Traditional retroreflective sheeting materials, such as those disclosed in U.S. Pat. Nos. 3,689,346, 3,712,706, and 3,810,804, the teachings of which are incorporated herein by reference, are described as cube-corner structures that are molded from tooling that comprises of a plurality of element forming cavities (odd generation tooling) which produce cube-corner segments having substantially planar front major surfaces.
Traditional cube-corner prisms have a base with three surfaces intercepting at an apex. As shown in
Retroreflective sheeting and a method for making the same includes a plurality of open-faced cube-corner surfaces formed from a substantially rigid material to keep the cube-corner surfaces from flexing. An optical coating is formed on the surfaces and a fill layer is attached to at least a portion of the optical coating. Preferably, a plurality of voids forms the open-faced cube-corner surfaces, wherein each void includes three surfaces which meet at a nadir.
In one embodiment, at least some of the surface has a color coating thereon. Preferably, the fill layer is substantially transparent, such as a material with an index of refraction in the range of between about 1.2 and 2.1 and a preferred range of about 1.5 and 1.65. A top coat can be formed over the fill layer to protect the same.
In one embodiment, the substantially rigid material is selected from a group consisting of thermoplastic and thermoset polymers. The rigid material can further include fillers, such as glass, graphite, high temperature fibers, and glass-filled composites. In one embodiment, the optical coating includes a specular coating. In another embodiment, the optical coating includes a low index of refraction dielectric material, preferably having an index of refraction in the range between about 1.1. and 1.3.
Preferably, the open-faced cube-corner surfaces are formed on a carrier substrate. A second layer of open-faced cube-corner surfaces can be formed on a back side of the carrier substrate such that a first layer of retroreflective open-faced cube-corner surfaces and the second layer of cube-corner surfaces are back to back with the respective open-faced surfaces facing away from each other.
The open-faced retroreflective sheeting can be cut or formed into flakes or chips which can be mixed with various coatings or resins. The sheeting can also include patterns or gaps having no open-faced cube-corner surfaces. In this embodiment, walls can be formed in the retroreflective sheeting that extend from the carrier substrate to a prism ridge. In one embodiment, the thickness of the walls is in the range of between about 25.4 and 1,270 microns (0.001 and 0.05 inches).
Retroreflective sheeting is also provided which includes a plurality of three-sided indentations which form open-faced cube-corners. A reflective coating is formed on the three-sided indentations and a fill layer attached to the reflective coating.
A method is further provided to form open-faced retroreflective sheeting which can include the step of forming a mold by forming three sets of grooves. Preferably, the grooves intersect at an angle to form a plurality of prisms and each prism has a base and three intersecting lateral faces which meet at an apex. The method further includes the step of forming the retroreflective sheeting on the mold to form a mirror image of the mold wherein the resulting sheeting includes a plurality of three-sided indentations which form cube-corner surfaces. The cube-corner surfaces are preferably coated with a specular coating with a fill layer attached thereto.
The invention provides for an air-filled prismatic product which can be protected on the front by a long-life, clear film. The microstructure can be formed from polymeric epoxies, acrylics or the like, depending on the product performance needs. Preferably, the material is selected from a group of materials that is resistant to UV light, visible light, and/or thermal degradation.
Many variations on these types of open-faced structures and back-to-back open-faced structures include:
In further embodiments, retroreflective sheeting and a method for making the same are provided that include a plurality of open-faced cube-corner surfaces formed from a substantially rigid material to keep the cube-corner surfaces from flexing. A second plurality of open-faced cube-corner surfaces is formed from the substantially rigid material to keep the second plurality of open-faced cube-corner surfaces from flexing. The first and second open-faced cube-corner surfaces are configured to retroreflect light in opposite directions, that is, formed back-to-back in a particular embodiment. An optical coating can be formed on at least some of the surfaces. A plurality of voids or cavities thus forms the open-faced cube-corner surfaces.
In alternative embodiments, retroreflective sheeting is provided that includes a plurality of open-faced cube-corner surfaces provided on a substrate, an optical coating disposed on at least some of the cube-corner surfaces, and a fill coat disposed on at least some of the optical coating. The retroreflective sheeting includes an array of apertures through the structure to provide a perforated structure. The sheeting can also include an adhesive layer disposed on the substrate and a release liner disposed on the adhesive layer in a particular embodiment.
A projection screen, such as a front-projection screen, is also provided that includes a plurality of open-faced cube-corner prisms. The plurality of prisms can be disposed on a plurality of chips or flakes. In specific embodiments, the chips are two-sided open-faced chips, i.e., light is retroreflected from each side of the chips. In alternative embodiments, one-sided chips are used in the projection screen. In any of the embodiments, portions of some or all of the prisms, chips, or screen can be textured, include coloring, or include an optical microstructure, for example, a lenticular, to affect incoming and outgoing light. The prism pitches and prism dihedral angles of the open-faced cube-corner prisms can vary in embodiments of the present invention.
In other embodiments, retroreflective sheeting is provided that includes a plurality of open-faced cube-corner surfaces formed from a substantially rigid material to keep the cube-corner surfaces from flexing. The substantially rigid material can include a low index of refraction. The sheeting can also include a coating disposed on substantially all of the cube-corner surfaces. The index of refraction of the coating can include a high index of refraction such that a difference between the low index of refraction and the high index of refraction is sufficient to cause retroreflection of light impinging on the cube-corner surfaces. The coating can include submicron or nanoparticles of dielectrics.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of various embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. All parts and percentages are by weight unless otherwise indicated.
A description of various embodiments of the invention follows.
In the embodiments of
In typical manufacture of retroreflective material, an odd generation tooling is utilized to cast solid corner cube prisms onto a substrate that then becomes the top film. This invention includes a retroreflective sheeting and method of manufacture of the material which is molded from a grooved structure which has been cut or replicated to describe the back-side of a traditional cube-corner array (even generation tooling), and the product has a substantially planar rear surface. If the sheeting is formed from a material such as a metal, the product retroreflects from its front surface. However, if it is formed from commonly available polymers, such as a highly reflective coating such as vacuum deposited aluminum, provides for a retroreflective interface. Such a reflective metallic material has optical constants which result in high reflectivity in the visible wavelength region. Examples of materials having a suitable optical constant are aluminum, chromium, copper, zinc, gold, silver, platinum, nickel, or the like.
Upon removing from the mold, the bottom carrier sheet 16 becomes the bottom film. In one embodiment, the gaps 24 are formed between prism islands 22. In an alternative embodiment, the gaps 24 are filled with prism material as represented by dashed-line 30.
In further embodiments, the open-faced prism surfaces 18 can be coated with a low refractive index material and filled with a high refractive index material to create a high whiteness (high Cap Y) retroreflective product. Alternatively, the open-faced prisms can be formed with a low index of refraction material or resin and then filled, without metalizing, with a high index of refraction material or resin, which can include submicron particles, to create a high whiteness retroreflective product. The difference between the low index of refraction and the high index of refraction is sufficient to cause retroreflection of light impinging on the prism surfaces 18. In other embodiments, the open-faced prisms can be formed from, or coated with, a polymer having a high index of refraction. For example, the index of refraction can be at least 1.65 or higher. The polymer can be substantially transparent and include submicron or nanoparticles of dielectrics, which can aid in increasing the index of refraction.
The cube-corner surfaces 18 are covered with an optical coating 20, such as a metal layer that includes aluminum, gold, silver, platinum, rhodium, or other suitable specular metal, as shown in
As shown in
The carrier film 16 can be removed and an opaque white or colored adhesive 34 with a release liner 27 applied in place of the carrier film, as shown in
A primary advantage of this new type of sheeting is that it can be formed from materials which can have superior properties in areas, such as heat resistance, non-flammability, dimensional stability, environmental durability, chemical resistance etc., without the requirement that the material be transparent as in the traditional construction. Additionally, when the open-faced structure is formed of environmentally fragile polymers, the metal face coating can serve to protect them from destruction by ultraviolet light, moisture, oxygen, etc. Examples of such materials include acrylic polymers, polyurethane, polyurea, polycarbonate, silicone, metallic acrylate, and diacrylate. Polyurea is disclosed in U.S. Provisional Application No. 60/402,484, filed on Aug. 8, 2002, the entire teachings of which are incorporated herein by reference.
The material can be formed on molds which have additional protrusions built into them which are structured as lines or shapes which provide for the void areas 24 in the sheeting 14. The void areas 24 can serve to improve product flexibility, enhance aesthetics, or provide for a means of identification. The protrusions can also be designed to assist in the control of the thickness of the sheeting as it is being formed in production by providing for walls that prevent lower viscosity prepolymers from flowing off a mold during the production process.
Additional transparent or partially transparent coatings can be applied to the front side 36 of the sheeting 14 in order to change the product color, improve the smoothness, abrasions resistance, or the other reasons that those in the industry commonly coat their products. These coatings may also serve to control the entrance/observation angle responses of the material because their refractive indices are normally higher than air. The thickness of the sheeting 14 as it is being formed in production can be controlled by providing for walls that prevent lower viscosity prepolymers from flowing off a mold during the production process. In the embodiments where the bottom carrier sheet 16 has a matte or irregular surface, the void areas 24 serve to increase the visual whiteness (Cap Y) of the structure after a metal coating is applied to it. It is often desirable to increase the whiteness of a metalized product for daytime visibility or aesthetic reasons. This invention can also be practiced with a white or other colored polymer structure, and the metalizing conditions can be controlled to leave unmetalized areas, such as the walls of the void areas, which tend to increase the cap Y or provide for a unique color appearance of the sheeting. The color of walls reflects off of the reflective void area 24.
The cube-corner surface 18 can include windows or steps to increase daytime Cap Y and color as taught in International Publication No. 98/59266, published Dec. 30, 1998, and which corresponds with U.S. application Ser. No. 08/883,329, filed Jun. 25, 1997, now U.S. Pat. No. 6,258,443, the contents of which are incorporated herein by reference.
Additional coatings can be applied to the front side of the sheeting in order to change the product color, improve the smoothness, abrasion resistance, product color light stability, or for other reasons that those in the industry commonly coat their products. These coatings can also serve to control the entrance/observation angle responses of the material because their refractive indices are normally higher than air. To create areas of differing reflectivity angle behavior, for example, a clear print pattern can be used to fill in areas of the open-faced structure and then a clear cover film is applied to the front of the sheet. The clear printed areas retroreflect at angles that are significantly larger than the area that has an air layer at its face and can be used to reflect a different message to the viewer at narrow observation angles than to the viewer at the wide viewing angle. There are useful applications here for a security film product.
A top carrier sheet 38 can also be adhered to the front side of the structure for purposes of convenience, color, or protection, as shown in
In the embodiment of
The following process can be used to manufacture unique ambient light appearance reflective and retroreflective products such as projected light front projection screens for use with LCD, digital micro-mirror device (DMD), front projection systems, etc.:
The finished projection screen has excellent ambient light appearance and superb light reflection characteristics. The reflected light distribution is more uniform and directed than the light distribution from present front projection screens in the market today and the reflected image has improved contrast without scintillation effects. This improvement makes it much easier to produce an affordable LCD or DMD light engine projection system for consumer use, because fewer lumens are required from the projector lamp. The front projection screen can be made to any size desirable without creating objectionable seams. One form of projection or imaging screen is made without textured facets or other light spreading means specifically for retroreflecting screens, such as those used in three-dimensional imaging systems.
The open-faced prisms can be formed initially on one side of the thin-film or bottom carrier sheet 16. In an optional second step, as illustrated in
In one embodiment, the open-faced cube-corner retroreflective sheeting is formed on the back side of a conventional cube-corner retroreflective sheeting. The conventional transparent cube-corner prisms can be colored as well as the transparent fill layer 32, with the same or different color, to create optical effects that are useful for detecting with a hyperspectral sensing equipment. The resulting structure has one appearance as viewed by the naked eye, and a different signature when measured with a hyperspectral scanner. The hyperspectral scanner provides a scan of the intensity of the retroreflected wavelengths (from ultraviolet through the infrared) as compared with what is seen with the naked eye.
Transparent colors can be digitally printed into the open-faced prisms to form a visual image that has one message when viewed by the naked eye, and a different message when scanned by a hyperspectral scanner. These concepts are useful for many security applications, authentication applications and identification applications, such as friend/foe and search and rescue. One example in document security is identification of not only the forgery, but the copier the forgery was made on because of the wavelengths that are retroreflected or not retroreflected by the various chips.
In another embodiment, the carrier material is made of a relatively thin (25.4 μm (0.001 inch)) plastic such as a cast acrylic which can easily fracture at points between the open-faced prism islands even if a double-sided material is included. The prism islands are not necessarily in register with each side. A thin perforated or grooved carrier, such as a 25.4 μm (0.002 inch) thick perforated PET, can be used to achieve this result.
The open-faced construction is a significant advantage because it can be applied to both sides of the film followed by reflective coating of the prisms. When this construction is diced or broken into chips, both sides of the chips retroreflect incoming light rays. In the embodiment of
In one embodiment, chips 50 that were sprinkled onto an adhesive provided a uniform and angular brightness at about a 0.33 degree observation angle and 30 degree entrance angle which was essentially unchanged from about a 0.2 degree observation angle and 5 degree entrance angle. Uniform brightness is also achieved at all 360 degrees of orientation angles at each observation angle and each entrance angle.
As illustrated in
When the corner-cube retroreflecting chips are aluminum metalized, they appear gray in color when viewed through a transparent material. To improve the color of the resulting material, some of the chips can be printed with a color on one side, or additional chips of colored material can be mixed in with the retroreflective chips at a predetermined percentage to create the desired appearance. Also, a colored substrate or substrates 64 material may be used as illustrated in
In another embodiment, the chips 50 are mixed into a transparent coating formulation which is applied to a colored substrate. Examples of transparent coating formulations include transparent inks and polymers used for retroreflective signs or back-lighted signs. The coating is applied in a thickness and with a dispersion which creates the desired distribution of chips 50 across the surface of the substrate. The thickness of the coating also creates the desired surface finish which is dependent on the coating thickness and the size and thickness of the chips 50. Very wide web seamless material can be made that can be slit or cut to size to form many different types of products. The products can range from garment tape to sign blanks to imaging screens to front projection screens. In another variation, the chips 50 are mixed into a transparent polymer which is extruded or cast into a film that retroreflects and has color when viewed from both sides of the film.
Many uses for the chips include highway tape, injection molded parts, helmets, bumpers, hubcaps, car body trim, door handles, bicycle grips, back pack straps, umbrella handles, road buttons, one piece cones, barricades, channelizers, survey markers, laser alignment systems, decorative fabric and matting, molded license plates, molded signs, house numbers, mailboxes, sign sheeting, airport signs, truck bodies, fiberglass molded parts, boat trim, boat hulls, buoys, flow research, cosmetics, finger nail polish, fencing, sneakers, watch bands, dog collars, emergency exits, door markers, shipboard passageways, parking garages, railroad gates, life jackets, trail marking, etc.
In a typical application, the retroreflective film is made as described above. The film can be diced or chopped into small chips and mixed with a coating formulation or a resin formulation and then applied to a substrate or formed through a molding process. In the case of a coating, the formulation can be flooded onto a substrate and UV or heat cured followed by lamination of a film on top of the coating. The top film forms a protective sandwich for the products and can be colored and also loaded with appropriate UV blocking chemicals to protect the products from aging. The top film can also be designed with a surface which is treated to prevent the products from damage during washing or sewing.
The particle or chip size is dependent upon the application. Very small and thin particles may be desired for thin coatings. Larger surface area particles or chips may be desired for applications where the chip orientation is more important.
The coatings and resin and/or top film may be designed with coatings or dyes or pigment which selectively transmits different wavelengths of light. This product construction is especially important for applications where specialized light sources are used. Some examples of applications are air-sea rescue, object recognition, and vehicle guidance.
The chips can be mixed into many different types of coatings or resins. Preferably, the temperature should be kept below the heat distortion temperature of the prisms. However, some prism resins can withstand very high temperatures and do not distort at temperatures as high as 205 degrees Celsius (400 degrees Fahrenheit). The shape of the initial tooling is used to form the open-faced prisms preferably biased so that when the prism does change shape, it changes in a direction which is beneficial. For example, applications where the chips are used in the outer clear coat of fiberglass boats, a prism with standard geometry becomes about 12 minutes shallow. When the tooling is made about 12 minutes steep, the prisms in the chips end up with dihedral angles which are close to zero providing optimum performance.
Diced chips made from several different types of sheeting which each have different size cube-corner prisms can be mixed together to form an end product which has an optimized light distribution.
The chips are placed on a substrate such that an enhanced amount of light can be retroreflected. The need to have the chips all oriented and tightly packed is overcome by the way that the chips orient themselves in the coating or resin. Many chips form stratified layers and also tilt in a way which makes up for dense packing.
In one embodiment, the open-faced cube-corner surfaces 18 are constructed of different sizes on the chips 50. The chips 50 can be mixed into resins or coatings in different combinations for different optical effects.
In a specific embodiment of the manufacturing of the retroreflective sheeting of
In another embodiment, as illustrated in
The quantity of chips used is greater than the quantity of material used when forming a densely packed array of cube-corners but the costs of making the chips and processing the chips into substrates is lower than most of the methods used to make retroreflective materials today. One large cost benefit is the ability to make retroreflective cube-corner materials in very wide web configurations. Another cost benefit is the ability to make cube-corner chips of various configurations that can be held in inventory and mixed together appropriately to form products on demand.
In one example, retroreflective sheeting was made with 152.4 μm (0.006 inch) pitch metalized high temperature resin prisms on 50.8 μm (0.002 inch) PET. This sheeting was diced into 304.8 μm (0.012 inch) hexagonal shapes then mixed into the clear outer resin coat for a fiberglass boat hull. The resulting surface is glitter in appearance and grayish color during daytime viewing as a result of about 50% of the chips oriented with the prism apex outward. During nighttime viewing, the remaining chips, which are oriented to create retroreflection (cube-corner prism face outward), achieve a high degree of retroreflection uniformly across the entire surface. It was found that the temperature caused by the exothermic reaction that takes place when curing the clear outer layer of the fiber glass hull causes the prisms to become slightly shallow resulting in a donut-shaped retroreflected light distribution with a divergent beam of approximately 0.762 m (2.5 ft) diameter at a distance of 15.24 m (50 ft). This shift to a shallow prism angle is corrected by using steeper tooling/molds to form the prisms so that the shift results in an optimized prism shape for the application.
In an alternative embodiment illustrated in
Another embodiment, illustrated in
Retroreflective cube-corner film can be diced or broken into particles of various sizes ranging from 25.4 μm (0.001 inches) on a side or diameter to about 0.635 centimeters (0.25 inches) or greater. Particles 80 of about 25.4 μm (0.001 inches) to 508 μm centimeters (0.02 inches) in average size suitable for dispersing in binders that can be coated on fabrics can benefit from having edges 82 modified to be of a configuration which can mechanically grasp or snag the fabric fibers. Preferably, edges 82 include the cube-corner surfaces. Examples of some edge modified shapes are shown in
An efficient projection screen can be formed utilizing cube-corner prism arrays if the reflecting surfaces of the corner cubes are textured and the front face of the top film is designed as a lenticular to optimize the direction of the reflected light distribution. Free prism clusters distributed in a film, such as polyvinyl chloride, work well. Wide web thermoplastic film 84 can be easily bonded to piece together very large screens. Prism clusters can be dispersed in a film or in a paint. The paint can be used to cover a wall in a design pattern. Two-sided open-faced cube-corner prism chips can be used to make a projection screen wall paint or to make a projection screen wallpaper. The walls are thus useful both for aesthetic appearance and for projecting an image thereon. A projector, for example, a small portable, wireless projector, can be moved from room to room and the image projected on any wall having the projection screen wall paint or wallpaper, depending on the need.
As seen in
Various textures, various prism sizes, various prism carrier films such as different indices of refraction, various oligomer, various color on prism surfaces can be used to create many types of front projection screens that reflect the light of given angles and have various ambient light appearances. The same manufacturing concept can be used to manufacture many styles of retroreflective tapes, films, or fabrics.
Diced chips 50 extruded into a clear thermoplastic or thermosetting polymer can be used to create many types of objects which retroreflect from all directions because of the light passing through the transparent polymer. A cross-sectional view of an exemplary object is illustrated in
The transparent plastic/polymer can be a transparent color. Extruded and molded shapes can be used for retroreflective objects such as delineator posts, bollards (also internally illuminated bollards), barricades, cones, channelizers, vehicle parts-bumpers, fenders, body outer shell parts, wheel rims, bicycle rider helmets, helmets of all types, for example, for pilots, boating, in-line skating wheels, photoelectric devices, road markers, guard rails, marine buoys, boat outershell parts, boat masts, and snow poles. Chips 50 can be mixed into transparent UV cured resins and coated onto a plastic substrate to create seamless uniform sheeting useful for many applications.
At least a portion of the retroreflective sheeting 95 is perforated to provide apertures 96 as disclosed in U.S. Pat. No. 6,481,857, issued to Smith on Nov. 19, 2002, and U.S. Pat. No. 6,155,689, issued to Smith on Dec. 5, 2000. The entire teachings of these patents are incorporated herein by reference. The retroreflective sheeting 95 can be sewn or fastened to a substrate, such as a garment. The sheeting 95 is breathable through the apertures 96, which also provide added flexibility to the retroreflective structure.
As illustrated in
In alternative embodiments, one and/or two-sided open-faced retroreflective chips of flakes can be mixed with a substantially transparent polymer, such as acrylic, polyester, polyurethane, and polyurea. The substantially transparent polymer can include extruded, molded, cast, printed, and coated polymers.
A structure of 50.8 μm (2 mil) pitch open-faced prisms was cast onto 50.8 μm (2 mil) polyester film with a UV curable epoxy-acrylate resin. The structure was coated with a thin film of vacuum deposited aluminum in order to produce the retroreflective surfaces. Samples were characterized as having a set of illumination angles (SIA), also known as entrance angles values, of over 300 candelas/lux/sq.m. at 0.2 observation and −4 entrance angles. A protective top coating of urethane-acrylate resin was coated on the face of the material and it was aged in an Atlas Xenon Weatherometer with the ASTM G26 cycle. The initial reading of 309 SIA dropped to 131 SIA after 4,000 hours in the weatherometer. The maintenance of over 40% of the initial reflective brightness is considered to be unusually good for this type of prism resin.
A structure of 50.8 μm (2 mil) pitch open-faced prisms was cast onto a polyester film with a UV curable epoxy-acrylate resin. The structured surface was vacuum coated with aluminum to produce a retroreflective material. A protective layer of acrylic film, VCF a-223, that had been coated with a thin adhesive layer of Rohm and Haas, Paraloid F-10, was thermally laminated to the retroreflective face at 121 degrees Celsius (250 degrees Fahrenheit) and 27.8 kPa (4 psi). The sample displayed a retroreflective value of over 300 SIA units at 0.2 degree observation and −4 degree entrance angle.
A structure of 50.8 μm (2 mil) pitch open-faced prisms was cast onto a polyester film carrier with a UV curable epoxy-acrylate resin. The structured surface was vapor coated with aluminum to produce a retroreflective material. The retroreflective face was then screen printed with a white acrylic caulking compound, DAP, and a layer of acrylic film was laminated to the printed pattern while it was still tacky. The sample displayed a retroreflective value of over 300 SIA units. A 25.4 μm (1 mil) polyester film that had been coated with 25.4 μm (1 mil) of acrylic pressure sensitive adhesive (PSA) on each side and covered with two layers of silicone coated polyester film was used as the carrier. Open-faced prism structures were sequentially cast onto the two PSA surfaces and the sample was aluminum metalized to produce a thin material that was 139.7 μm (5.5 mil) thick and had retroreflective elements on both sides.
An open-faced prism structure was cast onto polyester film and then aluminum coated to produce a retroreflective material. The material was chopped up into “chips” that were approximately 3 mm×3 mm (0.118 inches×0.118 inches). The chips were mixed with commercially available peroxide curing polyester resin and coated onto a fiberglass mat. Upon curing, the fiberglass composite displayed retroreflection from the chips that were orientated with their faces to the front surface. The example provides for a simple means to produce durable retroreflective composite products, such as boats, recreational vehicles, etc.
Wire composed of 95% tin and 5% antimony, commonly sold as lead free solder, was pressed to about 55,000 kPa (8,000 psi) into the surface of an even generation nickel electroform which had been prepared from a corner cube master. As the wire was compressed it took on the open-faced prism structure from the electroform and became retroreflective. The operation was repeated six more times on the electroform without significant damage to the nickel tool or loss of retroreflective performance of the product. Laser diffraction patterns from the seven pieces were also very similar, indicating that the tool was not damaged from the multiple pressings. Some of the samples were coated with aluminum to further improve their reflectance and then a clear epoxy or UV cured urethane acrylate coating to protecting the surface.
Untempered aluminum foil and aluminum wire were compression molded into open-faced prism structures in the same manner as Example 5. The metal parts were strongly retroreflective at over 300 SIA without further processing. The metal parts retained their retroreflectivity even when heated in an oven at 93 degrees Celsius (200 degrees Fahrenheit) for a week. The material makes an excellent full spectrum (short wave UV to long wave IR) retroreflector.
A 91.44 μm (3.6 mil) open-faced prism structure was cast onto 50.8 μm (2 mil) polyester film with a UV curing acrylate resin. The structure was aluminum metalized and then coated with a fluorocarbon urethane coating composed of 30 g of GK 510, Daikin Chemical Corp., 6 g toluene, 6 g Takenate D 140N, Takeda Chemical Industries, Ltd., and 2 drops of 0.1% dibutyl tin dilaurate in toluene. The resulting sample displayed a retroreflective SIA value of over 900 at 0.2 degree observation and −4 degree entrance angle. Coatings such as this fluorocarbon urethane are well known to have long life (for example, over 10 years) outdoor durability.
While this invention has been particularly shown and described with references to various embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application is a Continuation of U.S. application Ser. No. 10/767,879 filed Jan. 29, 2004, which is a Continuation-in-Part of U.S. application Ser. No. 10/414,405, filed Apr. 14, 2003, which is a Continuation-in-Part of U.S. application Ser. No. 09/488,129, filed Jan. 20, 2000, which claims priority to U.S. application Ser. No. 60/116,543, filed Jan. 21, 1999. The entire teachings of each application are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60116543 | Jan 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10767879 | Jan 2004 | US |
Child | 11037550 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10414405 | Apr 2003 | US |
Child | 10767879 | Jan 2004 | US |
Parent | 09488129 | Jan 2000 | US |
Child | 10414405 | Apr 2003 | US |