1. Field of the Invention
The present invention relates generally to an inorganic, dielectric, absorptive grid polarizer with particular focus on such a polarizer for use in the ultra-violet (UV) portion of the electromagnetic spectrum.
2. Related Art
Various types of polarizers or polarizing beam splitters (PBS) have been developed for polarizing light, or separating orthogonal polarization orientations of light. A MacNeille PBS is based upon achieving Brewster's angle behavior at the thin film interface along the diagonal of the high refractive index cube in which it is constructed. Such MacNeille PBSs generate no astigmatism, but have a narrow acceptance angle, and have significant cost and weight. Such devices can be fabricated to function from the infra-red through the visible to the ultra-violet region of the electromagnetic spectrum by appropriate choices of classes and thin-films.
Other types of polarizers are also available for the visible and infra-red portions of the spectrum, including long-chain polymer polarizers, wire-grid polarizers, Glan Thompson crystal polarizers, etc. However, the ultra-violet (UV) portion of the spectrum, especially for wavelengths less than approximately 350 nm, is not similarly well-supplied with capable, high-performance polarizers.
This scarcity of capable polarizers has limited the applications of polarized UV light in science, technology, and industry in comparison to the visible and infra-red (IR). The need for UV polarizers, however, is becoming acute in order to support the increasing applications of UV irradiation in industrial processes such as semiconductor manufacturing, flat panel Liquid Crystal Display (LCD) manufacturing, etc. The type of polarizer needed in some UV irradiation processes must have a reasonable acceptance angle, must be able to deliver a transmitted contrast ratio above approximately 20:1, and a transmission efficiency above about 30% of the desired polarization, and survive for a useful period of time (at least 1-2 months) in a high intensity environment. It is also desired that the polarizer have a convenient form factor such as a plate format which allows for the most efficient optical geometries to be used. While such a level of performance in the visible spectrum could easily be net by wire-grid polarizer technology or several other polarization technologies, it has proven surprisingly hard to meet even this low performance requirement in the UV.
One solution to this need has been to use a “pile-of-plates” polarizer which is formed by assembling a series of glass plates and positioning the pile at Brewster's angle to the UV irradiation to create a polarized beam through transmission of the P-polarization and reflection of the S-polarization. This approach can deliver the desired optical efficiency and contrast ratio, but it is prohibitively expensive and bulky, and has not proved to be a practical solution.
It had been thought that aluminum wire-grid polarizers similar to those commercially-available for use in the visible and IR would serve to meet this need. Experience, however, has shown that the current state of the art in wire-grid technology is insufficient. Wire-grid polarizers with a grid period down to approximately 100 nm from several manufacturers have been tested in UV applications between 240 nm and 300 nm wavelength and have not been able to meet all the above requirements. In particular, they have not been able to deliver the desired contrast levels for a useful period of time. The fundamental problems appear to be the short wavelength in comparison to the grid period (a ratio of only 2.5:1 at 250 nm) which negatively impacts the contrast and transmission performance, and the harshness of the industrial UV environment which quickly (such as in a matter of a few hours) transforms the aluminum metal wires in the grid into aluminum oxide wires, at which point the polarizer loses its polarization function almost entirely.
Another proposal has been to simply add a separate absorptive layer near a wire-grid polarizer or coating a wire-grid polarizer with an absorptive layer. See U.S. Pat. No. 7,206,059. But such a polarizer uses wires.
Other UV polarizers, such as the Glan Thompson Alpha BBO, while satisfactory in scientific applications, cannot meet the requirements on optical efficiency, acceptance angle, and are also prohibitively expensive for industrial applications. Thus, there does not exist today a fully acceptable and practical UV polarizer that meets the needs of industrial applications of UV light.
It has been recognized that it would be advantageous to develop a polarizer or polarizing beam splitter that has a contrast in transmission and/or reflection greater than about 20:1, that has a reasonable acceptance angle, that can withstand high temperatures and the higher-energy photons inherent in UV light for significant periods of time, that has a reasonable physical format, such as a plate format, and that can be manufactured at a reasonable cost for application in industrial processes. In addition, it has been recognized that it would be advantageous to develop a polarizer that is inorganic and dielectric, in order to avoid oxidation of the metals, such as aluminum, and destruction of organic materials, such as polymers, by the intense UV environment.
The invention provides an absorptive, ultra-violet, inorganic and dielectric grid polarizer device. A stack of at least two layers is disposed over a substrate. Each of the at least two layers is formed of a material that is both inorganic and dielectric. Adjacent layers of the at least two layers have different refractive indices. At least one of the at least two layers is discontinuous to form a form-birefringent layer with an array of parallel ribs having a period less than approximately 400 nm. Another of the at least two layers, different than the form-birefringent layer, is formed of an optically absorptive material for the ultra-violet spectrum defining an absorptive layer.
In another aspect, the invention provides an absorptive, ultra-violet, inorganic and dielectric grid polarizer device with a stack of at least two layers disposed over a substrate. Each of the at least two layers is formed of a material that is both inorganic and dielectric. Adjacent layers of the at least two layers have different refractive indices. The at least two layers are discontinuous to form an array of parallel ribs with a period less than approximately 400 nm. Each rib has a transmission layer formed of optically non-absorptive material to the ultra-violet spectrum; and an absorbing layer formed of an optically absorptive material to the ultra-violet spectrum.
In accordance with another aspect, the invention provides an absorptive, ultra-violet, inorganic and dielectric grid polarizer device with a stack of at least two layers disposed over a substrate. Each layer of the stack is formed of a material that is both inorganic and dielectric. Adjacent layers of the stack have different refractive indices. All of the layers of the stack are discontinuous to form form-birefringent layers with an array of parallel ribs having a period less than approximately 400 nm. The period and the different refractive indices cause the stack to substantially polarize an incident ultra-violet beam into two orthogonal polarization orientations and transmitting or reflecting one of the polarizations. At least one of the layers of the stack is formed of an optically absorptive material for the ultra-violet spectrum to substantially absorb another of the polarization orientations.
Additional features and advantages of the invention will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the invention; and, wherein:
a is a cross-sectional schematic side view of an absorptive, inorganic and dielectric grid polarizer in accordance with an embodiment of the present invention;
b is a Scanning Electron Image of an example of the polarizer of
c is a graph of expected performance (calculated theoretically) of the polarizer of
d is a graph of expected performance (calculated theoretically) of the polarizer of
e is a graph of expected performance (calculated theoretically) of the polarizer of
f is a graph of actual performance of the polarizer of
a is a cross-sectional schematic side view of another absorptive, inorganic and dielectric grid polarizer in accordance with another embodiment of the present invention;
b is a graph of expected performance (calculated theoretically) of the polarizer of
a is a cross-sectional schematic side view of another absorptive, inorganic and dielectric grid polarizer in accordance with another embodiment of the present invention;
b is a graph of expected performance (calculated theoretically) of the polarizer of
a is a cross-sectional schematic side view of another absorptive, inorganic and dielectric grid polarizer in accordance with another embodiment of the present invention;
b is a Scanning Electron Image of an example of the polarizer of
c is a graph of expected performance (calculated theoretically) of the polarizer of
Various features in the figures have been exaggerated for clarity.
Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended.
The term dielectric is used herein to mean non-metallic optical materials, typically consisting of metal oxides, metal nitrides, metal fluorides, or other similar materials. In addition, carbon in its various forms such as graphite, diamond, glassy carbon, etc. is considered a dielectric within the scope of this invention.
Description
As described above, it has been recognized that there is a need for an improved polarizer, particularly for ultra-violet (UV) applications. Since even inorganic polarizers, such as wire-grid polarizers, have not been successful in meeting this particular need in the UV spectrum, it is useful to look at the application requirements in order to develop a polarizer that may work uniquely in the UV spectrum that might otherwise not be interesting or useful in other portions of the electromagnetic spectrum. In particular, it should be noted that the requirements for contrast ratio and transmission efficiency in some UV applications are much lower than would be considered an acceptable level of performance for applications in the visible or the infrared (IR) spectrums. This opens up the possibility to use more creative approaches, perhaps even involving absorptive materials which would not typically be considered in visible or IR applications because of their strong negative impact on over-all optical efficiency.
As illustrated in
The polarizer 10 can include a stack 14 of film layers 18a and 18b disposed over a substrate 22 that carries and supports the layers. The stack 14 includes at least two layers, including at least one transmitting or non-optically absorptive layer 18a and at least one optically absorbing layer 18b with respect to the ultra-violet spectrum. The transmitting layer 18a can be directly disposed on the substrate, or positioned closer to the substrate than the absorbing layer 18b, so that the transmitting layer is disposed between the absorptive layer and the substrate. The layers 18a and 18b can be formed of inorganic and dielectric materials. The inorganic and dielectric materials of the polarizer resist degradation, such as oxidation, from the UV beam. In addition, the substrate 22 can be formed of an inorganic and dielectric material, such as fused silica to further avoid degradation of the substrate by UV light. Thus, the entire polarizer can be inorganic and dielectric, or formed of only inorganic and dielectric materials.
The transmitting layer 18a can also be formed of a material that is optically transmissive in at least the UV spectral region. Similarly, the substrate can be formed of a material that is optically transmissive to the UV spectral region.
At least the transmitting layer 18a can be discontinuous to form a form-birefringent layer 26 with an array of parallel ribs 30 defining a grid 32. The ribs 30 are formed of an inorganic and dielectric material, such as silicon dioxide (SiO2). In one aspect, the ribs 30 have a period P less than the wavelength of the UV beam, or less than 400 nm. In another aspect, the ribs 30 or grid 32 has a period P less than half the wavelength of the UV beam, or less than 200 nm. In another aspect, the ribs or grid can have a period P of less than 160 nm. The structure (period, width, thickness, and different refractive indices of adjacent layers) of the ribs 30 interacts with the UV beam to substantially polarize the UV beam into two orthogonal polarization orientations. In one aspect, the grid 32 substantially transmits one of the polarization orientations, such as the p-polarization orientation, while the other polarization orientation, such as the s-polarization orientation, is substantially absorbed, as described below. Alternatively, the grid can substantially reflect the s-polarization orientation while the p-polarization orientation is substantially absorbed.
The absorptive layer 18b includes an optically absorptive material for the UV spectral region, such as titanium dioxide (TiO2). Thus, the absorptive layer 18b substantially absorbs one of the polarization orientations of the UV beam, such as the s-polarization orientation. The absorptive layer 18b can also be discontinuous with an array of parallel ribs 30 forming part of the grid 32. Forming the absorptive layer 18b as a grid 32 can facilitate manufacture by allowing all the layers to be etched at once, as described in greater detail below. The optically absorptive material of absorptive layer can include: cadmium telluride, germanium, lead telluride, silicon oxide, tellurium, titanium dioxide, silicon, cadmium sulfide, zinc selenide, zinc sulfide, and combinations thereof.
The material of each layer or grid has a refractive index n or effective refractive index. Adjacent layers or grids have different refractive indices (n1≠n2) or different effective reflective indices. In addition, the first layer 18a can have a different refractive index n1 than the refractive index n1 of the substrate 22 (n1≠n2). The stack of layers can have a basic pattern of two layers with two refractive indices, two thicknesses (which may or may not be different), and two different materials, with one of the materials exhibiting optical absorption in the spectral region of interest in the UV spectrum. This basic pattern can be repeated to make structures with more than one layer pair. It will also be appreciated that other layers of continuous optical thin-film materials (not shown) can be added underneath the layer pair or over the layer pair to provide other optical benefits.
In addition, the thickness of each layer can be tailored to optimize the optical performance (transmission efficiency and contrast ratio) for the desired spectral range in the UV spectrum. For example, as shown in
While the stack 14 is shown with two film layers 18a-b, it will be appreciated that the number of film layers in the stack can vary. In one aspect, the stack can have between three and twenty layers. It is believed that less than twenty layers can achieve the desired polarization. The thickness of all the film layers in the stack over the substrate can be less than 2 micrometers.
The two-layer film is discontinuous to Norm a form-birefringent structure with an array of parallel ribs 30. The ribs have a pitch or period 1P less than the wavelength being treated, and in one aspect less than half the wavelength being treated. For UV light applications (λ≈100-400 nm) the ribs can have a pitch or period less than 400 nm in one aspect, less than 200 nm in another aspect, and less than 160 nm in another aspect. Thus, the polarizer 10 separates an incident UV light beam into two orthogonal polarization orientations, with light having s-polarization orientation (polarization orientation oriented parallel to the length of the ribs) being mostly absorbed with some energy reflected, and light having p-polarization orientation (polarization orientation oriented perpendicular to the length of the ribs) being largely transmitted or passed with a small amount of energy absorbed. (It is of course understood that the separation of these two polarizations may not be perfect and that there may be losses or amounts of undesired polarization orientation either reflected and/or transmitted.) In addition, it will be noted that the grid or array of ribs with a pitch less than about half the wavelength of light does not act like a diffraction grating (which has a pitch larger than about half the wavelength of light). Thus, the grid polarizer avoids diffraction. Furthermore, it is believed that such periods also avoid resonant effects or other optical anomalies.
As shown in
Although the ribs 30 are shown rectangular, it is of course understood that the ribs and grooves 34 can take on a variety of other shapes, as shown in
The grooves 34 can be unfilled, or filled with air (n=1). Alternatively, the grooves 34 can be filled with a material that is optically transmissive with respect to the incident UV light.
In one aspect, a thickness of all the film layers in the stack over the substrate is less than 1 micron. Thus, the grid polarizer 10 can be thin for compact applications.
It is believed that the birefringent characteristic of the film layers, and the different refractive indices of adjacent film layers, causes the grid polarizer 10 to substantially separate polarization orientations of incident light, substantially absorbing and reflecting light of s-polarization orientation, and substantially transmitting or passing light of p-polarization orientation with an acceptable amount of absorption. In addition, it is believed that the number of film layers, thickness of the film layers, and refractive indices of the film layers can be adjusted to vary the performance characteristics of the grid polarizer so long as at least one of the layers is absorptive to the incident UV light.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The grid polarizer 10 has two film layers 18a and 18b disposed over a substrate 22. The film layers are formed of inorganic and dielectric materials, namely a layer 18a of silicon dioxide (SiO2)(n≈1.6, k≈0 at 266 nm) and a layer 18b of titanium dioxide (TiO2)(n≈2.7, k≈1.3 at 266 nm). The two layers have a thickness (t1 and t2) of 20 nm and 130 nm respectively. Thus, the entire stack has a thickness (ttotal) of approximately 150 nm. Both of the thin film layers are discontinuous and form an array 26 of parallel ribs 30. Thus, all of the layers are discontinuous and together create form-birefringent layers. The ribs have a pitch or period P of 118 nm, and a duty cycle (ratio of period to rib width) of 0.48 or a rib width of 57 nm. The titanium oxide (TiO2) material has been chosen because of its optical index and its optically absorptive properties for the incident UV radiation. The form-birefringent structure will preferentially reflect and absorb the s-polarization while transmitting the p-polarization with an acceptable amount of energy lost or absorbed. This desired performance will occur over a range of incident angles from about 0° incidence (or normal incidence) to an angle of about 75 degrees from normal.
Table 1 shows the performance for the polarizer 10 of
From Table 1, it can be seen that the grid polarizer provides sufficient optical performance as described to be of great utility in the UV spectrum. In addition, it can be seen that the angular aperture of the polarizer extends over a range of at least ±30°. In addition, it can be seen that reducing the period of the ribs or grid increases the transmission.
Referring to
Referring to
The polarizer 10d has a stack of film layers 18a-f disposed over a substrate 22. The film layers are formed of inorganic and dielectric materials, namely alternating layers of silicon dioxide (SiO2)(n≈1.6, k≈0 at 266 nm) and titanium dioxide (TiO2)(n≈2.7, k≈1.3 at 266 nm). Thus, the layers alternate between higher and lower indices of refraction (n). Each layer has a thickness of 23 nm. Thus, the entire stack has a thickness (ttotal) of approximately 138 nm. All of the film layers are discontinuous and form an array 26 of parallel ribs 30. Thus, all of the layers are discontinuous to create form-birefringent layers. The ribs have a pitch or period P of 118 nm, and a duty cycle (ratio of period to width) of 0.4 or width (w) of 71 nm.
Table 2 shows the performance for the polarizer 10d of
From Table 2, it can again be seen that the UV polarizer provides sufficient optical performance as described to be of great utility in the UV spectrum.
From the above examples, it can be seen that an effective UV polarizer can have a period less than 120 nm and can be operable over a useful portion of the UV spectrum.
Referring to
Referring to
Referring to
A method for forming a polarizer such as those described above includes obtaining a substrate 22. As described above, the substrate can be fused silica glass. In all aspects, the substrate would be chosen to be transparent to the desired wavelength of electromagnetic radiation. The substrate may be cleaned and otherwise prepared. A first continuous layer 18a is formed over the substrate with a first inorganic, dielectric optically transmissive (in the ultra-violet spectral range) material having a first refractive index. A second continuous layer 18b is formed over the first continuous layer with a second inorganic, dielectric optically absorptive (in the ultra-violet spectral range) material having a second refractive index. Either layer can be chosen to be of material which exhibits strong optical absorption to the incident UV light. Subsequent continuous layers can be formed over the second layer. The first and second layers, as well as the subsequent layers, can be formed by vacuum deposition, chemical vapor deposition, spin coating, etc., as is known in the art. The continuous layers, or at least the first or second continuous layers, are patterned to create two discontinuous layers with an array of parallel ribs defining at least one form birefringent layer. In addition, all the continuous layers can be patterned to create discontinuous layers. The layers can be patterned by etching, etc., as is known in the art.
The grid polarizer can be disposed in a beam of light to substantially reflect and absorb the s-polarization while substantially transmitting the p-polarization with a small amount of energy being absorbed.
Referring to
In another aspect, the second continuous layer can be formed over the first, and the second continuous layer patterned.
Referring to
While the forgoing examples are illustrative of the principles of the present invention in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in fort, usage and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts of the invention. Accordingly, it is not intended that the invention be limited, except as by the claims set forth below.
This is a continuation-in-part of U.S. patent application Ser. No. 11/469,210, published as U.S. Patent Publication No. 2008/0055719 and since abandoned; Ser. No. 11/469,226, published as U.S. Patent Publication No. 2008/0055549 and since abandoned; Ser. No. 11/469,241, published as U.S. Patent Publication No. 2008/0055720 and since abandoned; Ser. No. 11/469,253, published as U.S. Patent Publication No. 2008/0055721 and since abandoned; and Ser. No. 11/469,266, published as U.S. Patent Publication No. 2008/0055722 and since abandoned; filed on Aug. 31, 2006, now abandoned which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2224214 | Brown | Dec 1940 | A |
2237567 | Land | Apr 1941 | A |
2287598 | Brown | Jun 1942 | A |
2391451 | Fischer | Dec 1945 | A |
2403731 | MacNeille | Jul 1946 | A |
2605352 | Fishcer | Jul 1952 | A |
2748659 | Geffcken et al. | Jun 1956 | A |
2813146 | Glenn | Nov 1957 | A |
2815452 | Mertz | Dec 1957 | A |
2887566 | Marks | May 1959 | A |
3046839 | Bird et al. | Jul 1962 | A |
3084590 | Glenn, Jr. | Apr 1963 | A |
3202039 | Lang et al. | Aug 1965 | A |
3235630 | Doherty et al. | Feb 1966 | A |
3291550 | Bird et al. | Dec 1966 | A |
3291871 | Francis | Dec 1966 | A |
3293331 | Doherty | Dec 1966 | A |
3436143 | Garrett | Apr 1969 | A |
3479168 | Bird et al. | Nov 1969 | A |
3536373 | Bird et al. | Oct 1970 | A |
3566099 | Makas | Feb 1971 | A |
3627431 | Komarniski | Dec 1971 | A |
3631288 | Rogers | Dec 1971 | A |
3731986 | Fergason | May 1973 | A |
3857627 | Harsch | Dec 1974 | A |
3857628 | Strong | Dec 1974 | A |
3876285 | Schwarzmüller | Apr 1975 | A |
3877789 | Marie | Apr 1975 | A |
3912369 | Kashnow | Oct 1975 | A |
3969545 | Slocum | Jul 1976 | A |
4009933 | Firester | Mar 1977 | A |
4025164 | Doriguzzi et al. | May 1977 | A |
4025688 | Nagy et al. | May 1977 | A |
4049944 | Garvin et al. | Sep 1977 | A |
4068260 | Ohneda et al. | Jan 1978 | A |
4073571 | Grinberg et al. | Feb 1978 | A |
4104598 | Abrams | Aug 1978 | A |
4181756 | Fergason | Jan 1980 | A |
4220705 | Sugibuchi et al. | Sep 1980 | A |
4221464 | Pedinoff et al. | Sep 1980 | A |
4268127 | Oshima et al. | May 1981 | A |
4289381 | Garvin et al. | Sep 1981 | A |
4294119 | Soldner | Oct 1981 | A |
4308079 | Venables et al. | Dec 1981 | A |
4441791 | Hornbeck | Apr 1984 | A |
4456515 | Krueger et al. | Jun 1984 | A |
4466704 | Schuler et al. | Aug 1984 | A |
4492432 | Kaufmann et al. | Jan 1985 | A |
4512638 | Sriram et al. | Apr 1985 | A |
4514479 | Ferrante | Apr 1985 | A |
4515441 | Wentz | May 1985 | A |
4515443 | Bly | May 1985 | A |
4532619 | Sugiyama et al. | Jul 1985 | A |
4560599 | Regen | Dec 1985 | A |
4679910 | Efron et al. | Jul 1987 | A |
4688897 | Grinberg et al. | Aug 1987 | A |
4701028 | Clerc et al. | Oct 1987 | A |
4711530 | Nakanowatari et al. | Dec 1987 | A |
4712881 | Shurtz et al. | Dec 1987 | A |
4724436 | Johansen et al. | Feb 1988 | A |
4743092 | Pistor | May 1988 | A |
4743093 | Oinen | May 1988 | A |
4759611 | Downey, Jr. | Jul 1988 | A |
4759612 | Nakatsuka et al. | Jul 1988 | A |
4795233 | Chang | Jan 1989 | A |
4799776 | Yamazaki et al. | Jan 1989 | A |
4818076 | Heppke et al. | Apr 1989 | A |
4840757 | Blenkhorn | Jun 1989 | A |
4865670 | Marks | Sep 1989 | A |
4870649 | Bobeck et al. | Sep 1989 | A |
4895769 | Land et al. | Jan 1990 | A |
4904060 | Grupp | Feb 1990 | A |
4913529 | Goldenberg et al. | Apr 1990 | A |
4915463 | Barbee, Jr. | Apr 1990 | A |
4939526 | Tsuda | Jul 1990 | A |
4946231 | Pistor | Aug 1990 | A |
4966438 | Mouchart et al. | Oct 1990 | A |
4991937 | Urino | Feb 1991 | A |
5029988 | Urino | Jul 1991 | A |
5039185 | Uchida et al. | Aug 1991 | A |
5061050 | Ogura | Oct 1991 | A |
5087985 | Kitaura et al. | Feb 1992 | A |
5092774 | Milan | Mar 1992 | A |
5113285 | Franklin et al. | May 1992 | A |
5115305 | Baur | May 1992 | A |
5122887 | Mathewson | Jun 1992 | A |
5122907 | Slocum | Jun 1992 | A |
5139340 | Okumura | Aug 1992 | A |
5157526 | Kondo et al. | Oct 1992 | A |
5177635 | Keilmann | Jan 1993 | A |
5196926 | Lee | Mar 1993 | A |
5196953 | Yeh et al. | Mar 1993 | A |
5204765 | Mitsui et al. | Apr 1993 | A |
5206674 | Puech et al. | Apr 1993 | A |
5216539 | Boher et al. | Jun 1993 | A |
5222907 | Katabuchi et al. | Jun 1993 | A |
5225920 | Kasazumi et al. | Jul 1993 | A |
5235443 | Barnik et al. | Aug 1993 | A |
5235449 | Imazeki et al. | Aug 1993 | A |
5239322 | Takanashi et al. | Aug 1993 | A |
5245471 | Iwatsuka et al. | Sep 1993 | A |
5267029 | Kurematsu et al. | Nov 1993 | A |
5279689 | Shvartsman | Jan 1994 | A |
5295009 | Barnik et al. | Mar 1994 | A |
5298199 | Hirose et al. | Mar 1994 | A |
5305143 | Taga et al. | Apr 1994 | A |
5325218 | Willett et al. | Jun 1994 | A |
5333072 | Willett | Jul 1994 | A |
5349192 | Mackay | Sep 1994 | A |
5357370 | Miyatake et al. | Oct 1994 | A |
5383053 | Hegg et al. | Jan 1995 | A |
5387953 | Minoura et al. | Feb 1995 | A |
5391091 | Nations | Feb 1995 | A |
5422756 | Weber | Jun 1995 | A |
5436761 | Kamon | Jul 1995 | A |
5455589 | Huguenin et al. | Oct 1995 | A |
5466319 | Zager et al. | Nov 1995 | A |
5477359 | Okazaki | Dec 1995 | A |
5485499 | Pew et al. | Jan 1996 | A |
5486935 | Kalmanash | Jan 1996 | A |
5486949 | Schrenk et al. | Jan 1996 | A |
5490003 | Van Sprang | Feb 1996 | A |
5499126 | Abileah et al. | Mar 1996 | A |
5504603 | Winker et al. | Apr 1996 | A |
5506704 | Broer et al. | Apr 1996 | A |
5508830 | Imoto et al. | Apr 1996 | A |
5510215 | Prince et al. | Apr 1996 | A |
5513023 | Fritz et al. | Apr 1996 | A |
5513035 | Miyatake et al. | Apr 1996 | A |
5517356 | Araujo et al. | May 1996 | A |
5535047 | Hornbeck | Jul 1996 | A |
5548427 | May | Aug 1996 | A |
5555186 | Shioya | Sep 1996 | A |
5557343 | Yamagishi | Sep 1996 | A |
5559634 | Weber | Sep 1996 | A |
5570213 | Ruiz et al. | Oct 1996 | A |
5570215 | Omae et al. | Oct 1996 | A |
5574580 | Ansley | Nov 1996 | A |
5576854 | Schmidt et al. | Nov 1996 | A |
5579138 | Sannohe et al. | Nov 1996 | A |
5594561 | Blanchard | Jan 1997 | A |
5600383 | Hornbeck | Feb 1997 | A |
5609939 | Petersen et al. | Mar 1997 | A |
5612820 | Schrenk et al. | Mar 1997 | A |
5619352 | Koch et al. | Apr 1997 | A |
5619356 | Kozo et al. | Apr 1997 | A |
5620755 | Smith, Jr. et al. | Apr 1997 | A |
5626408 | Heynderickx et al. | May 1997 | A |
5638197 | Gunning, III et al. | Jun 1997 | A |
5652667 | Kurogane | Jul 1997 | A |
5658060 | Dove | Aug 1997 | A |
5686979 | Weber et al. | Nov 1997 | A |
5706063 | Hong | Jan 1998 | A |
5719695 | Heimbuch | Feb 1998 | A |
5731246 | Bakeman et al. | Mar 1998 | A |
5748368 | Tamada et al. | May 1998 | A |
5748369 | Yokota | May 1998 | A |
5751388 | Larson | May 1998 | A |
5751466 | Dowling et al. | May 1998 | A |
5767827 | Kobayashi et al. | Jun 1998 | A |
5798819 | Hattori et al. | Aug 1998 | A |
5808795 | Shimomura et al. | Sep 1998 | A |
5826959 | Atsuchi | Oct 1998 | A |
5826960 | Gotoh et al. | Oct 1998 | A |
5828489 | Johnson et al. | Oct 1998 | A |
5833360 | Knox et al. | Nov 1998 | A |
5838403 | Jannson et al. | Nov 1998 | A |
5841494 | Hall | Nov 1998 | A |
5844722 | Stephens et al. | Dec 1998 | A |
5886754 | Kuo | Mar 1999 | A |
5890095 | Barbour et al. | Mar 1999 | A |
5898521 | Okada | Apr 1999 | A |
5899551 | Neijzen et al. | May 1999 | A |
5900976 | Handschy et al. | May 1999 | A |
5907427 | Scalora et al. | May 1999 | A |
5912762 | Li et al. | Jun 1999 | A |
5914818 | Tejada et al. | Jun 1999 | A |
5917562 | Woodgate et al. | Jun 1999 | A |
5918961 | Ueda | Jul 1999 | A |
5930050 | Dewald | Jul 1999 | A |
5943171 | Budd et al. | Aug 1999 | A |
5958345 | Turner et al. | Sep 1999 | A |
5965247 | Jonza et al. | Oct 1999 | A |
5969861 | Ueda et al. | Oct 1999 | A |
5973833 | Booth et al. | Oct 1999 | A |
5978056 | Shintani et al. | Nov 1999 | A |
5982541 | Li et al. | Nov 1999 | A |
5986730 | Hansen et al. | Nov 1999 | A |
5991075 | Katsuragawa et al. | Nov 1999 | A |
5991077 | Carlson et al. | Nov 1999 | A |
6005918 | Harris et al. | Dec 1999 | A |
6008951 | Anderson | Dec 1999 | A |
6010121 | Lee | Jan 2000 | A |
6016173 | Crandall | Jan 2000 | A |
6018841 | Kelsay et al. | Feb 2000 | A |
6053616 | Fujimorie et al. | Apr 2000 | A |
6055103 | Woodgate et al. | Apr 2000 | A |
6056407 | Iinuma et al. | May 2000 | A |
6062694 | Oikawa et al. | May 2000 | A |
6075235 | Chun | Jun 2000 | A |
6081312 | Aminaka et al. | Jun 2000 | A |
6081376 | Hansen et al. | Jun 2000 | A |
6082861 | Dove et al. | Jul 2000 | A |
6089717 | Iwai | Jul 2000 | A |
6096155 | Harden et al. | Aug 2000 | A |
6096375 | Ouderkirk et al. | Aug 2000 | A |
6108131 | Hansen et al. | Aug 2000 | A |
6122103 | Perkins et al. | Sep 2000 | A |
6141075 | Ohmuro et al. | Oct 2000 | A |
6147728 | Okumura et al. | Nov 2000 | A |
6172813 | Tadic-Galeb et al. | Jan 2001 | B1 |
6172816 | Tadic-Galeb et al. | Jan 2001 | B1 |
6181386 | Knox | Jan 2001 | B1 |
6185041 | Tadic-Galeb et al. | Feb 2001 | B1 |
6208463 | Hansen et al. | Mar 2001 | B1 |
6215547 | Ramanugan et al. | Apr 2001 | B1 |
6234634 | Hansen et al. | May 2001 | B1 |
6243199 | Hansen et al. | Jun 2001 | B1 |
6247816 | Cipolla et al. | Jun 2001 | B1 |
6249378 | Shimamura et al. | Jun 2001 | B1 |
6250762 | Kuijper | Jun 2001 | B1 |
6251297 | Komuro et al. | Jun 2001 | B1 |
6282025 | Huang et al. | Aug 2001 | B1 |
6288840 | Perkins et al. | Sep 2001 | B1 |
6310345 | Pittman et al. | Oct 2001 | B1 |
6339454 | Knox | Jan 2002 | B1 |
6340230 | Bryars et al. | Jan 2002 | B1 |
6345895 | Maki et al. | Feb 2002 | B1 |
6348995 | Hansen et al. | Feb 2002 | B1 |
6375330 | Mihalakis | Apr 2002 | B1 |
6390626 | Knox | May 2002 | B2 |
6398364 | Bryars | Jun 2002 | B1 |
6406151 | Fujimori | Jun 2002 | B1 |
6409525 | Hoelscher et al. | Jun 2002 | B1 |
6411749 | Teng et al. | Jun 2002 | B2 |
6424436 | Yamanaka | Jul 2002 | B1 |
6426837 | Clark et al. | Jul 2002 | B1 |
6447120 | Hansen et al. | Sep 2002 | B1 |
6452724 | Hansen et al. | Sep 2002 | B1 |
6460998 | Watanabe | Oct 2002 | B1 |
6473236 | Tadic-Galeb et al. | Oct 2002 | B2 |
6486997 | Bruzzone et al. | Nov 2002 | B1 |
6490017 | Huang et al. | Dec 2002 | B1 |
6496239 | Seiberle | Dec 2002 | B2 |
6496287 | Seiberle et al. | Dec 2002 | B1 |
6511183 | Shimizu et al. | Jan 2003 | B2 |
6520645 | Yamamoto et al. | Feb 2003 | B2 |
6532111 | Kurtz et al. | Mar 2003 | B2 |
6547396 | Svardal et al. | Apr 2003 | B1 |
6580471 | Knox | Jun 2003 | B2 |
6583930 | Schrenk et al. | Jun 2003 | B1 |
6585378 | Kurtz et al. | Jul 2003 | B2 |
6624936 | Kotchick et al. | Sep 2003 | B2 |
6643077 | Magarill et al. | Nov 2003 | B2 |
6654168 | Borrelli | Nov 2003 | B1 |
6658168 | Kim | Dec 2003 | B1 |
6661475 | Stahl et al. | Dec 2003 | B1 |
6661484 | Iwai et al. | Dec 2003 | B1 |
6665119 | Kurtz et al. | Dec 2003 | B1 |
6666556 | Hansen et al. | Dec 2003 | B2 |
6669343 | Shahzad et al. | Dec 2003 | B2 |
6698891 | Kato | Mar 2004 | B2 |
6704469 | Xie et al. | Mar 2004 | B1 |
6710921 | Hansen et al. | Mar 2004 | B2 |
6714350 | Silverstein et al. | Mar 2004 | B2 |
6721096 | Bruzzone et al. | Apr 2004 | B2 |
6739723 | Haven et al. | May 2004 | B1 |
6746122 | Knox | Jun 2004 | B2 |
6764181 | Magarill et al. | Jul 2004 | B2 |
6769779 | Ehrne et al. | Aug 2004 | B1 |
6781640 | Huang | Aug 2004 | B1 |
6785050 | Lines et al. | Aug 2004 | B2 |
6788461 | Kurtz et al. | Sep 2004 | B2 |
6805445 | Silverstein et al. | Oct 2004 | B2 |
6809864 | Martynov et al. | Oct 2004 | B2 |
6811274 | Olczak | Nov 2004 | B2 |
6813077 | Borrelli et al. | Nov 2004 | B2 |
6816290 | Mukawa | Nov 2004 | B2 |
6821135 | Martin | Nov 2004 | B1 |
6823093 | Chang et al. | Nov 2004 | B2 |
6829090 | Katsumata et al. | Dec 2004 | B2 |
6844971 | Silverstein et al. | Jan 2005 | B2 |
6846089 | Stevenson et al. | Jan 2005 | B2 |
6859303 | Wang et al. | Feb 2005 | B2 |
6876784 | Nikolov et al. | Apr 2005 | B2 |
6896371 | Shimizu et al. | May 2005 | B2 |
6897926 | Mi et al. | May 2005 | B2 |
6899440 | Bierhuizen | May 2005 | B2 |
6900866 | Kurtz et al. | May 2005 | B2 |
6909473 | Mi et al. | Jun 2005 | B2 |
6920272 | Wang | Jul 2005 | B2 |
6922287 | Wiki et al. | Jul 2005 | B2 |
6926410 | Weber et al. | Aug 2005 | B2 |
6927915 | Nakai | Aug 2005 | B2 |
6934082 | Allen et al. | Aug 2005 | B2 |
6943941 | Flagello et al. | Sep 2005 | B2 |
6947215 | Hoshi | Sep 2005 | B2 |
6954245 | Mi et al. | Oct 2005 | B2 |
6972906 | Hasman et al. | Dec 2005 | B2 |
6976759 | Magarill et al. | Dec 2005 | B2 |
6981771 | Arai et al. | Jan 2006 | B1 |
7009768 | Sakamoto | Mar 2006 | B2 |
7013064 | Wang | Mar 2006 | B2 |
7023512 | Kurtz et al. | Apr 2006 | B2 |
7023602 | Aastuen et al. | Apr 2006 | B2 |
7025464 | Beeson et al. | Apr 2006 | B2 |
7026046 | Edlinger et al. | Apr 2006 | B2 |
7046422 | Kimura et al. | May 2006 | B2 |
7046441 | Huang et al. | May 2006 | B2 |
7046442 | Suganuma | May 2006 | B2 |
7050233 | Nikolov et al. | May 2006 | B2 |
7050234 | Gage et al. | May 2006 | B2 |
7075722 | Nakai | Jul 2006 | B2 |
7113335 | Sales | Sep 2006 | B2 |
7116478 | Momoki et al. | Oct 2006 | B2 |
7129183 | Mori et al. | Oct 2006 | B2 |
7131737 | Silverstein et al. | Nov 2006 | B2 |
7142363 | Sato et al. | Nov 2006 | B2 |
7155073 | Momoki et al. | Dec 2006 | B2 |
7158302 | Chiu et al. | Jan 2007 | B2 |
7159987 | Sakata | Jan 2007 | B2 |
7177259 | Nishi et al. | Feb 2007 | B2 |
7185984 | Akiyama | Mar 2007 | B2 |
7213920 | Matsui et al. | May 2007 | B2 |
7220371 | Suganuma | May 2007 | B2 |
7221420 | Silverstein et al. | May 2007 | B2 |
7221501 | Flagello et al. | May 2007 | B2 |
7227684 | Wang et al. | Jun 2007 | B2 |
7230766 | Rogers | Jun 2007 | B2 |
7234816 | Bruzzone et al. | Jun 2007 | B2 |
7236655 | Momoki et al. | Jun 2007 | B2 |
7255444 | Nakashima et al. | Aug 2007 | B2 |
7256938 | Barton et al. | Aug 2007 | B2 |
7268946 | Wang | Sep 2007 | B2 |
7375887 | Hansen | May 2008 | B2 |
7561332 | Little et al. | Jul 2009 | B2 |
7570424 | Perkins et al. | Aug 2009 | B2 |
7630133 | Perkins | Dec 2009 | B2 |
7670758 | Wang et al. | Mar 2010 | B2 |
7755718 | Amako et al. | Jul 2010 | B2 |
7800823 | Perkins | Sep 2010 | B2 |
7813039 | Perkins et al. | Oct 2010 | B2 |
7961393 | Perkins et al. | Jun 2011 | B2 |
8009355 | Nakai | Aug 2011 | B2 |
8027087 | Perkins et al. | Sep 2011 | B2 |
20010006421 | Parriaux | Jul 2001 | A1 |
20010022687 | Takahashi et al. | Sep 2001 | A1 |
20010053023 | Kameno et al. | Dec 2001 | A1 |
20020001128 | Moseley et al. | Jan 2002 | A1 |
20020003661 | Nakai | Jan 2002 | A1 |
20020040892 | Koyama et al. | Apr 2002 | A1 |
20020122235 | Kurtz et al. | Sep 2002 | A1 |
20020167727 | Hansen et al. | Nov 2002 | A1 |
20020176166 | Schuster | Nov 2002 | A1 |
20020181824 | Huang et al. | Dec 2002 | A1 |
20020191286 | Gale et al. | Dec 2002 | A1 |
20030058408 | Magarill et al. | Mar 2003 | A1 |
20030072079 | Silverstein et al. | Apr 2003 | A1 |
20030081179 | Pentico et al. | May 2003 | A1 |
20030117708 | Kane | Jun 2003 | A1 |
20030156325 | Hoshi | Aug 2003 | A1 |
20030161029 | Kurtz et al. | Aug 2003 | A1 |
20030180024 | Edlinger | Sep 2003 | A1 |
20030193652 | Pentico et al. | Oct 2003 | A1 |
20030202157 | Pentico et al. | Oct 2003 | A1 |
20030218722 | Tsao et al. | Nov 2003 | A1 |
20030223118 | Sakamoto | Dec 2003 | A1 |
20030224116 | Chen et al. | Dec 2003 | A1 |
20030227678 | Lines et al. | Dec 2003 | A1 |
20040008416 | Okuno | Jan 2004 | A1 |
20040047039 | Wang et al. | Mar 2004 | A1 |
20040047388 | Wang et al. | Mar 2004 | A1 |
20040051928 | Mi | Mar 2004 | A1 |
20040070829 | Kurtz et al. | Apr 2004 | A1 |
20040095637 | Nikolov et al. | May 2004 | A1 |
20040120041 | Silverstein et al. | Jun 2004 | A1 |
20040125449 | Sales | Jul 2004 | A1 |
20040165126 | Ooi et al. | Aug 2004 | A1 |
20040169924 | Flagello et al. | Sep 2004 | A1 |
20040174596 | Umeki | Sep 2004 | A1 |
20040201889 | Wang et al. | Oct 2004 | A1 |
20040201890 | Crosby | Oct 2004 | A1 |
20040218270 | Wang | Nov 2004 | A1 |
20040227994 | Ma et al. | Nov 2004 | A1 |
20040233362 | Kashima | Nov 2004 | A1 |
20040240777 | Woodgate et al. | Dec 2004 | A1 |
20040258355 | Wang et al. | Dec 2004 | A1 |
20050045799 | Deng et al. | Mar 2005 | A1 |
20050046941 | Satoh et al. | Mar 2005 | A1 |
20050078374 | Taira et al. | Apr 2005 | A1 |
20050084613 | Wang et al. | Apr 2005 | A1 |
20050088739 | Chiu et al. | Apr 2005 | A1 |
20050122587 | Ouderkirk et al. | Jun 2005 | A1 |
20050128567 | Wang et al. | Jun 2005 | A1 |
20050128587 | Suganuma | Jun 2005 | A1 |
20050152033 | Kang et al. | Jul 2005 | A1 |
20050179995 | Nikolov et al. | Aug 2005 | A1 |
20050180014 | Nikolov et al. | Aug 2005 | A1 |
20050181128 | Nikolov et al. | Aug 2005 | A1 |
20050190445 | Fukuzaki | Sep 2005 | A1 |
20050195485 | Hirai et al. | Sep 2005 | A1 |
20050201656 | Nikolov et al. | Sep 2005 | A1 |
20050213043 | Nakashima et al. | Sep 2005 | A1 |
20050259324 | Flagello et al. | Nov 2005 | A1 |
20050271091 | Wang | Dec 2005 | A1 |
20050275944 | Wang et al. | Dec 2005 | A1 |
20050277063 | Wang et al. | Dec 2005 | A1 |
20060001969 | Wang et al. | Jan 2006 | A1 |
20060061862 | Mi et al. | Mar 2006 | A1 |
20060072074 | Matsui et al. | Apr 2006 | A1 |
20060072194 | Lee | Apr 2006 | A1 |
20060092513 | Momoki | May 2006 | A1 |
20060113279 | Little | Jun 2006 | A1 |
20060118514 | Little et al. | Jun 2006 | A1 |
20060119937 | Perkins | Jun 2006 | A1 |
20060127829 | Deng et al. | Jun 2006 | A1 |
20060127830 | Deng et al. | Jun 2006 | A1 |
20060187416 | Ouchi et al. | Aug 2006 | A1 |
20060192960 | Renes et al. | Aug 2006 | A1 |
20060215263 | Mi et al. | Sep 2006 | A1 |
20060238715 | Hirata et al. | Oct 2006 | A1 |
20060268207 | Tan et al. | Nov 2006 | A1 |
20070146644 | Mi et al. | Jun 2007 | A1 |
20070183035 | Asakawa et al. | Aug 2007 | A1 |
20070195676 | Hendriks et al. | Aug 2007 | A1 |
20070217008 | Wang et al. | Sep 2007 | A1 |
20070223349 | Shimada et al. | Sep 2007 | A1 |
20070242187 | Yamaki et al. | Oct 2007 | A1 |
20070242228 | Chen et al. | Oct 2007 | A1 |
20070242352 | MacMaster | Oct 2007 | A1 |
20080055722 | Perkins | Mar 2008 | A1 |
20080055723 | Gardner | Mar 2008 | A1 |
20080137188 | Sato et al. | Jun 2008 | A1 |
20080192346 | Kim et al. | Aug 2008 | A1 |
20090040607 | Amako et al. | Feb 2009 | A1 |
20090109377 | Sawaki et al. | Apr 2009 | A1 |
20100238555 | Amako et al. | Sep 2010 | A1 |
20100328768 | Lines | Dec 2010 | A1 |
20110080640 | Kaida et al. | Apr 2011 | A1 |
20110115991 | Sawaki | May 2011 | A1 |
Number | Date | Country |
---|---|---|
2003267964 | Dec 2003 | AU |
0296391 | Feb 1954 | CH |
03815026.3 | Aug 2005 | CN |
1692291 | Nov 2005 | CN |
03814105.1 | Nov 2005 | CN |
416157 | Jul 1925 | DE |
296391 | Feb 1950 | DE |
3707984 | Sep 1988 | DE |
103 27 963 | Jan 2005 | DE |
102004041222 | Mar 2006 | DE |
300563 | Jan 1989 | EP |
0317910 | May 1989 | EP |
0336334 | Oct 1989 | EP |
0349309 | Jan 1990 | EP |
0357946 | Mar 1990 | EP |
407830 | Jan 1991 | EP |
416157 | Mar 1991 | EP |
0488544 | Jun 1992 | EP |
0507445 | Oct 1992 | EP |
0518111 | Dec 1992 | EP |
0543061 | May 1993 | EP |
566 004 | Oct 1993 | EP |
0588937 | Mar 1994 | EP |
0606940 | Jul 1994 | EP |
0349144 | Sep 1994 | EP |
0634674 | Jan 1995 | EP |
0670506 | Sep 1995 | EP |
0521591 | Oct 1995 | EP |
0731456 | Sep 1996 | EP |
0744634 | Nov 1996 | EP |
1239308 | Nov 2002 | EP |
56156815 | Dec 1981 | JP |
02-308106 | Dec 1990 | JP |
3005706 | Jan 1991 | JP |
403084502 | Apr 1991 | JP |
04 366916 | Jun 1991 | JP |
4-12241 | Jan 1992 | JP |
5134115 | May 1993 | JP |
5288910 | Nov 1993 | JP |
6174907 | Jun 1994 | JP |
7005316 | Jan 1995 | JP |
7-146469 | Jun 1995 | JP |
9090122 | Apr 1997 | JP |
9090129 | Apr 1997 | JP |
9178943 | Jul 1997 | JP |
09-507926 | Aug 1997 | JP |
9288211 | Nov 1997 | JP |
10-003078 | Jan 1998 | JP |
10073722 | Mar 1998 | JP |
10084502 | Mar 1998 | JP |
10-153706 | Jun 1998 | JP |
10-260403 | Sep 1998 | JP |
10-268301 | Oct 1998 | JP |
1-164819 | Mar 1999 | JP |
11142650 | May 1999 | JP |
11237507 | Aug 1999 | JP |
11-258603 | Sep 1999 | JP |
11-306581 | Nov 1999 | JP |
2000-147487 | May 2000 | JP |
2000284117 | Oct 2000 | JP |
2001074935 | Mar 2001 | JP |
2003502708 | Jan 2003 | JP |
2004157159 | Jun 2004 | JP |
2004309903 | Nov 2004 | JP |
2005151154 | May 2005 | JP |
20054513547 | May 2005 | JP |
2005195824 | Jul 2005 | JP |
2005534981 | Nov 2005 | JP |
2006047813 | Feb 2006 | JP |
2006-133402 | May 2006 | JP |
2006201540 | Aug 2006 | JP |
2006330178 | Dec 2006 | JP |
200758100 | Mar 2007 | JP |
2007101859 | Apr 2007 | JP |
2003-0079268 | Oct 2003 | KR |
10-2003-0090021 | Nov 2003 | KR |
10-2004-0046137 | Jun 2004 | KR |
10-2005-0017871 | Feb 2005 | KR |
10-0707083 | Apr 2007 | KR |
1781659 | Dec 1992 | RU |
1283685 | Jan 1987 | SU |
WO9615474 | May 1996 | WO |
WO9701788 | Jan 1997 | WO |
WO 9959005 | May 1999 | WO |
WO0070386 | Nov 2000 | WO |
WO 0151964 | Jul 2001 | WO |
WO 0221205 | Mar 2002 | WO |
WO 02077588 | Oct 2002 | WO |
WO03054619 | Jul 2003 | WO |
WO 03069381 | Aug 2003 | WO |
WO03102652 | Dec 2003 | WO |
WO03107046 | Dec 2003 | WO |
WO2004013684 | Feb 2004 | WO |
WO 2004019020 | Mar 2004 | WO |
WO2004019070 | Mar 2004 | WO |
WO2004072692 | Aug 2004 | WO |
WO2005019503 | Mar 2005 | WO |
WO2005065182 | Jul 2005 | WO |
WO2005079233 | Sep 2005 | WO |
WO2005101112 | Oct 2005 | WO |
WO2005123277 | Dec 2005 | WO |
WO2006014408 | Feb 2006 | WO |
WO2006036546 | Apr 2006 | WO |
Entry |
---|
Lloyd William Taylor, Manual of Advanced Undergraduate Experiments in Physics, p. 302 (1959). |
Flanders, Application of ≈ 100 Å linewidth structures fabricated by shadowing techniquesa), J. Vac. Sci. Technol., 19(4), Nov./Dec. 1981. |
Kuta et al. “Coupled-wave analysis of lamellar metal transmission gratings for the visible and the infrared,”J. Opt. Soc. Am. A/vol. 12, No. 5/May 1995. |
Lockbihler et al. “Diffraction from highly conducting wire gratings of arbitrary cross-section,” Journal of Modern Optics, 1993, vol. 40, No. 7, pp. 1273-1298. |
Novak et al., “Far infrared polarizing grids for use at cryogenic temperatures,” Applied Optics, Aug. 15, 1989/vol. 28, No. 15, pp. 3425-3427. |
Auton et al, “Grid Polarizers for Use in the Near Infrared,” Infrared Physics, 1972, vol. 12, pp. 95-100. |
Stenkamp et al, “Grid polarizer for the visible spectral region,” SPIE vol. 2213 pp. 288-296. |
Handbook of Optics, 1978, pp. 10-68-10-77. |
Glytsis et al, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Applied Optics Aug. 1, 1992 vol. 31, No. 22 pp. 4459-4470. |
Auton, “Infrared Transmission Polarizers by Photolithography,”Applied Optics Jun. 1967 vol. 6, No. 6, pp. 1023-1027. |
Haggans et al., “Lamellar gratings as polarization components for specularly reflected beams,” Journal of Modern Optics, 1993, vol. 40, No. 4, pp. 675-686. |
Nordin et al., “Micropolarizer array for infrared imaging polarimetry”, J. Op. Soc. Am. A. vol. 16 No. 5/May 1999. |
Bird et al., “The Wire Grid as a Near-Infrared Polarizer,” J. Op. Soc. Am. vol. 50 No. 9 (1960). |
Optics 9th Edition, pp. 338-339 (1980). |
Whitbourn et al, “Phase shifts in transmission line models of thin periodic metal grids,” Applied Optics Aug. 15, 1989 vol. 28, No. 15, pp. 3511-3515. |
Enger et al, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Applied Optics Oct. 15, 1983, vol. 22, No. 20 pp. 3220-3228. |
Knop, “Reflection Grating Polarizer for the Infrared,” Optics Communications vol. 26, No. 3, Sep. 1978. |
Hass et al, “Sheet Infrared Transmission Polarizers,” Applied Optics Aug. 1965, vol. 4, No. 8 pp. 1027-1031. |
Flanders, “Submicron periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42 (6), Mar. 15, 1983, pp. 492-494. |
Li Li et al , “Visible broadband, wide-angle, thin-film multilayer polarizing beam splitter,” Applied Optics May 1, 1996, vol. 35, No. 13, pp. 2221-2224. |
Sonek et al., “Ultraviolet grating polarizers,” J. Vac. Sci. Technol., 19(4), Nov./Dec. 1981, pp. 921-923. |
N.M. Ceglio, Invited Review “Revolution in X-Ray Optics”, J. X-Ray Science & Tech. 1, 7-78 (1989). |
Dainty, et al, “Measurements of light scattering by characterized random rough surface”, Waves in Random Media 3 (1991). |
DeSanto et al, “Rough surface scattering”, Waves in Random Media 1 (1991). |
Moshier et al. “The Corrosion and Passively of Aluminum Exposed to Dilute Sodium Sulfate Solutions.” Corrosion Science vol. 27. No. 8 pp. 785-801 1987. |
Scandurra, et al. “Corrosion Inhibition of Al Metal in Microelectronic Devices Assemble in Plastic Packages.” Journal of the Electrochemical Society, 148 (8) B289-B292 (2001). |
Takano, Kuniyoshi et al. “Cube polarizers by the use of metal particles in anodic alumina films.” Applied Optics, vol. 33, No. 16, 3507-3512, Jun. 1, 1994. |
Lopez, et al. “Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating.” Optics Letters, vol. 23, No. 20, pp. 1627-1629, Oct. 15, 1998. |
Chen, J. et al. “Optimum film compensation modes for TN and VA LCDs” SID 98 Digest, pp. 315-318, 1998. |
Richter, Ivan et al. “Design considerations of form birefringent microstructures.” Applied Optics, vol. 34, No. 14, pp. 2421-2429, May 10, 1995. |
Tyan, Rong-Chung et al. “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter.” Optical Society of America, vol. 14, No. 7, pp. 1627-1636, Jul. 1997. |
Ho, G H et al. “The mechanical-optical properties of wire-grid type polarizer in projection display system.” SID 02 Digest, pp. 648-651, 2002. |
Kostal, Hubert, NanoTechnology “using advanced lithography to pattern nano-optic devices” www.solid-state.com, Sep. 2005, p. 26 and 29. |
Kostal, Hubert “Nano-optics: robust, optical devices for demanding applications” Military & Aerospace Electronics, Jul. 2005, 6 pages. |
Kostal, Hubert “Nano-optic devices enable integrated fabrication” www.laserfocuswold.com, Jun. 2004. |
Wang, Jian et al. “Free-Space nano-optical devices and integration: design, fabrication, and manufacturing” Bell Labs Technical Journal, 2005 pp. 107-127, vol. 10, No. 3. |
Wang et al. “Diffractive optics: nanoimprint lithography enables fabrication of subwavelength optics” LaserFocusWorld, http://lfw.pennnet.com/Articles/Article—Dispaly.cf . . . Apr. 19, 2006, 6 pages. |
Wang et al. “High-performance nanowire-grid polarizers” Optical Society of America 2005, pp. 195-197, vol. 30, No. 2. |
Wang et al. “Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography” Journal Vac. Sci. Technology B, Nov./Dec. 1999, pp. 2957-2960, vol. 17, No. 6. |
Savas et al. “Achromatic interferometric lithography for 100-nm-period gratings and grids” Journal Vac. Sci. Technology B, Nov./Dec. 1995, pp. 2732-2735, vol. 13, No. 6. |
Haisma et al. “Mold-assisted nanolithography: a process for reliable pattern replication” Journal Vac. Sci. Technology B, Nov./Dec. 1996, pp. 4124-4128, vol. 14, No. 6. |
Wang et al. “High-performance large-area ultra-broadband (UV to IR) nanowire-grid polarizers and polarizing beam-splitters” Proc. of SPIE 2005, pp. 1-12, vol. 5931. |
Wang et al. “Monolithically integrated isolators based on nanowire-grid polarizers” IEEE, Photonics Technology Letters, Feb. 2005, pp. 396-398, vol. 17, No. 2. |
Deng et al. “Multiscale structures for polarization control by using imprint and UV lithography” Proc. of SPIE, 2005, pp. 1-12. vol. 6003. |
Kostal et al. “MEMS Meets Nano-optics the marriage of MEMES and nano-optics promises a new and viable platform for tunable optical filters” www.fiberoptictechnology.net, Fiber Optic Technology, Nov. 2005, pp. 8-13. |
Kostal et al. “Adding parts for a greater whole” SPIE's oeMagazine, May 2003, pp. 24-26. |
Deng et al. “Wideband antireflective polarizers based on integrated diffractive multilayer microstructures” Optics Letters, Feb. 1, 2006, pp. 344-346, vol. 31., No. 3. |
Chen, et al. “Novel polymer patterns formed by lithographically induced self-assembly (LISA)”, American Chemical Society, Jan. 2005, pp. 818-821, vol. 21, No. 3. |
Baur, “A new type of beam splitting polarizer cube,” Meadowlark Optics, 2005, pp. 1-9. |
Zhang et al., “A broad-angle polarization beam splitter based on a simple dielectric periodic structure.” Optices Express, Oct. 29, 2007, 6 pages, vol. 15, No. 22. |
Robinson et al., “Wide Field of View Compensation Scheme for Cube Polarizing Beam Splitters.” SID 03 Digest, 2003, pp. 1-4, www.colorlink.com. |
Pentico, Clark et al., “New, High Performance, Durable Polarizers for Projection Displays.” SID 01 Digest, 2001, pp. 1287-1289. |
Brummelaar et al., “Beam combining optical components,” Chara Technical Report, Jan. 5, 1998, pp. TR61-1 to TR 61-17, No. 61. |
Bruzzone, et al.,“High-performance LCoS optical engine using cartesian polarizer technlogy,” SID 03 Digest, 2003, pp. 1-4. |
Fritsch, et al., “A liquid-crystal phase modulator for large-screen projection.” IEEE, Sep. 1989, pp. 1882-1887, vol. 36, No. 9. |
Deguzman et al., “Stacked subwavelength gratings as circular polarization filters.” Applied Optices, Nov. 1, 2001, pp. 5731-5737, vol. 40, No. 31. |
Tamada et al., “Aluminum-wire grid polarizer for a compact magneto-optic pickup device.” 2 pages. |
Tyan et al., “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings.” Optics Letters, May 15, 1996, pp. 761-763, vol. 21, No. 10. |
Wang et al., “Innovatic High-Performance Nanowire-Grid Polarizers and Integrated Isolators,” IEEE Journal of Sleected Topics in Quantum Electronics, pp. 241-253, vol. 11, No. 1, Jan./Feb. 2005. |
Wang, Bin et al., U.S. Appl. No. 11/767,336, filed Jun. 22, 2007. |
Maystre & Dainty, Modern analysis of scattering phenomena porceedings from INternational workshop held at Domaine deTournon, Aix en Provence,s France Sep. 5-8, 1990, 2 pages. |
Davis et al., U.S. Appl. No. 12/507,570, filed Jul. 22, 2009. |
Hansen et al., U.S. Appl. No. 11/749,847, filed May 17, 2007. |
Perkins et al., U.S. Appl. No. 11/469,226, filed Aug. 31, 2006. |
Perkins et al., U.S. Appl. No. 12/400,100, filed Mar. 9, 2009. |
Perkins et al., U.S. Appl. No. 11/767,353, filed Jun. 22, 2007. |
Wang, et al. “Monolithically Integrated Isolators Based on Nanowire-Grid Polarizers”; IEEE Photonics Tecnology Letters, vol. 17, No. 2, Feb. 2005. |
Perkins et al., U.S. Appl. No. 11/767,361, filed Jun. 22, 2007. |
Cornaby et al., U.S. Appl. No. 12/407,457, filed Mar. 19, 2009. |
U.S. Appl. No. 13/234,444, filed Aug. 16, 2011; Raymond T. Perkins. |
U.S. Appl. No. 13/075,470, filed Mar. 30, 2011; Mark Alan Davis. |
U.S. Appl. No. 13/224,719, filed Sep. 2, 2011; Mark Alan Davis. |
U.S. Appl. No. 12/879,315, filed Sep. 10, 2010; Raymond T. Perkins; notice of allowance issued Jul. 7, 2011. |
U.S. Appl. No. 12/491,513, filed Jun. 25, 2009; Michael Lines; office action issued May 15, 2012. |
U.S. Appl. No. 12/491,513, filed Jun. 25, 2009; Michael Lines; notice of allowance issued Jun. 11, 2012. |
U.S. Appl. No. 13/224,719, filed Sep. 2, 2011; Mark Alan Davis; office action dated Mar. 29, 2013. |
U.S. Appl. No. 13/075,470, filed Mar. 30, 2011; Mark Alan Davis; office action dated Jun. 13, 2013. |
Sze, VLSI Technology, 2nd Ed.; pp. 198-199; 1988. |
PCT/US2012/043979; Filed Sep. 2, 2011; Moxtek, Inc. et al.; international search report dated Jan. 31, 2013. |
U.S. Appl. No. 13/495,296, filed Jun. 13, 2012; Michael Lines; office action dated Sep. 25, 2013. |
U.S. Appl. No. 13/075,470, filed Mar. 30, 2011; Mark Alan Davis; office action dated Oct. 7, 2013. |
U.S. Appl. No. 13/224,719, filed Sep. 2, 2011; Mark Alan Davis; notice of allowance dated Oct. 1, 2013. |
Number | Date | Country | |
---|---|---|---|
20080055723 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11469210 | Aug 2006 | US |
Child | 11767361 | US | |
Parent | 11469226 | Aug 2006 | US |
Child | 11469210 | US | |
Parent | 11469241 | Aug 2006 | US |
Child | 11469226 | US | |
Parent | 11469253 | Aug 2006 | US |
Child | 11469241 | US | |
Parent | 11469266 | Aug 2006 | US |
Child | 11469253 | US |