The present invention relates to a dump truck with an obstacle detection mechanism that is able to detect an obstacle around a vehicle using a plurality of radars provided on a peripheral of the vehicle and a method for detecting the obstacle.
The dump trucks used for mine operation and the like have much wider vehicle width (for example, about 9 m) and much higher vehicle height (for example, about 7 m) than general trucks or buses. Then, since the driver's cab is provided on the left side of the upper deck of the front part of the vehicle, the driver may have difficulty in seeing the right direction.
Therefore, in the dump truck, a plurality of cameras are installed on the peripheral of the vehicle in order to monitor the periphery of the vehicle, and the periphery monitoring is made based on the images obtained by these cameras. Further, a plurality of radars are installed on the peripheral of the vehicle and the detection of the obstacle around the vehicle is made based on the data obtained by these radars (see Patent Literatures 1 and 2).
Patent Literature 1: U.S. Patent Application Publication No. 2009/0259399
Patent Literature 2: U.S. Patent Application Publication No. 2009/0259400
In the conventional dump truck, however, since the radar for detecting the obstacle behind the body is attached to the high position that is the upper side of the rear axle, it is difficult to detect an obstacle in the area behind the rear wheel.
The present invention has been made to address the above problem, and its purpose is to provide a dump truck with an obstacle detection mechanism that is able to detect an obstacle in the backside of the body including the area behind the rear wheel and a method for detecting the obstacle.
To achieve the object mentioned above, according to the present invention, a dump truck with an obstacle detection mechanism capable of detecting an obstacle around a vehicle using a plurality of radars provided on peripheral of the vehicle, the dump truck comprising radars arranged with respect to a vehicle center plane in a backside of a rear axle case and between joints of rear suspension cylinders on the rear axle case, wherein the radars are arranged such that irradiation center axes in a vertical direction have a predetermined angle of dip to detect an obstacle in a backside of the vehicle.
According to the present invention, the radar comprising a pair of radars arranged laterally symmetrical to a center plane of the rear axle case, and the irradiation center axes irradiated from the pair of radars cross at the vehicle center plane.
According to the present invention, each of the plurality of radars including the pair of radars is surrounded by a protection member protecting the radar around an attachment position of the radar.
According to the present invention, the protection member has a cover through which an irradiated signal transmits in a forward direction of an irradiation direction.
According to the present invention, a method of obstacle detection in a dump truck with an obstacle detection mechanism capable of detecting an obstacle around a vehicle using a plurality of radars provided to peripheral of the vehicle, the method comprising: deleting obstacle information within a preset vehicle area indicating the vehicle from obstacle information detected by radars arranged in a backside of a rear axle case and between joints of rear suspension cylinders on the rear axle case and arranged such that irradiation center axes in a vertical direction have a predetermined angle of dip to detect an obstacle in a backside of the vehicle.
According to the present invention, the radars arranged facing the center of the vehicle are provided in the backside of the rear axle case and between the joints of the rear suspension cylinders on the rear axle case, and are arranged so that the irradiation center axes in the vertical direction have a predetermined angle of dip to detect the obstacle in the backside of the vehicle, so that the obstacle in the backside of the body including the area behind the rear wheel can be detected and, as a result, the obstacle around the entire surroundings of the body can be detected.
An embodiment for implementing the present invention will be described below by referring to the attached drawings. It is noted that, in the following descriptions, regarding “forward” and “backward”, the direction with respect to the direction facing the front from the cab is defined as “forward” and the opposite direction is defined as “backward”. “Left” and “right” refer to respective directions with respect to the vehicle center plane C described later at the time of directing toward “forward” direction.
Overall Arrangement
The body frame 2 supports a motive power mechanism such as a diesel engine, a transmission, and the like, and/or other auxiliary machinery. Further, the body frame 2 supports the pair of left and right front wheels 5 in the front part and supports the pair of left and right rear wheels 6 in the rear part of the vehicle. The body frame 2 has a lower deck 2A provided close to the ground in the front part and an upper deck 2B provided above the lower deck 2A.
A pair of movable ladders 2C for getting on and off are provided to both sides between the lower deck 2A and the ground. A diagonal ladder 2D for one to walk between the lower deck 2A and the upper deck 2B is provided between the lower deck 2A and the upper deck 2B. Further, a front fender 2E extended from the lower deck 2A to the upper deck 2B is arranged near the front wheel 5.
The cab 3 is arranged to the left side on the upper deck 2B. As illustrated in
A vessel 4 is a load-carrying platform for loading heavy load such as crushed rocks and is rotatably connected to the rear end part of the body frame 2 via a rotation shaft at the rear bottom part. The vessel 4 is revolved with respect to a revolve shaft by an actuator such as a hydraulic cylinder, so that the vessel 4 can be revolved within a range between an election position for raising the front part of the vessel 4 to discharge the load and a loading position in which the front part thereof is positioned above the top of the cab 3 as illustrated in
Arrangement of the Periphery Monitoring Device
As illustrated in
The controller 100 uses the cameras 11 to 16 to display, by bird's-eye views, the presence or absence of an obstacle having a size of a car and the like that may occur in the surroundings of the dump truck 1 so as to allow the driver to monitor them, and uses the radars 21 to 28 to allow for alarming the presence of the obstacle to the driver. As illustrated in
The bird's-eye image composition unit 110 is connected to the cameras 11 to 16 to receive the image data obtained by respective cameras 11 to 16. The bird's-eye image composition unit 110 composes a plurality of received image data to generate a bird's-eye image including the entire surroundings of the dump truck 1. Specifically, by applying a coordinate conversion on the plurality of image data, the bird's-eye image composition unit 110 generates the bird's-eye image data indicating a bird's-eye image in which a plurality of images are projected on a predetermined projecting plane.
The camera image switching/view point conversion unit 120 is connected to the cameras 11 to 16 and, based on the detection result of the obstacle by the radars 21 to 28, switches the captured image from each of the cameras 11 to 16 that is displayed on the screen of the monitor 50 along with the bird's-eye images. Further, the camera image switching/view point conversion unit 120 converts the captured image obtained by each of the cameras 11 to 16 into an image whose view point is in the infinite distance of the upper position of the dump truck.
The display control unit 130 is connected to the camera image switching/view point conversion unit 120, the monitor image generation unit 140, and the obstacle processing unit 220. The display control unit 130 composes the images obtained by respective cameras 11 to 16. The display control unit 130 sends out the obstacle position data to the camera image switching/view point conversion unit 120 and the monitor image generation unit 140 by composing and displaying the obstacle position information obtained by the radars 21 to 28 into the bird's-eye image formed at the bird's-eye image composition unit 110.
The monitor image generation unit 140 is connected to the bird's-eye image composition unit 110, the camera image switching/view point conversion unit 120, and the display control unit 130. Based on the image data and the obstacle position data of the entire surroundings of the dump truck obtained by the cameras 11 to 16 and the radars 21 to 28, the monitor image generation unit 140 generates an image in which the position of the obstacle is included on the bird's-eye image and sends it out to the monitor 50. The monitor 50 displays the obstacle in the display area, so that the driver is able to recognize the presence of the obstacle.
The obstacle information collecting unit 210 is connected to the radars 21 to 28 and the obstacle processing unit 220. The obstacle information collecting unit 210 receives respective obstacle detection results detected by the radars 21 to 28 and sends them to the obstacle processing unit 220.
The obstacle processing unit 220 is connected to the obstacle information collecting unit 210 and the display control unit 130. The obstacle processing unit 220 performs a process for excluding position information from the position information of the obstacle received from the obstacle information collecting unit 210 according to a setting and sends, to the display control unit 130, the position information in which the exclusion process has been made.
Feature and Arrangement of Cameras
As illustrated in
The camera 11 is a camera for imaging the forward direction of the vehicle and is arranged under the landing at the upper most step of the diagonal ladder 2D, as illustrated in
The camera 12 is a camera for imaging the right oblique side-forward direction of the vehicle and is arranged close to the right end of the front side surface of the upper deck 2B, as illustrated in
The camera 13 is a camera for imaging the left oblique side-backward direction of the vehicle and is fixed at the laterally symmetrical position of the camera 12, that is, via a bracket attached to the upper deck 2B so as to face left oblique backward from the vehicle. The imaging range of the camera 13 is an imaging range 13C spreading left oblique backward of the vehicle in the imaging area whose reference is the ground as illustrated in
The camera 14 is a camera for imaging the right oblique side-backward direction of the vehicle and is arranged close to the right end of the front side surface of the upper deck 2B, as illustrated in
The camera 15 is a camera for imaging the left oblique side-backward direction of the vehicle and is arranged at the laterally symmetry position of the camera 14 with respect to the vehicle center plane C, as illustrated in
The camera 16 is a camera for imaging the backward direction of the vehicle, is arranged above the rear axle connecting two rear wheels 6 and close to the revolve shaft of the vessel 4 at the rear end of the body frame 2, and is fixed via a bracket attached to the cross member so as to face backward from the vehicle. The imaging range of the camera 16 is an imaging range 16C spreading backward of the vehicle in the imaging area whose reference is the ground as illustrated in
The use of these cameras 11 to 16 allows for obtaining the images of the entire surroundings of the dump truck 1, as illustrated in the center figure of
Further, the cameras 11 to 16 are provided to the upper deck 2B and the cross member at higher positions of the body frame. Therefore, the captured image to overlook the ground from the upper position can be obtained by each of the cameras 11 to 16, so that the obstacle on the ground in a wide area can be imaged. Further, even when the view point conversion has been made in forming the bird's-eye image, the use of the image imaged from the upper position allows for the suppression of the degree of deformation for the three-dimensional object.
Feature and Arrangement of Radars
The radars 21 to 28 each has an azimuth (horizontal) direction of 80 degrees (±40 degrees) and an up-and-down (vertical) direction of 16 degrees (±8 degrees), and is a UWB (Ultra Wide Band) radar whose detection distance is equal to or longer than 15 m at the maximum. The relative position of the obstacle occurring in the entire surroundings of the dump truck 1 is detected by the installed radars 21 to 28. Each of the radars 21 to 28 is arranged on the outer peripheral of the dump truck 1. It is noted that, although the detection angle in the azimuth (horizontal) direction of each of the radars 21 to 28 is 80 degrees (±40 degrees), the detection angle may be wider than the above.
The radars 21 and 22 will be described by referring to
The radar 28 and the radar 23 positioned symmetrically with respect to the vehicle center plane C will be described by referring to
The radar 23 is positioned laterally symmetrically to the installed radar 28 with respect to the vehicle center plane C in the side view from the left side of the dump truck 1. The radar 23 is provided near the right end of the lower deck 2A located under the upper deck 2B, that is, near the upper end of the ladder 2C to which the cameras 12 and 14 for mainly imaging the right side direction of the vehicle are provided. The radar 23 is attached to the lower deck 2A via a bracket B23 provided laterally symmetrically to the bracket B28 with respect to the vehicle center plane C and is arranged facing right side outward from the vehicle.
The specific attachment of the radars 23 and 28 is illustrated in
The radars 23 and 28 allows for the detection of the obstacle in the side, in particular, in front of the front wheels 5 and the rear wheels 6 of the dump truck 1. Further, the radars 23 and 28 are positioned under the vessel 4 and the upper deck 2B and thus is not affected by the fly rock that may fly out of the vessel 4 at the loading.
The radar 27 and the radar 24 positioned symmetrically with respect to the vehicle center plane C will be described by referring to
The radar 24 is positioned laterally symmetrically to the installed radar 27 with respect to the vehicle center plane C from the left side of the dump truck 1 in the side view. The radar 24 is arranged to the side end of the air cleaner 62 provided to the position projected toward the side from the front fender 2E on the right side of the vehicle extended toward the lower deck 2A located under the upper deck 2B to which the cameras 12 and 14 for mainly imaging the right side direction of the vehicle are provided. The radar 24 is attached to the front fender 2E via a bracket B24 and attached facing backward from the vehicle.
The specific attachment of the radars 24 and 27 is illustrated in
The radars 24 and 27 allows for the detection of the obstacle in the side-backward area corresponding to the backward of the center axis lines of the front wheels 5 and the rear wheels 6 in the side of the dump truck 1, in particular, corresponding to the entire side area of the vessel. Further, the radars 24 and 27 are positioned under the vessel 4 and the upper deck 2B and thus are not affected by the fly rock that may fly out of the vessel 4 at the loading.
As illustrated in
The radars 25 and 26 will be described by referring to
As illustrated in
The radars 25 and 26 are attached symmetrically with respect to the vehicle center plane C and installed so that their irradiation center axes cross, and therefore all the obstacles in the backside area of the rear end of the vehicle can be detected. In particular, the radars 25 and 26 are arranged with a small angle of dip on the case of the rear axle 71, the position of which is lower than the cross member 70. As illustrated in
The radars 21 to 28 for detecting the obstacle in respective directions of the vehicle are attached to the members in the lower positions than the cameras 11 to 16 for imaging respective directions of the vehicle to generate the bird's-eye images. Even when the radar having smaller angle in the vertical direction is used, installation of the radar at the lower position than the camera allows for displaying the obstacle information detected by the radar into the bird's-eye image, also in the bird's-eye image imaged and generated by the camera.
Obstacle Detection Process Based on Detected Data from Radars 21 to 28
Hereafter, by referring to the flowchart illustrated in
If there is effective data in the basic filter (step S102, Yes), it is determined whether or not among the effective data there is effective data that is validated by a filter by sensor (step S103). The filter by sensor performs the filtering based on each specification of the filters, in which the radar detection range is divided into several areas in accordance with the radar detection capability, and outputs the data satisfying the condition for every area as the effective data. Because, in the reflected signal, the intensity is reduced in the far area, the time resolution is degenerated in the near area, and the detection capability may be different according to the scan angle.
If there is effective data that is validated by the filter by sensor (step S103, Yes), it is further determined whether or not among the effective data there is effective data that is validated by an area filter (step S104). If there is a preset vehicle area indicating the inside of the vehicle, the area filter deletes the effective data in the inside of the vehicle area.
If there is effective data that is validated by the area filter (step S104, Yes), this effective data is outputted to the display control unit 130 as the position information (step S105). Then, it is determined in the controller 100 whether or not there is a finish instruction of the process (step S106) and, if there is a finish instruction (step S106, Yes), the process ends. It is noted that, if there is no effective data by the basic filter (step S102, No), if there is no effective data validated by the filter by sensor (step S103, No), if there is no effective data validated by the area filter (step S104, No), and if there is no finish instruction (step S106, No), the process enters step S101 and repeats the above process.
As described above, the obstacle processing unit 220 is configured to delete the effective data in the vehicle area by the area filter. For example, among the obstacle information detected by the radars 24 and 27, the obstacle information of the vehicle area E1 illustrated in
Further, while radars 25 and 26 are arranged with the angles so as to cross the vehicle center plane C, some angle may cause the radars 25 and 26 to detect the rear suspension cylinder 72. By presetting the rear suspension cylinder 72 as the vehicle area, the area filter of the obstacle processing unit 220 can delete the obstacle information of this vehicle area, so that the rear suspension cylinder 72 is not displayed on the display screen of the monitor 50.
It is noted that the radar detection data obtained by the radars 21 to 28 may include the information of the ground. Therefore, in the obstacle processing unit 220, it is preferable to preset the area under the installation plane of the vehicle as the area to be deleted similarly to the vehicle area, and delete by the area filter the radar detection data of the ground that is lower than a predetermined height for which the rut and the like are taken into consideration.
The use of such radars 21 to 28 allows for the detection of the obstacle in the entire surroundings of the vehicle. In particular, this allows for the detection of the obstacle in the side area of the vessel and the obstacle in the backside area of the vessel rear end which would not otherwise be detected.
In addition, each of the radars 21 to 28 is provided with a protection member 83 that is a hood surrounding the peripheral of a radar body 81 as seen in the radar 25 illustrated in
Furthermore, another protection member 84 may be provided to cover the opening of the space surrounded by the protection member 83, that is, the opening in the irradiation side. The protection member 84 is for a front protection and thus is required to be a member not only having strength but also having transparency to the radar signal. Further, the transparent member is preferable. Because, such transparency allows for the visual observation of the condensation and the like on the surface of the radar body 81. The protection member 84 is formed with polycarbonate, for example.
It is noted that, although a pair of radars 25 and 26 for detecting the obstacle in the backward direction are provided, it is not limited to it and one radar may be provided to the center of the rear axle 71 and between the joints of the rear suspension cylinders as illustrated in
Further, the dump truck as described above can be applied to the dump truck in an unattended dump truck operation system that is wirelessly managed. In this case, when an obstacle is detected by the radars 21 to 28, the control for preventing collision is made by an emergency stop.
1 dump truck
2 body frame
2A lower deck
2B upper deck
2C, 2D ladder
2E front fender
3 cab
4 vessel
5 front wheel
6 rear wheel
7 base
10 periphery monitoring device
11 to 16 camera
21 to 28, 80 radar
31 driver seat
32 handle
33 dash cover
34 radio device
35 radio broadcast receiver
36 retarder
37 shift lever
50 monitor
62 air cleaner
70 cross member
71 rear axle
72 rear suspension cylinder
73 joint
100 controller
110 bird's-eye image composition unit
120 camera image switching/view point conversion unit
130 display control unit
140 monitor image generation unit
210 obstacle information collecting unit
220 obstacle processing unit
300 pickup truck
B21, B22, B25, B26, B27, B28 bracket
C vehicle center plane
C21 to C28 irradiation center axis
E1 vehicle area
L24, L27 rear limit line
Number | Date | Country | Kind |
---|---|---|---|
2012-059416 | Mar 2012 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/073951 | 9/19/2012 | WO | 00 | 3/18/2013 |