This invention is in the field of protective packaging systems.
In the context of paper-based protective packaging, stock material (e.g., paper stock material) is crumpled to produce dunnage. Most commonly, this type of dunnage is created by running a generally continuous strip of paper into a dunnage conversion machine that converts compact stock material, such as a roll of paper or a fanfold stack of paper, into a lower density dunnage material. The material is pulled into the conversion machine from a supply, such as a stack of fanfold paper, which is either continuously formed or formed with discrete sections connected together. The continuous strip of crumpled sheet material may be cut into desired lengths to effectively fill void space within a container holding a product. The dunnage material may be produced on an as-needed basis for a packer.
When the material is removed from the supply of material, static can accumulate on the material. For example, when a portion of material is separated from an abutting portion of the material in the supply, protons and electrons move between the surfaces of these portions, thus creating static. Also, static buildup can occur when material is being converted into dunnage. During the converting process, as the material comes into and out of contact with the components of the dunnage machine, the protons and electrons of the material move between the protons and electrons of the dunnage machine, thus creating static. When a packer contacts produced dunnage that has a buildup of static, it can produce an electrostatic shock to the packer, thus causing discomfort to the packer and disrupting the packaging process. Needed is a way to reduce static buildup from the material.
In embodiments, provided is a dunnage apparatus, comprising a converting station and a static remover. The converting station converts a line of high-density stock material into low density dunnage and moves the dunnage along a material path in a downstream direction. The static remover is electrically grounded and contacts the dunnage to thereby remove static buildup from the material.
The converting station can have a frame made of conductive material; and the static remover can be electrically connected to the frame. The static remover can be connected to an earth ground. The converting station can eject the dunnage at an exit along the material path; and the static remover can be disposed with respect to the exit to contact and discharge static from the ejected dunnage. The static remover can extend transversely across the material path and is angled radially towards the exit trajectory to contact the dunnage in the material path as the dunnage is ejected. The static remover can comprise a brush, having a spine and bristles extending from the spine and into the material path, the bristles angled on a plane that is generally parallel to the dunnage flow in the exit trajectory and partially downstream with respect thereto. The dunnage apparatus can further include a cutting member disposed downstream of the exit that severs a downstream portion of the ejected dunnage from a portion of the dunnage still held by the converting station. The dunnage apparatus can further include a supply station that supports the stock material in a fan folded configuration prior to the stock material being pulled into the converting station. The converting station can comprise an intake and a drive mechanism that pulls the stock material off of the supply station and through the intake, the intake being configured to constrict the path of the stock material and begin compressing the stock material into a dense form forming the dunnage, wherein as the stock material is pulled off of the supply station adjacent layers of the fanfold material are separated from one another building up the static buildup. The drive mechanism can include a drive roller and a pinch roller configured to compress the dunnage from the intake and crease the dunnage such that the dunnage better holds a dense configuration. The converting substation and supply station can be electrically isolated from ground. At least one of the converting station or the supply station can be made of non-conductive materials such that they do not discharge the static buildup. The dunnage apparatus can be a part of a dunnage conversion system that also includes stock material; and the dunnage apparatus can crumple the material to form longitudinal crumples extending in the machine direction. The bristles can be sufficiently resilient and angled such that the bristles move into follow the longitudinal creases that are made formed by the dunnage machine.
In some embodiments, provided is a method, comprising converting a line of high-density stock material into low density dunnage, moving the dunnage along a material path, and contacting the dunnage by an electrically grounded static remover to remove static buildup from the material.
The drawing figures depict one or more implementations in accordance with the present concepts, by way of example only, not by way of limitations. In the figures, like reference numerals refer to the same or similar elements.
Disclosed is a dunnage apparatus for converting stock material into dunnage. More particularly, the dunnage apparatus includes a static remover that removes static buildup from the material. The present disclosure is generally applicable to systems and apparatus where stock material, such as a paper stock material, is processed.
The stock material 19 may be stored in a bulk supply 18, as a roll (whether drawn from inside or outside the roll), a wind, a fan-folded source, or any other form. The stock material may be continuous or perforated. The dunnage apparatus includes a converting station that is operable to drive the stock material in a first direction, which can be the dispensing direction. The converting station is fed the stock material from the repository through a drum in the dispensing direction. The stock material can be any suitable type of protective packaging material, including dunnage and void fill materials, inflatable packaging pillows, etc. Some embodiments use supplies of paper or other fiber-based materials in sheet form, and some embodiments use supplies of wound fiber material, such as ropes or thread, and thermoplastic materials such as a web of plastic material usable to form pillow packaging material. The dunnage material 21 is converted from stock material 19, which is delivered from a bulk material supply 61 and delivered to the converting station 202 for converting to dunnage material 21 and through the drive mechanism 250 and the cutting edge 112.
The converting station can have a cutting mechanism, such as cutting edge 112, operable to cut the dunnage material. In some embodiments, the cutting mechanism is used with no or limited user interaction. For example, the cutting mechanism punctures, cuts, or severs the dunnage material without the user touching the dunnage material or with only minor contact of the dunnage material by the user. Specifically, a biasing member is used to bias the dunnage material against or around a cutting member to improve the ability of the system to sever the dunnage material. The biased position of the dunnage material is used in connection with or separately from other cutting features such as reversing the direction of travel of the dunnage material.
With reference to
In accordance with various examples, as shown in
The stock material 19 is fed from the supply side 61 through the intake 70. The stock material 19 begins being converted from dense stock material 19 to less dense dunnage material 21 by the intake 70 and then pulled through the drive mechanism 250 and dispensed out direction A on the out-feed side 62 of the intake 70. The material can be further converted by the drive mechanism 250 by allowing rollers or similar internal members to crumple, fold, flatten, or perform other similar methods that further tighten the folds, creases, crumples, or other three dimension structure created by intake 70 into a more permanent shape creating the low-density configuration of dunnage material. The stock material 19 can include continuous (e.g. continuously connected stacks, rolls, or sheets of stock material), semi-continuous (e.g. separated stacks or rolls of stock material), or non-continuous (e.g. single discrete or short lengths of stock material) stock material 19 allowing for continuous, semi-continuous or non continuous feeds into the dunnage conversion system 10. Multiple lengths can be daisy-chained together. Further, it is appreciated that various structures of the intake 70 on longitudinal crumpling machines can be used, such as those intakes forming a part of the converting stations disclosed in U.S. Pat. Pub. No. 2013/0092716, U.S. Publication 2012/0165172, U.S. Publication No 2011/0052875, and U.S. Pat. No. 8,016,735. Examples of cross crumpling machines include U.S. Pat. No. 8,900,111.
In one configuration, the dunnage conversion system 10 can include a support portion 12 for supporting the station. In one example, the support portion 12 includes an inlet guide 70 for guiding the sheet material into the dunnage conversion system 10. The support portion 12 and the inlet guide 70 are shown with the inlet guide 70 extending from the post. In other embodiments, the inlet guide may be combined into a single rolled or bent elongated element forming a part of the support pole or post. The elongated element extends from a floor base configured to provide lateral stability to the converting station. In one configuration, the inlet guide 70 is a tubular member that also functions as a support member for supporting, crumpling and guiding the stock material 19 toward the drive mechanism 250. Other inlet guide designs such as spindles may be used as well.
In accordance with various embodiments, the advancement mechanism is an electromechanical drive such as an electric motor 11 or similar motive device. The motor 11 is connected to a power source, such as an outlet via a power cord, and is arranged and configured for driving the dunnage conversion system 10. The motor 11 is an electric motor in which the operation is controlled by a user of the system, for example, by a foot pedal, a switch, a button, or the like. In various embodiments, the motor 11 is part of a drive portion, and the drive portion includes a transmission for transferring power from the motor 11. Alternatively, a direct drive can be used. The motor 11 is arranged in a housing and is secured to a first side of the central housing, and a transmission is contained within the central housing and operably connected to a drive shaft of the motor 11 and a drive portion, thereby transferring motor 11 power. Other suitable powering arrangements can be used.
The motor 11 is mechanically connected either directly or via a transmission to a drum 17, shown in
In accordance with various embodiments, the dunnage conversion system 10 includes a pinch portion operable to press on the material as it passes through the drive mechanism 250. As an example, the pinch portion includes a pinch member such as a wheel, roller, sled, belt, multiple elements, or other similar member. In one example, the pinch portion includes a pinch wheel 14. The pinch wheel 14 is supported via a bearing or other low friction device positioned on an axis shaft arranged along the axis of the pinch wheel 14. In some embodiments, the pinch wheel can be powered and driven. The pinch wheel 14 is positioned adjacent to the drum such that the material passes between the pinch wheel 14 and the drum 17. In various examples, the pinch wheel 14 has a circumferential pressing surface arranged adjacent to or in tangential contact with the surface of the drum 17. The pinch wheel 14 may have any suitable size, shape, or configuration. Examples of size, shape, and configuration of the pinch wheel may include those described in U.S. Pat. Pub. No. 2013/0092716 for the press wheels. In the examples shown, the pinch wheel 14 is engaged in a position biased against the drum 17 for engaging and crushing the stock material 19 passing between the pinch wheel 14 and the drum 17 to convert the stock material 19 into dunnage material 21. The drum 17 or the pinch wheel 14 is connected to the motor 11 via a transmission (e.g., a belt drive or the like). The motor 11 causes the drum or the pinch wheel 14 to rotate.
In accordance with various embodiments, the drive mechanism 250 may include a guide operable to direct the material as it is passes through the pinch portion. In one example, the guide may be a flange 33 mounted to the drum 17. The flange 33 may have a diameter larger than the drum 17 such that the material is kept on the drum 17 as it passes through the pinch portion.
The drive mechanism 250 controls the incoming dunnage material 19 in any suitable manner to advance it from a conversion device to the cutting member. For example, the pinch wheel 14 is configured to control the incoming stock material. When the high-speed incoming stock material diverges from the longitudinal direction, portions of the stock material contacts an exposed surface of the pinch wheels, which pulls the diverging portion down onto the drum and help crush and crease the resulting bunching material. The dunnage may be formed in accordance with any techniques including ones referenced to herein or ones known such as those disclosed in U.S. Pat. Pub. No. 2013/0092716.
In accordance with various embodiments, the conversion apparatus 10 can be operable to change the direction of the stock material 19 as it moves within the conversion apparatus 10. For example, the stock material is moved by a combination of the motor 11 and drum 17 in a dispensing direction (i.e., from the inlet side to the dispensing side) or a reverse direction (i.e., from the dispensing side to the supply side 61 or direction opposite the dispensing direction). This ability to change direction allows the drive mechanism 250 to cut the dunnage material more easily by pulling the dunnage material 19 directly against an edge 112. As, the stock material 19 is fed through the system and dunnage material 21 it passes over or near a cutting edge 112 without being cut.
Preferably, the cutting edge 112 can be curved or directed downward so as to provide a guide that deflects the material in the out-feed segment of the path as it exits the system near the cutting edge 112 and potentially around the edge 112. The cutting member 110 can be curved at an angle similar to the curve of the drum 17, but other curvature angles could be used. It should be noted that the cutting member 110 is not limited to cutting the material using a sharp blade, but it can include a member that causes breaking, tearing, slicing, or other methods of severing the dunnage material 21. The cutting member 110 can also be configured to fully or partially sever the dunnage material 21.
In various embodiments, the transverse width of the cutting edge 112 is preferably about at most the width of the drum 17. In other embodiments, the cutting edge 112 can have a width that is less than the width of the drum 17 or greater than the width of the drum 17. In one embodiment, the cutting edge 112 is fixed; however, it is appreciated that in other embodiments, the cutting edge 112 could be moveable or pivotable. The edge 112 is oriented away from the driving portion. The edge 112 is preferably configured sufficient to engage the dunnage material 21 when the dunnage material 21 is drawn in reverse. The edge 112 can comprise a sharp or blunted edge having a toothed or smooth configuration, and in other embodiments, the edge 112 can have a serrated edge with many teeth, an edge with shallow teeth, or other useful configuration. A plurality of teeth are defined by having points separated by troughs positioned there between.
Generally, the dunnage material 21 follows a material path A as shown in
As discussed above, any suitable stock material may be used. For example, the stock material may have a basis weight of about at least 20 lbs., to about at most 100 lbs. Examples of paper used include 30 pound kraft paper. The stock material 19 comprises paper stock stored in a high-density configuration having a first longitudinal end and a second longitudinal end that is later converted into a low-density configuration. The stock material 19 can be a ribbon of sheet material that is stored in a fan-fold structure, as shown in
In various embodiments, the stock material includes an attachment mechanism such as an adhesive portion that is operable as a connecting member between adjacent portions of stock material. Preferably, the adhesive portion facilitates daisy-chaining the rolls together to form a continuous stream of sheet material that can be fed into the converting station 70.
The dunnage apparatus 20 includes a static remover 300 that removes from the material 19 static buildup, which can collect when positive or negative charges collect on the material's surface.
The buildup of static can occur as the material 19 is removed from the bulk supply 18 of stock material and fed into the dunnage machine 100. For example, when a portion of stock material 19 is separated from an abutting portion of material in the bulk supply 18, protons and electrons move between the surfaces of these portions, thus creating static.
Static buildup can also occur when the material 19 is being converted into dunnage. During the converting process, as the material 19 comes into and out of contact with the components of the dunnage machine 100, the protons and electrons of the material 19 move between the protons and electrons of the dunnage machine 100, thus creating static. The various components of the dunnage machine 100 may be non-conductive. For example, the converting station 60 may be non-conductive. The supply station may be non-conductive. Additionally, the components of these systems may be non-conductive such as the housings thereof, the drum, pinch wheel, intake, etc. For example, as the material 19 is being converted, it rubs against the pinch wheel 14 and the drum 17, which can produce static. Static buildup can particularly occur in embodiments in which the material 19 is made of non-conductive material, and contacts surfaces of the converting machine that are also made of non-conductive material. For example, at least one of the pinch wheel 14 or the drum 17 can have surfaces that contact the material during the converting process and which are made of non-conductive material.
Static can build up on the material 19 as an excess of electrons, thus creating a negatively charged material, or as an excess of protons, thus creating a positively charged material 19. The static remover 300 provides a conducting pathway between the dunnage material 19 and ground, thus operating to remove static from both negatively and positively charged material 119. The static remover 300 removes a sufficient amount of static from the material so that a user can grab the produced dunnage without typically being electrically shocked.
In the embodiment shown in
As shown in
As shown in
As shown in
In some embodiments, the E-direction is the direction that the dunnage is traveling at the last place of contact within the converting station. In some embodiments, the E-direction is the direction the dunnage travels after being deflected off of lower wall 110 of the converting station. In some embodiments, the E-direction is the direction of the tangent between the crumpling rollers (e.g., pinch wheel 14 and drum 17), or the direction in which the dunnage leaves the elements of the converting station that convert the stock material into dunnage, or that move the dunnage out of the dunnage machine.
The static remover 300 is configured to make sufficient contact with the dunnage 21 in order to remove static therefrom. The converting station 202 can eject the dunnage 21 at exit in an exit trajectory TE along the path; and the static remover 300 can be positioned to contact dunnage 21 as it moves along the path.
The dunnage machine 100 can comprise a dunnage deflector 400 that deflects the path of the dunnage 21. As shown in
As shown in
In other instances, the static remover 300 contacts the dunnage 21 and bends the path of the dunnage 21. The static remover can be interposed in the path to deflect the path of the dunnage 21 from the exit trajectory to a deflected trajectory.
In instances in which both the static remover 300 and deflector 400 are interposed in the path of the dunnage 21, the static remover 300 can deflect the dunnage path from the exit trajectory to a first deflected trajectory, and the deflector 400 can deflect the dunnage path from the first deflected trajectory to a second deflected trajectory. Additionally or alternatively, the interposition of both the static remover 300 and the deflector 400, together in the dunnage path, operates to deflect the dunnage from the exit trajectory to a deflected trajectory.
Deflection of the dunnage, by one or more of the static remover 300 or the deflector 400, can direct the dunnage into a packaging container, thereby facilitating the packaging process.
While the embodiment of the static remover shown in
The static remover 300 is made of any suitable conductive material. For example the static remover 300 can be made of nylon and carbon. The static remover 300 can be made of a greater percentage of nylon than carbon. For example, the static remover 300 can be made of 75-85% nylon and 15-25% carbon, for example 80% nylon and 20% carbon.
As shown in
Static remover 300 can be attached to frame 102 by any suitable means, in order to provide an electrical connection therebetween. As shown in
Referring to
The static remover 300 can provide a conducting pathway between the dunnage material 19 and the earth. The static remover 300 can be grounded to the earth in various suitable ways, in order to provide a conducting pathway between the dunnage 21 and the earth. In some embodiments, the static remover 300 is grounded to the earth by way of being electrically connecting to the converting station 202 by a chassis ground. For example, chassis ground 356 electrically connects the static remover 300 to the converting station 202; and the converting station 202 is grounded to the earth. For example, grounding wire 350 can extend from plug 358 on the converting station (
The converting station 202 can be operated by any suitable type of motor 11. The motor 11 can operate by way of direct current or alternating current of two or more phases. For example, motor 11 can be a two-phase electric power motor, having a three wire output, two of the wires carrying alternating current of the same frequency but with a phase difference, and the third wire being an earth ground. As another example, motor 11 can be a three-phase electric power motor, having a four wire output, three of the wires carrying alternating current of the same frequency but with a phase difference and the fourth wire being an earth ground.
In some embodiments, static remover 300 is grounded to one or more conductive portions of the converting station 202 (e.g., the converting station frame 102) by a chassis ground 356 and is not grounded to the earth. For example, the conductive frame 102 can act as the dissipation path for the static.
In embodiments in which the dunnage machine 100 comprises a dunnage deflector 400, the machine 100 can be configured so that dunnage material contacts the static remover 300 to sufficiently remove static from the material, prior to the material contacting and being deflected by deflector 400. For example, the dunnage deflector 400 can be disposed downstream with respect to the static remover 300.
The deflector 400 can be repositionable between removed and deflected positions (e.g.,
The static remover 300 can have various suitable configurations, including a bar, a flexible membrane, a plate, a brush, or other structures that preferably maintain contact with the dunnage passing thereby when it is ejected by the dunnage machine 100 most preferably without significantly impeding the flow of dunnage 21. In the embodiment of
The preferred brush configuration allows the bristles 322 to move resiliently, for instance by flexing, independently to increase or maximize conductive contact with the dunnage 21 surface to more effectively removes the static from the dunnage 21. The dunnage machine 21 can be a longitudinal crumpling device that crumples the material to form longitudinal crumples extending in the machine direction. Preferably, the alignment of the bristles 322, typically angled on a plane that is generally parallel to the dunnage flow in the exit trajectory and partially downstream with respect thereto, and the resilience of the bristles 322 allow the bristles 322 to move into and in some cases follow the longitudinal creases that are made formed in the dunnage by a longitudinal crumpling device, such as the embodiment of
As shown in
The static remover 300 can be attached to the pressing portion 227, so that the static remover 300 is repositionable between engaged and released positions along with the pinch wheel 14. Thus, when the pressing portion 227 is in the released position, then the static remover 300 is also moved to provide access to the interior of the converting station, for example, to facilitate maintenance of the converting station.
In embodiments in which the converting station 202 comprises a dunnage deflector 400, the deflector 400 may be attached to the pressing portion 227, so that the deflector 400 is repositionable along with the wheel 14. For example, both the static remover 300 and the deflector 400 can both be repositionable together between engaged and releases positions along with the pinch wheel 14.
One having ordinary skill in the art should appreciate that there are numerous types and sizes of dunnage for which there can be a need or desire to accumulate or discharge according to an exemplary embodiment of the present invention. As used herein, the terms “top,” “bottom,” and/or other terms indicative of direction are used herein for convenience and to depict relational positions and/or directions between the parts of the embodiments. It will be appreciated that certain embodiments, or portions thereof, can also be oriented in other positions. In addition, the term “about” should generally be understood to refer to both the corresponding number and a range of numbers. In addition, all numerical ranges herein should be understood to include each whole integer within the range.
While illustrative embodiments of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. For example, the features for the various embodiments can be used in other embodiments. The converter having a drum, for example, can be replaced with other types of converters. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the spirit and scope of the present invention.