This invention relates to a plunger for moving liquids upwardly in a hydrocarbon well. In its first part, the invention relates to an improved free piston plunger assembly. In its second part, the invention relates to a one-piece, internal by-pass valve plunger assembly and more particularly to a durable dart plunger. The invention also relates to methods for increasing the productivity of oil and gas wells using a durable dart plunger.
A plunger lift assembly and method for using such an assembly is disclosed in U.S. Pat. Nos. 6,467,541 and 6,719,060, which are incorporated herein by reference in their entirety.
There are many different techniques for artificially lifting formation liquids from hydrocarbon wells. Reciprocating sucker rod pumps are the most commonly used because they are the most cost effective, all things considered, over a wide variety of applications. Other types of artificial lift include electrically driven down hole pumps, hydraulic pumps, rotating rod pumps, free pistons or plunger lifts and several varieties of gas lift. These alternate types of artificial lift are more cost effective than sucker rod pumps in the niches or applications where they have become popular. One of these alternative types of artificial lift is known as a plunger lift, which is basically a free piston that moves upwardly in the well to move formation liquids to the surface. Typically, plunger lifts are used in gas wells that are loading up with formation liquids thereby reducing the amount of gas flow. A free piston should be understood to be a piston that is not attached to a reciprocating member, but rather relies on fluids and fluid pressure to move the piston components.
Gas wells reach their economic limit for a variety of reasons. A very common reason is the gas production declines to a point where the formation liquids are not readily moved up the production string to the surface. Two phase upward flow in a well is a complicated affair and most engineering equations thought to predict flow are only rough estimates of what is actually occurring. One reason is the changing relation of the liquid and of the gas flowing upwardly in the well. At times of more-or-less constant flow, the liquid acts as an upwardly moving film on the inside of the flow string while the gas flows in a central path on the inside of the liquid film. The gas flows much faster than the liquid film. When the volume of gas flow slows down below some critical values, or stops, the liquid runs down the inside of the flow string and accumulates in the bottom of the well.
If sufficient liquid accumulates in the bottom of the well, the well is no longer able to flow because the pressure in the reservoir is not able to start flowing against the pressure of the liquid column. The well is said to have loaded up and died. Years ago, gas wells were plugged much quicker than today because it was not economic to artificially lift small quantities of liquid from a gas well. At relatively high gas prices, it is economic to keep old gas wells on production. It has gradually been realized that gas wells have a life cycle that includes an old age segment where a variety of techniques are used to keep liquids flowing upwardly in the well and thereby prevent the well from loading up and dying.
There are many techniques for keeping old gas wells flowing and the appropriate one depends on where the well is in its life cycle. For example, the first technique is to drop soap sticks into the well. The soap sticks and some agitation cause the liquids to foam. The well is then turned to the atmosphere and a great deal of foamed liquid is discharged from the well. Later in its life cycle, when soaping the well has become much less effective, a string of 1″ or 1½″ tubing is run inside the production string. The idea is that the upward velocity in the small tubing string is much higher which keeps the liquid moving upwardly in the well to the surface. A rule of thumb is that wells producing enough gas to have an upward velocity in excess of 10′/second will stay unloaded. Wells where the upward velocity is less than 5′/second will always load up and die. As some stage in the life of a gas well, these techniques no longer work and the only approach left to keep the well on production is to artificially lift the liquid with a pump of some description. The logical and time tested technique is to pump the accumulated liquid up to the tubing string with a sucker rod pump and allow produced gas to flow up the annulus between the tubing string and the casing string. This is normally not practical in a 2⅞″ tubingless completion unless one tries to use hollow rods and pump up the rods, which normally doesn't work very well or very long. Even then, it is not long before the rods cut a hole in the 27/8″ string and the well is lost. In addition, sucker rod pumps require a large initial capital outlay and either require electrical service or elaborate equipment to restart the engine.
Free pistons or plunger lifts are a common type of artificial pumping system to raise liquid from a well that produces a substantial quantity of gas. Conventional plunger lift systems comprise a piston that is dropped into the well by stopping upward flow in the well, as by closing the wing valve on the well head. The piston is often called a free piston because it is not attached to a sucker rod string or other mechanism to pull the piston to the surface. When the piston reaches the bottom of the well, it falls into the liquid in the bottom of the well and ultimately into contact with a bumper spring, normally seated in a collar or resting on a collar stop. The wing valve is opened and gas flowing into the well pushes the piston upwardly toward the surface, pushing liquid on top of the piston to the surface. Although plunger lifts are commonly used devices, there is as much art as science to their operation.
A major disadvantage of conventional plunger lifts is the well must be shut in so the piston is able to fall to the bottom of the well. Because wells in need of artificial lifting are susceptible to being easily killed, stopping flow in the well has a number of serious effects. Most importantly, the liquid on the inside of the production string falls to the bottom of the well, or is pushed downwardly by the falling piston. This is the last thing that is desired because it is the reason that wells load up and die. In response to the desire to keep the well flowing when a plunger lift piston is dropped into the well, attempts have been made to provide valved bypasses through the piston which open and close at appropriate times. Such devices are to date quite intricate and these attempts have so far failed to gain wide acceptance.
Recent development of multi-part plungers which may be dropped into a well while formation contents are flowing upwardly in the well as shown in U.S. Pat. Nos. 6,148,923, 6,209,637 6,467,541, 6,719,060 and 7,383,878. In the most recent development, as taught in currently pending parent application Ser. No. 14/472,044, a flow restriction member is releasably retained by a sleeve member such that the flow restriction member is not released from the sleeve member solely by the force of gravity. As will be more fully appreciated by the description of the invention below, if the flow restriction member prematurely releases from the sleeve member, such as by a sudden decrease in fluid pressure (“lift”), the sleeve and flow restriction member will separately drop in the well until at some point they are reunited and begin the upward journey once again. In many instances, the separate free piston components are not reunited until they reach the bottom of the well at which time the process starts once again, thus losing valuable time and exposing the well to potential fluid pressures that may cause the well to stop flowing.
In some of the prior art devices utilizing such a separate free piston assembly, the components are latched together before beginning the lift portion of the process. Such latching presents problems that are overcome by the assembly of the parent invention Ser. No. 14/472,044. Specifically, the latching requires that the flow restriction member be captured by a mechanical structure that hold the flow restriction member in place during the lift. Such latching can be conveniently implemented at the bottom of the well where other structure is available to prevent movement of the flow restriction member while it is being latched, but just the opposite is true if the joinder of the flow restriction member and the sleeve member are being joined at a location above the bottom of the well. In such instances, the latching mechanism can actually interfere with the seating of the flow restriction member in the sleeve member and may result in the unwanted loss of time in joining the free piston members. The latching structure also tends to be cumbersome to install and frequently wears out prior to the useful life of the free piston assembly being completed.
For certain applications, the use of heavier, one-piece bypass plungers is preferred such as, for example, when sand causes premature wear on other types of plungers (e.g. padded plungers), in more dense fluid wells, during clean-out of a well, during operation in minimum bottom hole pressure, during operation in either high or low Gas Liquid Ratios (GLR). The use of one-piece bypass plungers circumvents long shut-in times. Recent development of such one-piece plungers is shown in U.S. Pat. Nos. 7,438,125 and 9,068,443 as well as U.S. Pat. Publication No. 2015-0300136. There remains, however, a need in the field for a simpler design single piece bypass plunger with fewer components that can fail, a plunger that can fall even faster, and lifts a larger volume of fluids per run.
The current invention pertains to a one-piece, internal by-pass valve durable dart plunger that falls faster, produces more fluids and has a clutch assembly (also referred to here as spring loaded retention assembly (or grappler)) that is more durable and that can also be replaced when worn out.
The current invention provides an improved single piece durable dart plunger having a spring loaded retention assembly that is replaceable when necessary.
The current invention provides a bypass dart plunger having a dart body with an upper end and a lower end, a pin positioned within the dart body, such that the pin is movable between an open and a closed position, a sleeve configured to fit into the dart body such that the sleeve has a flow passage extending longitudinally therethrough and a valve seat for receiving the pin to close the flow passage, one or more flow ports extending through the dart body and in communication with the flow passageway in the sleeve when the pin is in the open position, and a clutch assembly comprising a plurality of clutch mechanisms (grapplers) to hold the pin in the open or in the closed position mode, such that each of the clutch mechanisms includes a retention means, a biasing means and a fastener means, such that the biasing means biases the retention means into gripping engagement with the pin.
Also provided are embodiments wherein the lower end of the dart body of the bypass dart plunger described supra, further includes a nose piece, such that the one or more flow ports are located on the nose piece. The nose piece could be an integral part of the dart body. The flow ports are cut at right angles with respect to the dart body and the number of the flow ports can vary between 1 and 5. The clutch mechanism on the bypass plunger can be situated on the nose piece and can be replaced when worn out with a new clutch mechanism. Also provided is an embodiment of the bypass dart plunger wherein the sleeve is affixed to the dart body by threads.
The current invention also provides a bypass dart plunger as described supra with a ball as a retention means, a resilient spacer or a spring as a biasing means and a socket screw as a fastener.
It is an objective of the current invention to further provide a clutch assembly for a plunger having a plurality of clutch mechanisms wherein each mechanism includes a retention means, a biasing means and a fastening means. The clutch assembly can be part of a single piece bypass dart plunger such that the retention means retains a dart of the single piece bypass dart plunger in either an open position or a closed position.
It is a further objective to provide a clutch assembly for a plunger having a plurality of clutch mechanisms including a retention means, a biasing means and a fastener means, such that the clutch assembly is part of a two piece ball and sleeve plunger assembly (Grappler Plunger) including a retention means that releasably retains a ball in a closed position blocking a flow passage that extends through the plunger sleeve.
The invention herein also provides a method for lifting fluids out of a hydrocarbon wellbore that includes providing a bypass dart plunger having a dart body; a pin positioned within said dart body, wherein the pin is movable between an open and a closed position; a sleeve configured to fit into the dart body such that the sleeve has a flow passage extending longitudinally therethrough and a valve seat for receiving the pin to close said flow passage when the pin is in the closed position; one or more flow parts extending through the dart body; and a clutch assembly comprising a plurality of clutch mechanisms (grapplers), wherein each of the clutch mechanisms includes a retention means, a biasing means for biasing the retention means into gripping engagement with the pin, and a fastener means, holding the pin in the closed position with said clutch assembly and preventing gas from flowing through said flow passage; and lifting fluids out of the wellbore by said bypass dart plunger. In an embodiment of the current invention, the method for lifting fluids further includes replacing the clutch assembly with a new clutch assembly (or grappler system), and reusing the bypass dart plunger with the new clutch assembly to lift fluids out of a hydrocarbon well.
The current invention also provides a method for lifting fluids out of a hydrocarbon wellbore such that the method includes the steps of providing a bypass dart plunger having a dart body; a pin positioned within said dart body, wherein the pin is movable between an open and a closed position; a sleeve configured to fit into the dart body such that the sleeve has a flow passage extending longitudinally therethrough and a valve seat for receiving the pin to close the flow passage when the pin is in the closed position; one or more flow parts extending through the dart body; and a clutch assembly comprising a plurality of clutch mechanisms, wherein each of the clutch mechanisms includes a retention means, a biasing means for biasing the retention means into gripping engagement with the pin, and a fastener means, holding the pin in the open position within the clutch assembly; and allowing gas to flow through the flow ports, around the pin, and through the flow passageway while the plunger falls in the wellbore.
A. Improved Free Piston Assembly
The multipart plunger embodiments shown in commonly assigned U.S. Pat. No. 6,467,541 has proven to be quite satisfactory for a wide range of applications where gas wells produce sufficient liquid that slows down gas production and ultimately kills the well. Experience and analysis resulted in two improvements being made in the operation of a multipart plunger. These improvements are disclosed in commonly assigned U.S. Pat. No. 6,719,060 and are described with more particularity below and in the specification of the U.S. Pat. No. 6,719,060.
In one embodiment of the plunger lift assembly used in combination with the improved free piston assembly of this invention, the technique used to separate and hold the plunger at the surface employs moving parts to receive and cushion the impact of the plunger as it arrives at the surface but employ no moving parts to hold the plunger in the well head. A separator rod is provided which the plunger sleeve slides over, thereby dislodging the flow restriction member and causing it to fall into the well. Flow from the well passes around and/or through the separator rod and the sleeve member, also referred to as the plunger sleeve. The separator rod and plunger sleeve include cooperating sections that produce a pressure drop sufficient to hold the plunger sleeve in the well head against the force of gravity. When flow through the well head is insufficient to hold the plunger sleeve against the force of gravity, the plunger sleeve falls into the well, couples with the flow restriction member at or near the bottom of the well and then moves upwardly to produce a quantity of formation liquid thereby unloading the well. Typically, the plunger sleeve is dropped into the well in response to closing of a valve at the surface that interrupts flow thereby momentarily reducing gas flow at the surface and substantially eliminating any pressure drop across the plunger sleeve. Various aspects of the separator rod and housing for the separator rod are shown and described in U.S. Pat. No. 6,719,060.
An important advantage of the separator rod used in combination with the improved free piston assembly of this invention is the plunger sleeve is dropped by momentarily shutting in a valve controlling flow from the well. This allows operation of the plunger lift without using natural gas as a power source for a holding device thereby eliminating the venting of methane to the atmosphere. It also eliminates a holding device which includes moving parts subject to malfunction or failure.
Major gas producing companies that operate large numbers of gas wells have gained considerable experience in keeping older gas wells flowing. Many of such companies use large numbers of plunger lifts and have devised sophisticated computer programs to determine when to drop conventional one-piece plungers into a well. It will be recollected that one-piece plunger are typically held at the surface until production falls off, whereupon the well is shut in, the plunger is released and the well remains shut in for a long enough time for the plunger to fall to the bottom of the well. The flow control valve is then opened and the well produces enough formation contents to drive the plunger to the surface, producing liquid along with gas and thereby unloading the well. The computer programs used to operate conventional one-piece plunger lift systems act in response to a wide variety of input information, e.g. flowing well head pressure or flow line pressure which are either the same or very close to the same, gas volume, pressure on the casing as opposed to pressure of gas flowing in the tubing and previous plunger speed as an indication of the liquid being lifted.
Although they can be made to work satisfactorily with multipart plungers, these conventional programs measure the wrong things to drop a multipart plunger sleeve into a well on an optimum basis. An ideal cycle for a multipart plunger is to lift a small quantity of liquid on each plunger trip. It is not desirable to lift no liquid because the plunger takes a beating when it enters the well head with no liquid in front of it—the piston velocity is too high and the spring assemblies in the well head take too much punishment. More importantly, if no liquid is being lifted, it is quite likely there is no liquid in the bottom of the well. When this happens, there is likely considerable damage done to the bumper assembly at the bottom of the well as may be imagined by considering the damage potential of a metal article weighing a few pounds falling at terminal velocity. When there is no liquid being lifted, the plunger should be dropped less frequently.
Conversely, if the plunger is lifting too large a quantity of liquid on each cycle, the productivity of the well is being unduly restricted. If the quantity of liquid becomes too large, there is a risk that plunger will not cycle and the well will be dead. When the quantity of liquid becomes larger than a small selected value, the plunger should be dropped more frequently. Thus, there is an ideal amount of liquid to be raised on each cycle and it is surprisingly small, something on the order of ⅛ to ⅛ barrel, depending on the flowing bottom hole pressure of the well and the flow line pressure the well is producing against. In normal situations, a preferred amount being lifted on each cycle of the plunger is on the order of about ⅙ barrel. Thus, by measuring what is important to the operation of a multipart piston of a plunger lift, improved operations result.
Referring to
In a typical application of this invention, the well 10 is a gas well that produces some formation liquid. In an earlier stage of the productive life of the well 10, there is sufficient gas being produced to deliver the formation liquids to the surface. The well 10 is equipped with a conventional well head assembly 20 comprising a pair of master valves 22 and a wing valve 24 delivering produced formation products to a surface facility for separating, measuring and treating the produced products.
The plunger lift 18 of this invention comprises, as major components, a free piston 26, a lower bumper assembly 28 near the producing formation 14, a catcher assembly 30 and an assembly 32 for controlling the cycle time of the piston 26. The free piston 26 is of multipart design and includes a sleeve 34 and a flow restriction member 36 which is preferably a ball as shown in U.S. Pat. No. 6,467,541, the disclosure of which is incorporated herein by reference. The free piston 26 also includes retention means 50 for retaining the flow restriction member 36 in the interior of the sleeve 34 by supplying a force sufficient to overcome the force of gravity on said flow retention member 36. For purposes of this invention, the preferred flow restriction member 36 is a ball and therefore in some instances the terms are used interchangeably. It should, however, be understood that other embodiments of flow restriction members may be equally viable in the improved free piston assembly of this invention.
The sleeve 34 is generally cylindrical having an interior flow passage 38 and a seal arrangement 40 to minimize liquid on the outside of the sleeve 34 from bypassing around the exterior of the sleeve 34. The seal arrangement 40 may be of any suitable type, such as wire brush wound around the sleeve 34 providing a multiplicity of bristles or the like or may comprise a series of simple grooves or indentations 42. The grooves 42 work because they create a turbulent zone between the sleeve 34 and the inside of the production string 12 thereby restricting liquid flow on the outside of the sleeve 34. Sleeve 34 also includes a surface 34A against which the flow restriction member can nest when it is being retained in the interior opening to the sleeve 34.
As will be more fully apparent hereinafter, the flow restriction member 36, especially when configured as a ball, is first dropped into the well 10, followed by the sleeve 34. The ball 36 and sleeve 34 accordingly fall separately and independently into the well 10, usually while the well 10 is producing gas and liquid up the production string 12 and through the well head assembly 20. When the ball 36 and sleeve 34 reach the bottom of the well, they impact the lower bumper assembly 28 in preparation for moving upwardly. The lower bumper assembly 28 may be of any suitable design, one of which is illustrated in U.S. Pat. No. 6,209,637 and basically acts to cushion the impact of the ball 36 and sleeve 34 when they arrive at the bottom of the well 10.
An important feature of the plunger lift assembly is the catcher assembly 30 which has several functions, i.e. separating the ball 36 from the sleeve 34, retaining the sleeve 34 in the assembly 30 for a period of time and then dropping the sleeve 34 into the well 10. The catcher assembly 30 is more fully described in U.S. Pat. No. 6,719,060 which has been previously incorporated by reference. The catcher assembly 30 comprises an outer housing or catch tube 44 which provides an outlet for formation products and a shoulder for stopping the upward movement of the sleeve 34 and provides an inner surface having a seat 34A in which the flow restriction member 36 can nest.
Inside the housing 44 is a separation rod assembly for cushioning the impact of the sleeve 34, and to some extent of the ball 36, when the free piston 26 reaches its upper limit of travel. The sleeve 34 ultimately passes onto the lower end of the separator rod 70 thereby overcoming the retaining force of the retention means 50 and dislodging the ball 36 and allowing it to fall immediately back into the production string 12.
An important feature of this invention is that the free piston assembly 26 includes retention means 50 to hold the flow restriction member 36 in the sleeve 34 to overcome the force of gravity placed on such flow restriction member. Retention means 50 can take a number of design forms, however, the preferred design is a plurality of ball shaped retractable pressure members 80 protruding into the interior of the sleeve and configured to protrude inwardly from apertures 82 communicating with the inner surface of the sleeve member 34. The inward bias or pressure is supplied by spring means 84 contacting the outer surface of each of the ball shaped retractable pressure members 80. The spring means 84 are held in place by a retaining ring 86 that is sized to fit into a groove 88 in the exterior surface of the sleeve 34.
As can be more clearly seen in
In the preferred embodiment of this invention the retention ring is made from a number of materials that are well known to persons of ordinary skill in the art and include chrome steel, titanium, stainless steel, ceramic, tungsten carbide, silicone nitrate, plastic, and rubber or any other functionally effective elastomeric. On the other hand, the sleeve member and flow retention member are made from materials selected from the group consisting of stainless steel, chrome steel, cobalt, ceramic (zirconium), tungsten carbide, silicon nitride, and titanium alloys. In the most preferred embodiments of this invention the sleeve member and flow retention member are made from one or more of the materials list hereinabove and having a density of less than about 0.25 pounds per cubic inch and a tensile strength of at least 90,000 psi.
In practice, the groove 88 for the retention means 50 is located on the sleeve 34 at a position such a shown in
Referring to
Operation of the plunger lift of this invention should now be apparent. During upward movement of the piston 26 toward the well head 20, production through the wing valve 24 is mainly dry gas. As the piston 26 approaches the well head, there is often a small slug or batch of liquid that passes through the wing valve 24 which may cause the meter 120 or detector 125 to detect the arrival of a liquid slug at the surface. If the amount of liquid is very small, it can be readily identified and disregarded by the controller 124. As the piston 26 nears the well head 20, it pushes a quantity of liquid above it through the well head and the wing valve 24 to be measured or sensed by the meter 120 or the detector 125. If the plunger lift and improved free piston assembly are working satisfactorily, the volume immediately above the piston 26 is a more-or-less solid stream of liquid, the volume or time of discharge of which is measured by the meter 120 or the detector 125.
When the piston 26 reaches the separation rod 62, the ball 36 is dislodged from the piston 26 and falls immediately back into the production string 12. The sleeve 34 slips over the separation rod 62 and strokes the anvil. Any liquid remaining in the well head is driven through the flow line 118 by formation gas. Gas flowing upwardly in the flow paths around the separation rod 62, sleeve 34 and housing 44 creates a pressure drop across the sleeve 34 causing it to stay on the rod 62 against the effect of gravity. When the controller 124 determines that it is time to drop the sleeve 34 and initiate another plunger cycle, a signal is delivered on the wire 116 to energize the motor operator 114 and momentarily close the wing valve 24. This causes the pressure drop across the sleeve 34 to decrease, so that upward force acting on the sleeve 34 drops and the sleeve 34 falls into the production string.
It can also be seen that cycling the sleeve 34 in response to the amount of liquid delivered during the surface allows a relatively small volume of liquid to be produced during each cycle of the piston 26. This prevents damage to the rod assembly 60 and to the downhole bumper assembly 28 caused by the production of no liquid and allows maximum trouble free gas production by keeping the well unloaded to as great an extent as reasonable.
B. Durable One-Piece Dart Plunger
The current invention also provides an internal by-pass valve dart plunger that falls faster, produces more fluids and has a clutch assembly that is durable and can be replaced when worn out. Referring to the drawings, and in particular to
Referring to
As shown in
Clutch assembly 340 as shown in
Body 330 includes a plurality of exterior rings 334 (also referred to as seal rings 334) and grooves 332 that provide a functional seal between the tubing and plunger and help create a sealing turbulent gas flow that prevents liquids being lifted by the plunger from falling past the plunger during the ascent phase in the well.
During operation, the plunger pin 320 is normally in one of two configurations, a fully extended open bypass configuration (when the plunger is falling down the well) as shown in
To assemble the dart plunger of the current invention, pin 320 is dropped into dart body 330 until the threaded end of the pin is caught by clutch assembly 340. Dart plunger sleeve 310 is then inserted into dart body 330. Threads 311 of sleeve 310 engage receiving threads 331 that are located on upper end 381 of dart body 330, as shown in
Referring to
The invention herein also provides a method for lifting fluids out of a hydrocarbon wellbore that includes providing a bypass dart plunger having a dart body; a pin positioned within said dart body, wherein the pin is movable between an open and a closed position; a sleeve configured to fit into the dart body such that the sleeve has a flow passage extending longitudinally therethrough and a valve seat for receiving the pin to close said flow passage when the pin is in the closed position; one or more flow parts extending through the dart body; and a clutch assembly comprising a plurality of clutch mechanisms, wherein each of the clutch mechanisms includes a retention means, a biasing means for biasing the retention means into gripping engagement with the pin, and a fastener means, holding the pin in the closed position with said clutch assembly and preventing gas from flowing through said flow passage; and lifting fluids out of the wellbore by said bypass dart plunger. In an embodiment of the current invention, the method for lifting fluids further includes replacing the clutch assembly with a new clutch assembly, and reusing the bypass dart plunger with the new clutch assembly to lift fluids out of a hydrocarbon well.
The current invention also provides a method for lifting fluids out of a hydrocarbon wellbore such that the method includes the steps of providing a bypass dart plunger having a dart body; a pin positioned within said dart body, wherein the pin is movable between an open and a closed position; a sleeve configured to fit into the dart body such that the sleeve has a flow passage extending longitudinally therethrough and a valve seat for receiving the pin to close the flow passage when the pin is in the closed position; one or more flow parts extending through the dart body; and a clutch assembly comprising a plurality of clutch mechanisms, wherein each of the clutch mechanisms includes a retention means, a biasing means for biasing the retention means into gripping engagement with the pin, and a fastener means, holding the pin in the open position within the clutch assembly; and allowing gas to flow through the flow ports, around the pin, and through the flow passageway while the plunger falls in the wellbore.
Although this invention has been disclosed and described in its preferred forms with a certain degree of particularity, it is understood that the present disclosure of the preferred forms is only by way of example and that numerous changes in the details of construction and operation and in the combination and arrangement of parts may be resorted to without departing from the spirit and scope of the invention as hereinafter claimed.
This application is a Continuation of U.S. patent application Ser. No. 15/396,188, filed Dec. 30, 2016, titled DURABLE DART PLUNGER, which is a Continuation-in-Part application of U.S. patent application Ser. No. 14/472,044, now U.S. Pat. No. 9,976,548, titled “Plunger Lift Assembly with an Improved Free Piston Assembly”, filed Aug. 28, 2014 the entire content of which is expressly incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
2878754 | McMurry | Mar 1959 | A |
3029872 | Hanes | Apr 1962 | A |
4239458 | Yeatts | Dec 1980 | A |
5341539 | Sheppard et al. | Aug 1994 | A |
6148923 | Casey | Nov 2000 | A |
6209637 | Wells | Apr 2001 | B1 |
6293340 | Wu | Sep 2001 | B1 |
6467541 | Wells | Oct 2002 | B1 |
6719060 | Wells | Apr 2004 | B1 |
6883612 | Ferguson et al. | Apr 2005 | B2 |
6935427 | Billingsley | Aug 2005 | B1 |
7188670 | Amies et al. | Mar 2007 | B2 |
7383878 | Victor | Jun 2008 | B1 |
8181706 | Tanton | May 2012 | B2 |
8327931 | Agrawal et al. | Dec 2012 | B2 |
8347955 | Sewell et al. | Jan 2013 | B1 |
8403307 | Koeske et al. | Mar 2013 | B2 |
8528633 | Agrawal et al. | Sep 2013 | B2 |
8573295 | Johnson et al. | Nov 2013 | B2 |
8714268 | Agrawal et al. | May 2014 | B2 |
9068443 | Jeffries et al. | Jun 2015 | B2 |
20030094283 | Iannikov et al. | May 2003 | A1 |
20050161223 | Shulyatikov et al. | Jul 2005 | A1 |
20070246211 | Schneider et al. | Oct 2007 | A1 |
20080271898 | Turley et al. | Nov 2008 | A1 |
20100084138 | Inglis | Apr 2010 | A1 |
20100089591 | Thomson et al. | Apr 2010 | A1 |
20120080198 | Lembcke | Apr 2012 | A1 |
20120217021 | Cravatte et al. | Aug 2012 | A1 |
20120305243 | Hallundbaek et al. | Dec 2012 | A1 |
20130168099 | Themig | Jul 2013 | A1 |
20140116714 | Jefferies | May 2014 | A1 |
20150300136 | Jefferies et al. | Oct 2015 | A1 |
20150322753 | Zimmerman, Jr. | Nov 2015 | A1 |
20160061012 | Zimmerman, Jr. | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
WO2013131165 | Sep 2013 | WO |
Entry |
---|
International Search Report and Written Opinion PCT/US2015/042038 dated Oct. 7, 2015. |
International Search Report and Written Opinion PCT/US2015/029027 dated Aug. 5, 2015. |
Number | Date | Country | |
---|---|---|---|
20180266220 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15396188 | Dec 2016 | US |
Child | 15989103 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14472044 | Aug 2014 | US |
Child | 15396188 | US |