circulation duct 114, and an outlet thereof is connected with the exhaust duct 181.
The fins 151 may each be formed of a sheet of a metal material having an excellent thermal conductivity, and a plurality of such sheets are stacked at fine intervals adjacent each other in order for hot and humid air to pass therethrough while contacting with the sheets.
The tubes 153 may be provided with low-temperature (22° C.) water circulating therein, and penetrate the fins 151 in a back-and-forth serpentine manner. Water lines (not shown) for supplying and returning the low-temperature water are connected to both ends of the tubes 153. A water receiver (not shown) for collecting condensed water which is generated in the condensing process and falls from the fins may be installed at the lower portion of the heat exchanger 150.
Referring to
Referring to
Referring to
Referring to
Meanwhile, the noise loss transfer function (LT) of the noise reduction portion (16) is determined by the following formulas. The larger the noise loss transfer function (LT) is, the less the noise propagated through the exhaust duct (181) is.
wherein, I: noise level at the inlet of the second pipe T: noise level at the outlet of the second pipe A1: cross-sectional areas of the first and the third pipes A2: cross-sectional area of the second pipe l: length of the second pipe c: speed of sound f: frequency n=1, 2, 3 . . . f1: target noise frequency (n=1).
If the target noise frequency f1 to be attenuated in accordance with the formulas above is set to 250 Hz, the length l of the second pipe 163 is calculated as 334.6 mm by the second formula. In addition, considering an installed position in the ductless dryer and the size of the noise reduction portion 160, when the cross-sectional areas A1, A2: are adjusted to appropriated sizes to calculate the maximum value of the noise loss transfer (LT) by the first formula, the diameter of the first pipe 161 and the third pipe 165 (d1) is 100 mm, and the diameter of the second pipe 163 is 140 mm.
In other words, when the target noise frequency f1 is set to 250 Hz, the length l of the second pipe 163 is 334.6 mm, the diameter of the first pipe 161 and the third pipe 165 (d1) is 100 mm, and the diameter of the second pipe 163 is 140 mm.
Referring to
In conclusion, by employing the noise reduction portion 160, the noise propagating through the exhaust duct 181 exposed into the room and the noise of the entire ductless dryer are attenuated at the same time, and thereby, a quieter room environment can be implemented.
Referring to
Preferably, the outer pipe 173 encloses the entirety or a part of the inner pipe 171 so as to enhance the noise attenuation effect. Preferably, when the outer pipe 173 encloses only a part of the inner-pipe 171 as the second embodiment, the enclosing angle (θ) is 120° or less. In order to implement the aforementioned, the outer pipe 173 includes an outer wall 173a enclosing the inner pipe 171 while being spaced therefrom in a radial direction; and end walls 173b forming the airtight space S by closing the front and the rear ends of the outer wall 173a.
Meanwhile, the target noise frequency to be attenuated through the noise reduction portion 170 as aforementioned is determined by the following third formula:
wherein, p: percent of the area of the openings in the surface area of the inner pipe forming the interior of the space l: separation distance between the inner pipe and the outer pipe t: thickness of the inner pipe d: diameter of the openings fres: target noise resonant frequency.
By employing the above third formula, when the target noise resonant frequency fres to be attenuated is set to 254 Hz, and considering the installed position in the ductless dryer and the size of the noise reduction portion 170, when the setting of l is 50 mm, t is 3 mm and d is 7 mm, p is 1.1%.
Alternatively, when the target noise resonant frequency fres to be attenuated by implementing the third formula is set to 179 Hz, and considering the installed position in the ductless dryer and the size of the noise reduction portion 170, when the setting of l is 50 mm, t is 3 mm and d is 7 mm, p is 0.55%.
Herein, it is required to form the openings 171a more densely when the target noise resonant frequency is set to 254 Hz, comparing with the case of 179 Hz, in the surface of the inner pipe 171. Of course, it is possible to adjust variables l, d, t in consideration of the number of the openings 171a, in a state that the target noise resonant frequency is set.
Referring to
In case of the noise reduction portion 170 configured for the target noise resonant frequency F254 (fres of 254 Hz), l of 50 mm, t of 3 mm, d of 7 mm and p of 1.1%, the sound is largely attenuated near 254 Hz. And, in the case of the noise reduction portion 170 configured for the target noise resonant frequency F179 (fres of 179 Hz), l of 50 mm, t of 3 mm, d of 7 mm and p of 0.55%, the sound was largely attenuated near 179 Hz. In other words, the openings 171a prevent the target noise frequency component from being propagated by absorbing (trapping) sound waves of the set target noise frequency component by functioning as a Helmholtz resonator.
In conclusion, by employing the noise reduction portion 170, the noise propagation through the exhaust duct 181 exposed into the room and the noise level of the entire ductless dryer are attenuated at the same time, and thereby, the quiet room circumstances can be implemented.
Hereinafter, the operation of the ductless dryer in accordance with the first embodiment will be described.
Referring to
The hot and humid air of which the noise is attenuated at the noise reduction portion 160 is condensed by contacting and passing through the fins 151 of the heat exchanger 150 to be dried, and the condensed water generated in the condensing process is collected in the water receiver (not shown). The dried air exhausted from the heat exchanger 150 is discharged into the room after passing through the exhaust duct 181.
In the ductless dryer employing a noise reduction portion in accordance with the present invention as described above, by the noise reduction portion, the noise propagation through the exhaust duct exposed into the room and the noise of the entire ductless dryer are attenuated at the same time, and thereby, quiet room circumstances can be achieved.
The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the present invention. The present teachings can be readily applied to other types of apparatuses. This description is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art. The features, structures, methods, and other characteristics of the exemplary embodiments described herein may be combined in various ways to obtain additional and/or alternative exemplary embodiments.
As the present features may be embodied in several forms without departing from the characteristics thereof, it should also be understood that the above-described embodiments are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be construed broadly within its scope as defined in the appended claims, and therefore all changes and modifications that fall within the metes and bounds of the claims, or equivalents of such metes and bounds are therefore intended to be embraced by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2007-0017172 | Feb 2007 | KR | national |