DUST COLLECTION IN VACUUM CLEANERS

Information

  • Patent Application
  • 20080078148
  • Publication Number
    20080078148
  • Date Filed
    September 27, 2007
    17 years ago
  • Date Published
    April 03, 2008
    17 years ago
Abstract
A cyclonic separator assembly for a vacuum cleaner, the assembly including a first cyclonic separator for effecting a first stage of dust separation from the suction airflow of the cleaner, and at least one further cyclonic separator for further separation of dust from the air flow following the first separator, and a receptacle for separated dust, the receptacle including respective receiving portions for receiving dust separated by the first separator and the further separator(s), wherein the respective portions of the dust receptacle are able to be emptied separately from one another.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will now be described by way of example with reference to the accompanying drawings, which:



FIG. 1 is a diagrammatic perspective view of part of a receptacle of a dust separator assembly.



FIG. 2 is a section of the receptacle part of FIG. 1 showing the first and second doors in a closed position.



FIG. 3 is the view of FIG. 2 with the second door in an open position.



FIG. 4 is a perspective view of another embodiment of a receptacle.



FIG. 5 is a perspective view of yet another embodiment of a receptacle.





DETAILED DESCRIPTION OF THE DRAWINGS AND THE PRESENTLY PREFERRED EMBODIMENTS

Referring firstly to FIGS. 1-3 of the drawings, these illustrate part of a dust receptacle of a separator assembly in accordance with the invention. The separator assembly is of a type comprising a first cyclonic separating stage for effecting a first stage of dust separation from the suction airflow drawn by the cleaner from whatever is being cleaned, and at least one further cyclonic separator for further separation of dust from the airflow as it has passed through the first cyclonic separators. As is well known in cyclonic separators, dust separated by the first and further cyclonic separators is retained in respective parts of the dust receptacle assembly.


The illustrated part of the dust receptacle assembly comprises an outer casing wall 10 generally of cylindrical form, and an inner wall 12 also of generally cylindrical form defining an annular space between it and the wall 10. One well known arrangement of cyclonic separating stages has the first stage cyclone formed by the space between the walls 10, 12, into which the incoming suction airflow is directed tangentially at an upper end of the cyclone, so that coarse dust particles and small objects are separated and fall to the bottom of the space between the walls, with the partially-cleaned suction airflow leaving the space between the walls 10, 12 by any appropriate exit port arrangement, also at the upper end of the space. A further cyclonic separating stage is provided by a further cyclone within the wall 12, or one or more further cyclones disposed at an upper end of the separator, with the fine dust separated by the further cyclone(s) falling down within the wall 12 to accumulate at the bottom of the receptacle. Whatever detailed separator arrangement is adopted, the end result is that separated fine dust accumulates within the wall 12 and coarse dust and small objects in the space between the walls 10, 12.


The dust separator and collector assembly may be utilised in a vacuum cleaner of the “upright” type or of the “cylinder” (or “canister”) type. In known manner, the entire separator/collector assembly including the receptacle as illustrated may be removable from the vacuum cleaner when emptying of collected dust is required, or possibly a part only of the separator/collector assembly including the receptacle may be removable when dust is to be emptied.


The lower end of the illustrated receptacle is closed by two doors which provide access respectively to the portions of the receptacle which receive dust from the first cyclonic separator and the further cyclonic separator stage. These doors comprises a first door 14 which closes the annular space between the outer casing 10 and inner wall 12, and a second door 16 which closes the space within the inner wall 12. Both doors 14, 16 are pivotally connected to the receptacle, at a lug 18 provided at one side of the receptacle at the bottom of the outer casing wall 10.


The door 14 is of annular configuration to close the annular space between the walls 10, 12, and opposite its pivotal connection to the lug 18 it has an upwardly extending part 20 ending in a catch formation 22. The catch formation 22 is engageable by a catch element 24 pivoted to the outer casing wall 10 of the receptacle, to hold the door closed. The catch element 24 is able to be pivoted by pressing on it as indicated by arrow 26, to release the door 14 to open it.


The door 16 comprises a member 28 which extends diametrically across the bottom of the receptacle casing 10, provided with a generally frusto-conical closure portion 30 which is able partially to enter the bottom of the internal cylindrical wall 12 to block the opening thereof. When both the doors 14, 16 are closed the closure portion 30 of the door 16 extends through the central aperture of the annular door 14. At one end, the member 28 has spaced upstanding portions 32 by which the door is pivoted to the lug 18, while at the other end of the member 28 there are upstanding portions 34 with respective catch formations 36, the portion 34 being spaced circumferentially of the receptacle and the catch formations 36 being engageable with complementary catch formations on the casing wall 10. Between the portions 34, there is a shielding portion 38 which, when the doors 14, 16, are both in their closed position as shown in FIGS. 1 and 2, prevents access to the catch element 24 holding the door 14 closed.


All the components illustrated are preferably mouldings of plastics material, with other materials used or incorporated as appropriate. For example, a spring may be provided for biasing the catch element 24 to pivot to its position in which it engages the catch formation 22 of the door 14 to hold this door closed. Pivoting of the catch element 24 to enable the door 14 to be opened is carried out against the force of such a spring. One or more springs may also be provided for biasing the doors 14, 16 to their open positions, so that they open as soon as their respective catch devices are released.


The catch device holding the door 16 closed is released for opening of the latter by displacing its portions 34 to disengage their catch formations 36 from the complementary formations on the casing wall 10, by deforming the portions 34 to an extent which is permissible by the material from which they are made. To enable such release by a user holding the separator assembly (or receptacle thereof) at an upper portion away from the doors, a release element 40 is provided. This extends upwardly on the exterior of the separator/receptacle, and at its lowermost end is bifurcated into portions 42, respectively having tapered surfaces as indicated as indicated at 44 to engage with the respective portions 34. At its uppermost end, the release element 40 has a part able to be pressed by a user to displace the element 40 downwardly, and, by engagement of its surfaces 44 with the portions 34, disengage the catch formations 36 of the latter to enable opening of the door 16.


Thus, when the coarse and fine dust and other matter collected in the respective parts of the receptacle is to be emptied, the user is able, by operation of the release element 40, firstly to open the door 16 and release fine dust from the space within the wall 12. After disposal of the fine dust, the catch element 24, which is now accessible as it is no longer covered by the shield portion 38, can be released to open the door 14 and release coarse dust and larger articles from the space between the outer and casing wall 10 and inner wall 12.


Referring now to FIG. 4, this illustrates, diagrammatically, an alternative arrangement for controlling release of the doors, 14, 16 as shown in FIG. 1. Instead of the respective catch elements and formations, and release element 40, the parts of the doors, 14, 16 remote from their pivotal connection to the case 10 of the receptacle part of the separator assembly are held closed by a retaining element 50 which is fitted to the casing wall 10 and is angularly moveable in opposite directions from a starting point, as indicated by arrows 52. When moved angularly in the clockwise sense, it releases the door 16, and when moved angularly in the anti-clockwise sense it releases the door 14. A mechanism provides for movement of the member 50 only in the first direction followed by the second direction, so that only the door 16 alone can first be opened, followed by the door 14, for emptying of fine dust followed by coarse debris as above described.



FIG. 5 shows an alternative arrangement of catch elements. A release element 60 is shown, whose lowermost end is engageable with a catch element 62 to release the latter and permit the door 16 to be opened. The release element 60 is operated by being pressed downwardly by a user, at a position near the uppermost end of the separator assembly. Subsequently, a catch element 64 which holds the door 14 closed can be released.


When used in this specification and claims, the terms “comprises” and “comprising” and variations thereof mean that the specified features, steps or integers are included. The terms are not to be interpreted to exclude the presence of other features, steps or components.


The features disclosed in the foregoing description, or the following claims, or the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for attaining the disclosed result, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.

Claims
  • 1. A cyclonic separator assembly for a vacuum cleaner, comprising a first cyclonic separator for effecting a first stage of dust separation in communication with a suction airflow path within the cleaner, and a second cyclonic separator for separation of dust in communication with the first separator, and a receptacle configured to receive separated dust from the first and second separators, the receptacle comprising a first receiving portion configured to receive dust separated by the first separator, and a second receiving portion configured to receive dust separated by the second separator, wherein the first and second receptacles are configured to be emptied separately.
  • 2. The cyclonic separator assembly of claim 1, wherein the receptacle comprises a first door configured to allow access to the first receiving portion an and a second door configured to provide access to the second receiving portion, the first and second doors being openable separately from one another.
  • 3. The separator assembly of claim 2, wherein the first and second doors are movable between a closed position to selectively block respective first and second openings disposed at the bottom of the receptacle, the first and second doors being movable to an alternate position for emptying of dust from the respective first and second portions of the receptacle.
  • 4. The separator assembly of claim 2, wherein the first and second doors are each pivotally mounted to the receptacle, and further comprising a first and a second catch each disposed on the separator for holding the respective first and second doors in the closed position.
  • 5. The separator assembly of claim 4, further comprising first and second releasing devices for releasing the respective first and second catches.
  • 6. The separator assembly of claim 5, wherein the first and second devices are operable independently of one another.
  • 7. The separator assembly of claim 5, wherein the first and second devices are operable only in a predetermined sequence.
  • 8. The separator of claim 4, wherein the first and second doors are pivotably openable under gravity when the respective first and second catches are released.
  • 9. The separator of claim 4, wherein each of the first and second doors are pivotably openable with a spring.
  • 10. The separator of claim 1, wherein the respective first and second dust receiving portions of the receptacle are disposed concentrically with respect to each other.
  • 11. The separator of claim 10, wherein the first door is generally annular and configured to selectively block the outer dist receiving portion, while the second door is configured to selectively block the inner dust receiving portion.
  • 12. The separator of claim 12, wherein the outer dust receiving portion receives dust from the first separator, and the inner dust receiving portion receives dust from the second separator.
Priority Claims (1)
Number Date Country Kind
0619214.0 Sep 2006 GB national