The present application is a U.S. National Stage Application of International Application No. PCT/US2016/048420 filed Aug. 24, 2016, which is incorporated herein by reference in its entirety for all purposes.
The present disclosure relates generally to transferring dry bulk materials, and more particularly, to structures that prevent dust from escaping during the discharging of bulk materials from containers.
During the drilling and completion of oil and gas wells, various wellbore treating fluids are used for a number of purposes. For example, high viscosity gels are used to create fractures in oil and gas bearing formations to increase production. High viscosity and high density gels are also used to maintain positive hydrostatic pressure in the well while limiting flow of well fluids into earth formations during installation of completion equipment. High viscosity fluids are used to flow sand into wells during gravel packing operations. The high viscosity fluids are normally produced by mixing dry powder and/or granular materials and agents with water at the well site as they are needed for the particular treatment. Systems for metering and mixing the various materials are normally portable, for example, skid- or truck-mounted, since they are needed for only short periods of time at a well site.
The powder or granular treating material is normally transported to a well site in a commercial or common carrier tank truck. Once the tank truck and mixing system are at the well site, the dry powder material (bulk material) must be transferred or conveyed from the tank truck into a supply tank for metering into a blender as needed. The bulk material is usually transferred from the tank truck pneumatically. More specifically, the bulk material is blown pneumatically from the tank truck into an on-location storage/delivery system (for example, silo). The storage/delivery system may then deliver the bulk material onto a conveyor or into a hopper, which meters the bulk material through a chute into a blender tub.
Recent developments in bulk material handling operations involve the use of portable containers for transporting dry material about a well location. The containers can be brought in on trucks, unloaded, stored on location, and manipulated about the well site when the material is needed. The containers are generally easier to manipulate on location than a large supply tank trailer. The containers are eventually emptied by dumping the contents thereof onto a mechanical conveying system (for example, conveyor belt, auger, bucket lift, etc.). The conveying system then moves the bulk material in a metered fashion to a desired destination at the well site.
For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation specific decisions must be made to achieve developers' specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure. Furthermore, in no way should the following examples be read to limit, or define, the scope of the disclosure.
Certain embodiments according to the present disclosure may be directed to systems and methods for efficiently managing bulk material (for example, bulk solid or liquid material). Bulk material handling systems are used in a wide variety of contexts including, but not limited to, drilling and completion of oil and gas wells, concrete mixing applications, agriculture, and others. The disclosed embodiments are directed to systems and methods for efficiently moving bulk material into a blender inlet of a blender unit at a job site. The systems may include a portable support structure used to receive one or more portable containers of bulk material and output bulk material from the containers directly into the blender inlet. The disclosed techniques may be used to efficiently handle any desirable bulk material having a solid or liquid constituency including, but not limited to, sand, proppant, gel particulate, diverting agent, dry-gel particulate, liquid additives and others.
In currently existing on-site bulk material handling applications, dry material (e.g., sand, proppant, gel particulate, or dry-gel particulate) may be used during the formation of treatment fluids. In such applications, the bulk material is often transferred between transportation units, storage tanks, blenders, and other on-site components via pneumatic transfer, sand screws, chutes, conveyor belts, and other components. Recently, a new method for transferring bulk material to a hydraulic fracturing site involves using portable containers to transport the bulk material. The containers can be brought in on trucks, unloaded, stored on location, and manipulated about the site when the material is needed. These containers generally include a discharge gate at the bottom that can be actuated to empty the material contents of the container at a desired time.
In existing systems, the containers are generally supported above a mechanical conveying system (for example, moving belt, auger, bucket lift, etc.) prior to releasing the bulk material. The discharge gates on the containers are opened to release the bulk material via gravity onto the moving mechanical conveying system. The mechanical conveying system then directs the dispensed bulk material toward a desired destination, such as a hopper on a blender unit. Unfortunately, this process can release a relatively large amount of dust into the air and result in unintended material spillage. In addition, the mechanical conveying system is generally run on auxiliary power and, therefore, requires an external power source to feed the bulk material from the containers to the blender.
The material handling systems having the support structure disclosed herein are designed to address and eliminate the shortcomings associated with existing container handling systems. Particles released into the surrounding air from the discharge of bulk materials at a site or operation may not be desirable For example, with respect to sand, dust may be generated when a sand particle is impacted and damaged causing the particle to be broken into more than one piece. The dust may be generated from the sand falling from one height to another or being mechanically thrusted into another object. For example, the sand may be discharged from an outlet from a container into a chute. One or more aspects of the present disclosure control, minimize or eviscerate the release of this dust to prevent waste and any environmental impact.
Turning now to the drawings,
As illustrated, the blender unit 20 may include a blender hopper 22 and a mixer 24 (for example, a mixing compartment). The blender unit 20 may also include a metering mechanism 26 for providing a controlled or metered flow or discharge of bulk material 38 from the blender hopper 22 to the mixer 24. However, in other embodiments the blender unit 20 may not include the blender hopper 22, such that the outlet 18 of the support structure 14 may provide bulk material 38 directly into the blender unit 20. In one or more embodiments, blender unit 20 may be any unit or device for collecting the discharged bulk material 38 from the blender hopper 22 suitable for a given operation. Blender hopper 22 may comprise an enclosure 68 (illustrated in
Water and other additives may be supplied to the mixer 24 (for example, the mixing compartment) through a fluid inlet 28. As those of ordinary skill in the art will appreciate, the fluid inlet 28 may comprise more than the one input flow line illustrated in
It should be noted that the disclosed container 12 may be utilized to provide bulk material 38 for use in a variety of fields, area, or treating processes. For example, the disclosed systems and methods may be utilized to provide proppant materials into fracture treatments performed on a hydrocarbon recovery well. In other embodiments, the disclosed techniques may be used to provide other materials (for example, non-proppant) for diversions, conductor-frac applications, cement mixing, drilling mud mixing, and other fluid mixing applications. In other embodiments, the disclosed techniques may be used to provide materials for agriculture or land development (such as construction sites for buildings, roads, bridges, or other structures). In one or more embodiments, the container 12 may be open at the top such that bulk material 38 may be exposed. In one or more embodiments, the container 12 may have a top wall (not shown) that has an opening or gate (not shown) to allow the container 12 to be filled with bulk material 38.
As illustrated, the container 12 may be elevated above an outlet location, for example, the outlet 18, via the frame 16. The support structure 14 is designed to elevate the container 12 above the level of the blender inlet (for example, blender hopper 22, mixer 24 or both) to allow the bulk material 38 to gravity feed from the container 12 to the blender unit 20. This way, the container 12 is able to sit on the frame 16 of the support structure 14 and output bulk material 38 directly into the blender unit 20 via the outlet 18 of the support structure 14.
Although shown as supporting a single container 12, other embodiments of the frame 16 may be configured to support multiple containers 12. The exact number of containers 12 that the support structure 14 can hold may depend on a combination of factors such as, for example, the volume, width, and weight of the containers 12 to be disposed thereon and available space.
The container 12 may be completely separable and transportable from the frame 16, such that any container 12 may be selectively removed from the frame 16 and replaced with another container 12. When the bulk material 38 from the container 12 runs low or empties, a new container 12 may be placed on the frame 16 to maintain a steady flow of bulk material 38 to an outlet location. In one or more embodiments, the container 12 may be closed before being completely emptied, removed from the frame 16, and replaced by a container 12 holding a different type of bulk material 38 to be provided to the outlet location.
A portable bulk storage system 32 may be provided at the site or location for storing one or more additional containers 12 of bulk material 38 to be positioned on the frame 16 of the support structure 14. The containers 12 may be transported to the desired location on a transportation unit (for example, a truck, train, vessel, or any other transport unit). The portable bulk storage system 32 may be the transportation unit itself or may be a skid, a pallet, or some other holding area. One or more containers 12 of bulk material 38 may be transferred from the storage system 32 onto the support structure 14, as indicated by arrow 34. This transfer may be performed by lifting the container 12 via a hoisting mechanism, such as a forklift, a crane, or a specially designed container management device.
When the one or more containers 12 are positioned on the support structure 14, one or more discharge gates 40 of one or more of the containers 12 may be opened, allowing bulk material 38 to flow from the containers 12 into the outlet 18 of the support structure 14. The outlet 18 may then route the flow of bulk material 38 directly into a blender inlet (for example, into the blender hopper 22 or mixer 24) of the blender unit 20. A portion of an enclosure 68 may be disposed at the blender hopper 22 to cover the blender hopper 22 and one or more extensions of the enclosure 68 may be coupled to one or more outlets 18, for example, a bottom portion of one or more outlets 18, so as to form an enclosed pathway or tunnel from the one or more outlets 18 to the blender hopper 22. For example, as the bulk material 38 flows via one or more pathways from the one or more outlets 18 to the blender hopper 22, the one or more pathways are enclosed by the enclosure 68. Enclosure 68 may comprise a flexible material so that the enclosure 68 may be coupled to any one or more outlets 18 that may be at different distances from the blender hopper 22. For example, one or more extensions of the enclosure 68 that extend from a main portion of the enclosure 68 to the one or more outlets 18 may be accordion-shaped so as to expand and contract to accommodate the distance and to seal or enclose the space or pathways between the one or more outlets 18 and the blender hopper 22. In one or more embodiments the enclosure 68 may be retractable such that when bulk material 38 is not discharged the enclosure 68 retracts from the one or more outlets 18, the blender hopper 22 or both. The one or more extensions of the enclosure 68 may be coupled to one or more access ports of the enclosure 68 to accommodate any number of outlets 18.
After one or more of the containers 12 on the support structure 14 are emptied, the empty container(s) 12 may be removed from the support structure 14 via a hoisting mechanism. In some embodiments, the one or more empty containers 12 may be positioned on another bulk storage system 32 (for example, a transportation unit, a skid, a pallet, or some other holding area) until they can be removed from the site, refilled or both. In other embodiments, the one or more empty containers 12 may be positioned directly onto a transportation unit for transporting the empty containers 12 away from the site. It should be noted that the same transportation unit used to provide one or more filled containers 12 to the location may then be utilized to remove one or more empty containers 12 from the site.
As illustrated, the support structure 14 may be equipped with a plurality of locator pins 52 disposed on top of the frame 16 for locating and holding the containers 12 on the frame 16. The containers 12 may include complementary engagement features designed to interface with the locator pins 52, thus enabling a precise placement of the containers 12 into desired locations on the frame 16. In the illustrated embodiment, the locator pins 52 are generally disposed at the corners on the upper face of each cubic/rectangular support 50. However, other placements of the locator pins 52 along the upper surface of the support structure 16 may be utilized in other embodiments.
The support structure 14 may also include one or more actuators 54 designed to aid in actuation of a discharge gate 40 of the one or more containers 12 disposed on the frame 16. In the illustrated embodiment, the actuators 54 may be rotary actuators designed to rotate into engagement with a discharge gate 40 of a container 12 to transition the discharge gate 40 between a closed position and an open position. In other embodiments, the actuators 54 may be linear actuators designed to interface with the discharge gates 40 of the containers 12 to selectively open and close the discharge gates 40. In some embodiments, the actuators 54 may include a set of two actuators (disposed on opposite sides of the frame 16) for actuating the discharge gate 40 of a single container 12 disposed on the frame 16. In such an arrangement, one of the actuators 54 may transition the discharge gate 40 from closed to open, while the opposite actuator 54 may transition the gate from an open to closed position.
The illustrated support structure 14 may be transportable to and from a desired or predetermined location on a flatbed trailer (such as support structure 14 of
Once the forklift (or other hoisting mechanism) brings the support structure 14 to a desired location at the site, the hoisting mechanism may lower the support structure 14 onto the ground or a relatively flat loading area proximate the ground level, or other predetermined location. The frame 16 may include corner supports 58 for distributing a weight of the support structure 14 (and any containers 12 disposed thereon) along the ground surface or predetermined location. As shown, the corner supports 58 may be disposed along the lower surface of the frame 16 at various corners of the cubic/rectangular supports 50. In the illustrated embodiment, for example, the corner supports 58 may be disposed at the lower corners of the two outside cubic/rectangular supports 50A and 50C, since the lower surface of the central support 50B is slightly elevated above the ground level.
As described above, the support structure 14 may include several outlets 18 for routing bulk material 38 directly from one or more containers 12 disposed on the frame 16 into a blender inlet. The term “blender inlet” used herein may refer to any number of inlets to tubs, hoppers, mixers, and other areas where bulk material is needed. As mentioned above, the blender inlet may be associated with a blender unit 20 disposed at a job site (for example, at a well site). For example, the blender inlet may be a blender hopper (for example, blender hopper 22 of
In the illustrated embodiment, the blender unit 20 and support structure 14 may be designed such that the support structure 14 routes bulk material 38 directly from a container 12 into the blender hopper 22. The “blender inlet” may correspond to the blender hopper 22. In
The outlets 18A, 18B, and 18C may be used to deliver a flow of bulk material 38 to the blender hopper 22 (or other blender inlet) from each of three respective containers 12 disposed on the frame 16. In some embodiments, the support structure 14 may also include individual hoppers 60A, 60B, and 60C at the top of the frame 16 for funneling bulk material 38 from the discharge gate 40 of the corresponding containers 12 into the outlets 18A, 18B, and 18C, respectively.
In one or more embodiments, a dust control system 36 may be utilized to control the escape of dust during discharge of bulk material 38. In one or more embodiments, a dust control system 36 may comprise a dust control dampers 66A, 66B and 66C. Dust control dampers 66 may be coupled, attached or otherwise affixed to or engage corresponding hoppers 60A, 60B, and 60C or corresponding outlets 18A, 18B and 18C. In one or more embodiments, dust control damper 66 may be coupled directly to outlet 18 when hopper 60 is not present.
The outlets 18A, 18B, and 18C may be chutes positioned so that the upper end of each chute is disposed beneath a discharge gate 40 of a corresponding container 12 (or one of the hoppers 60) on the frame 16. In one or more embodiments, the discharge gate 40 is configured to engage the dust control damper 66 to transition the dust control damper 66 to an open position when the discharge gate 40 is in at least an open or partially open position to form a seal to prevent the escape of dust during discharge of bulk material 38. In one or more embodiments, the discharge gate 40 does not engage the dust control damper 66 when the discharge gate 40 is in an open position. In one or more embodiments, the discharge gate 40 is a horizontally or vertically slidable gate. In one or more embodiments, the discharge gate 40 comprises one or more slots to provide metering of the discharge of bulk material 38.
In one or more embodiments, the outlets 18 may be positioned such that the lower end of each of the gravity feed outlets 18 is disposed fully within the blender hopper 22. This allows the outlets 18 to provide bulk material 38 from all of the containers 12 positioned on the frame 16 into the same blender inlet (for example, blender hopper 22) at or near the same time. The outlets 18 may provide a gravity feed where an angle of repose of the bulk material 38 exiting the outlets 18 is able to choke the flow of bulk material 38 through the outlets 18. As bulk material 38 is metered from the blender hopper 22 into another portion of the blender unit 20 (for example, mixer 24), additional bulk material 38 flows via gravity into the blender hopper 22 directly from the one or more gravity feed outlets 18. In embodiments where the outlets 18 are positioned to route bulk material 38 directly from the containers 12 into an inlet of the mixer 24 of the blender unit 20, the gravity feed outlets 18, the blender inlet, or both may feature a metering gate/valve that regulates the amount of bulk material 38 provided to the mixer 24 (for example, instead of separate sand screws).
The disclosed outlets 18 provide a more controlled output of bulk material 38 to the blender inlet (for example, blender hopper 22) than would be available through the use of mechanical conveying systems to drop bulk material 38 into the blender hopper 22. In addition, the choke feed of bulk material 38 through the outlets 18 and into the blender inlet may reduce an amount of dust generated at a well site, as compared to existing pneumatic or mechanical conveying systems. Further, the outlets 18 are able to route the bulk material 38 directly into the blender inlet from the containers 12 without the use of pneumatic or mechanical conveyance equipment operating on auxiliary power making moving the bulk material more efficient than would be possible using a separate pneumatic or mechanical conveyor between the containers and the blender.
It may be desirable for the outlets 18 to be angled by a certain amount so that the lower ends of the outlets 18 interface directly with the blender hopper 22. In some embodiments, the angle of inclination of each gravity feed outlet 18 from a horizontal plane may be between approximately 25 and 55 degrees, between approximately 30 and 50 degrees, between approximately 35 and 45 degrees, or equal to approximately 40 degrees. As shown, it may be desirable to angle the outlets 18 such that outlets 18 direct the bulk material 38 toward a central collection point proximate a center portion (for example, support 50B) of the support structure 14.
Although illustrated in
In some instances, the support structure 14 may be equipped with a set of outriggers 64 to increase the stability of the portable support structure 14. The outriggers 64 may help to keep the support structure 14 stable in the event of high winds or the support structure 14 being impacted by a container, forklift, blender, or other pieces of equipment at the job site. In addition, the outriggers 64 on the support structure 14 may be used for interfacing with the blender unit 20 to bring the blender inlet into a desired position or alignment within the opening 62 of the support structure 14.
To further improve the mobility, transportability, and rig-up speed at the job site, the portable support structure 14 may be integrated into a specialized support structure trailer unit 70, as shown in
Having the support structure 14 integrated into a separate mobile unit such as support structure trailer unit 70 may improve the reliability of the various components that make up the support structure 14 and increase the life of the support structure 14. This is because every time the support structure 14 is lifted or moved via a hoisting mechanism, for example, the frame 16, electronics, controls, outlets 18 or any combination thereof can be negatively impacted. Shock from movement of the relatively large support structure about a site can lead to undesirable operations of the support structure components. With the support structure 14 integrated into the trailer unit 70, the shock due to loading/unloading the portable support structure 14 itself is minimized.
In some embodiments, the support structure trailer unit 70 may also include an air suspension system or other components to reduce shock on the support structure 14 during transportation of the trailer unit 70 (for example, traveling along a road). The suspension system may help to further isolate the electronics and controls of the support structure from shock loading during transportation of the support structure trailer unit 70 along the road.
In one or more embodiments dust control damper 66 may comprise one or more devices or components including, but not limited to, a damper 340, a pivot device 320 and a bracket 330. In one or more embodiments, dust control damper 66 may comprise any one or more additional or other components for coupling the dust control damper 66 to the outlet 18 or the hopper 60 (not shown). The one or more devices or components of the dust control damper 66 are configured to maintain a seal against the outlet 18 or the hopper 60 when bulk material 38 is not being discharged through the outlet 18 or the hopper 60. In one or more embodiments, the dust control damper 66 is configured to transition from a closed position to an open position based, at least in part, on a predetermined amount of force where the predetermined amount force may be due to a predetermined weight of bulk material 38. For example, the dust control damper 66 may transition to an open position from a closed position when the discharge gate 40 is in a position to allow a certain amount of pounds of bulk material 38 to be discharged to the outlet 18.
In one or more embodiments, the damper 340 may comprise sheet metal, composite material or any other material that may seal the damper 340 against a top portion the outlet 18 (or the hopper 60). The damper 340 may operate similar to a gate in that the damper 340 may have a closed position and an open position. A closed position of the damper 340 prevents any dust from escaping the outlet 18 or the hopper 60. For example, when bulk material 38 is being discharged through outlet 18A, dust may be generated by the force of displaced air in outlet 18B and outlet 18C. Disposing a dust control damper 66 about each outlet or any one or more outlets (for example, a top portion of outlets 18A, 18B and 18C or any combination thereof) prevents the displaced air from forcing dust into the surround air. For example, a when bulk material 38 is ready to be discharged, the dust control damper 66A is placed in an open position and as the bulk material 38 is discharged through a top portion of outlet 18A, the damper 340A is forced into an open position by the weight of the bulk material 38 while the dampers 340 of each respective dust control damper 66B and 66C are maintained in a closed position.
A spring 310 may couple to the damper 340 such that the spring 310 applies a force against the damper 340 to automatically maintain the damper 340 in a closed position (as illustrated in
A pivot 320 may couple to the damper 340 to allow or permit the damper 340 to swing or move from an open position to a closed position. The pivot 320 may comprise a hinge, a rack and pinion, a screw and nut, or any other type of device that would permit damper 340 to move from an open position to a closed position. The pivot 320 may be coupled to a bracket 330. The bracket 330 couples the pivot 320 and the damper 340 to the outlet 18 or the hopper 60. In one or more embodiments, the bracket 330 may couple to the hopper 60 and the outlet 18 and may be temporarily or permanently coupled to one or more of the hopper 60 or the outlet 18.
When the discharge gate 40 is in an open position and bulk material 38 is discharged from the container 12, the dust control self-sealing shroud 510 is forced by the flowing bulk material 38 to splay, expand or conform to an interior shape of the outlet 18 (as illustrated in
The vacuum unit 630 may couple to one or more ducts 610. The ducts 610 may comprise a length sufficient to flow from the vacuum unit 630 at or near the location where a discharge gate 40 of container 12 is aligned with an outlet 18 or hopper 60. Placing the ducts 610 as close as possible to the discharge gate 40 permits the vacuum unit 630 to reclaim as much dust as possible during discharge of the bulk material 38. In one or more embodiments, ducts 610A, 610B and 610C are positioned or disposed proximate to the corresponding outlets 18A, 18B and 18C or hoppers 60A, 60B and 60C. A vacuum hopper 620 may be coupled to the vacuum unit 630 to capture the reclaimed dust. While vacuum hopper 620 is shown directly coupled to vacuum unit 630, in one or more embodiments vacuum hopper 620 may be coupled to the vacuum unit 630 via piping or conduit (not shown) and positioned at any suitable location within the frame 16, outside the frame 16 or at any other location of the site. Reclaimed dust may be fed to the vacuum hopper 620 in a gravity feed manner (for example, as illustrated in
The present disclosure contemplates that any one or more of the dust control systems 36 may be used together or separately. For example, the dust control damper 66, dust control self-sealing shroud 510 and vacuum unit 630 may be disposed at a frame 16 and may operate together to prevent dust from escaping from the support structure 14 during discharge of bulk material 38.
In one or more embodiments, a dust control system comprises a support structure, wherein the support structure comprises a frame, a plurality of outlets coupled to the frame, and a dust control damper system coupled to an outlet, wherein the dust control system sealingly mates to the outlet when the dust control damper is in a closed position to prevent dust from escaping from the outlet, wherein the dust control damper is configured to be placed in an open position when a bulk material is discharged onto the dust control damper, and wherein the dust control damper is configured to automatically return to a closed position from an open position. In one or more embodiments, the dust control damper system comprises a spring and a damper and the spring is coupled to the damper and the spring exerts a force on the damper to automatically return the damper to the closed position from the open position. In one or more embodiments the dust control damper system comprises a pivot and a bracket. In one or more embodiments, the hinge is coupled to the damper, the pivot allows the damper to move between the open position and the closed position, and the bracket is coupled between the hinge and the outlet. In one or more embodiments, the dust control system further comprises a hopper coupled to the outlet, wherein the hopper receives the bulk material via the outlet and an enclosure coupled to the hopper. In one or more embodiments, the dust control system further comprises a vacuum system, wherein the vacuum system reclaims dust associated with the dust control system. In one or more embodiments, wherein the dust control damper is calibrated to transition to an open position based, at least in part, on an amount of predetermined force due to a weight of the bulk material.
In one or more embodiments, a dust control system comprises a support structure, wherein the support structure comprises a frame, a plurality of outlets coupled to the frame, a container disposed about at least one of the plurality of outlets, and a dust control self-sealing shroud coupled to a discharge gate of a container, wherein the dust control self-sealing shroud comprises a flexibly collapsible material to mate to the outlet when the dust control self-sealing shroud is in an expanded position. In one or more embodiments, the dust control self-sealing shroud comprises a pleated material. In one or more embodiments, the dust control self-sealing shroud comprises two or more strips of material that overlap. In one or more embodiments, the dust control system further comprises a vacuum system disposed at a bottom portion of the container, wherein the vacuum system reclaims dust from a discharge of the bulk material.
In one or more embodiments, a dust control method comprises aligning a plurality of dust control dampers with a plurality of outlets of a frame of a support structure, wherein the plurality of dust control dampers comprises at least a first dust control damper and a second dust control damper, wherein the plurality of dust control dampers are configured to automatically maintain a closed position, receiving a first container of bulk material onto the frame of the support structure, wherein the container is aligned above the first dust control damper and a first outlet of the plurality of outlets of the frame, aligning a first discharge gate of the first container with a first dust control damper and the first outlet, discharging the bulk material of the first container via the first discharge gate, transitioning the first dust control damper from a closed position to an open position, maintaining the second dust control damper aligned with a second outlet of the plurality of outlets in a closed position during the discharge of the bulk material, and controlling dust emissions associated with the discharge of the bulk material by forming a seal between the second dust control damper and the second outlet. In one or more embodiments, the dust control damper system comprises a spring and a damper, and the spring exerts a force on the damper to automatically transition the damper between an open position and a closed position. In one or more embodiments, the dust control method further comprises wherein the dust control damper system comprises a pivot and a bracket to allow the damper to transition between the open position and the closed position. In one or more embodiments, the dust control method further comprises receiving the bulk material via the outlet at a hopper, wherein the hopper is coupled to the outlet, and wherein controlling dust emissions further comprises sealing the hopper with an enclosure. In one or more embodiments, the method further comprises reclaiming dust associated with the dust control system via a vacuum system. In one or more embodiments, the method further comprises expanding a dust control self-sealing shroud, wherein the dust control self-sealing shroud is coupled to a discharge gate of a container, and wherein the dust control self-sealing shroud comprises a flexibly collapsible material to mate to the outlet when the dust control self-sealing shroud is in an expanded position. In one or more embodiments, the dust control self-sealing shroud comprises a pleated material. In one or more embodiments, the dust control self-sealing shroud comprises two or more strips of material that overlap. In one or more embodiments, the dust control method further comprises reclaiming dust from a discharge of the bulk material via a vacuum system disposed at a bottom portion of the container. In one or more embodiments, the dust control method further comprises calibrating the dust control damper to transition to an open position based, at least in part, on an amount of predetermined force due to a weight of the bulk material.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/048420 | 8/24/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/038723 | 3/1/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
710611 | Ray | Oct 1902 | A |
917646 | Otto | Apr 1909 | A |
1519153 | Mitton | Sep 1923 | A |
1726603 | Wallace | Sep 1929 | A |
1795987 | Adams | Mar 1931 | A |
2203959 | Hammack | Jun 1940 | A |
2231911 | Hitt et al. | Feb 1941 | A |
2281497 | Hyson et al. | Apr 1942 | A |
2385245 | Willoughby | Sep 1945 | A |
2415782 | Zademach | Feb 1947 | A |
2513012 | Dugas | Jun 1950 | A |
2563470 | Kane | Aug 1951 | A |
2652174 | Shea | Sep 1953 | A |
2670866 | Glesby | Mar 1954 | A |
2678737 | Mangrum | May 1954 | A |
2759737 | Manning | Aug 1956 | A |
2802603 | McCray | Aug 1957 | A |
2867336 | Soldini et al. | Jan 1959 | A |
2869900 | Heteji | Jan 1959 | A |
3049248 | Heltzel et al. | Aug 1962 | A |
3083879 | Coleman | Apr 1963 | A |
3151779 | Rensch et al. | Oct 1964 | A |
3203370 | Friedrich et al. | Aug 1965 | A |
3217927 | Bale, Jr. et al. | Nov 1965 | A |
3318473 | Jones et al. | May 1967 | A |
3326572 | Murray | Jun 1967 | A |
3343688 | Ross | Sep 1967 | A |
3354918 | Coleman | Nov 1967 | A |
3378124 | Johannes | Apr 1968 | A |
3380333 | Clay et al. | Apr 1968 | A |
3404963 | Fritsche et al. | Oct 1968 | A |
3410530 | Gilman | Nov 1968 | A |
3432151 | O'Loughlin et al. | Mar 1969 | A |
3467408 | Regalia | Sep 1969 | A |
3476270 | Cox et al. | Nov 1969 | A |
3602400 | Cooke | Aug 1971 | A |
3627555 | Driscoll | Dec 1971 | A |
3698693 | Poncet | Oct 1972 | A |
3785534 | Smith | Jan 1974 | A |
3802584 | Sackett, Sr. et al. | Apr 1974 | A |
3986708 | Heltzel et al. | Oct 1976 | A |
4023719 | Noyon | May 1977 | A |
4058239 | Mill | Nov 1977 | A |
4125195 | Sasadi | Nov 1978 | A |
4138163 | Calvert et al. | Feb 1979 | A |
4178117 | Brugler | Dec 1979 | A |
4204773 | Bates | May 1980 | A |
4248337 | Zimmer | Feb 1981 | A |
4258953 | Johnson | Mar 1981 | A |
4313708 | Tiliakos | Feb 1982 | A |
4395052 | Rash | Jul 1983 | A |
4398653 | Daloisio | Aug 1983 | A |
4410076 | West | Oct 1983 | A |
4423884 | Gevers | Jan 1984 | A |
4544279 | Rudolph | Oct 1985 | A |
4548507 | Mathis et al. | Oct 1985 | A |
4583663 | Bonerb | Apr 1986 | A |
4626166 | Jolly | Dec 1986 | A |
4697530 | Marcotte et al. | Oct 1987 | A |
4701095 | Berryman et al. | Oct 1987 | A |
4806065 | Holt et al. | Feb 1989 | A |
4850702 | Arribau et al. | Jul 1989 | A |
4856681 | Murray | Aug 1989 | A |
4900157 | Stegemoeller et al. | Feb 1990 | A |
4919540 | Stegemoeller et al. | Apr 1990 | A |
4956821 | Fenelon | Sep 1990 | A |
4993883 | Jones | Feb 1991 | A |
4997335 | Prince | Mar 1991 | A |
5036979 | Selz | Aug 1991 | A |
5096096 | Calaunan | Mar 1992 | A |
5114169 | Botkin et al. | May 1992 | A |
5149192 | Hamm et al. | Sep 1992 | A |
5303998 | Whitlatch et al. | Apr 1994 | A |
5339996 | Dubbert et al. | Aug 1994 | A |
5343813 | Septer | Sep 1994 | A |
5375730 | Bahr et al. | Dec 1994 | A |
5401129 | Eatinger | Mar 1995 | A |
5413154 | Hurst, Jr. et al. | May 1995 | A |
5426137 | Allen | Jun 1995 | A |
5441321 | Karpisek | Aug 1995 | A |
5443350 | Wilson | Aug 1995 | A |
5445289 | Owen | Aug 1995 | A |
5470186 | Kwok | Nov 1995 | A |
5516329 | Dunn | May 1996 | A |
5590976 | Kilheffer et al. | Jan 1997 | A |
5609417 | Otte | Mar 1997 | A |
5722552 | Olson | Mar 1998 | A |
5772390 | Walker | Jun 1998 | A |
5806441 | Chung | Sep 1998 | A |
5913459 | Gill et al. | Jun 1999 | A |
5915913 | Greenlaw et al. | Jun 1999 | A |
5927356 | Henderson | Jul 1999 | A |
5944470 | Bonerb | Aug 1999 | A |
5997099 | Collins | Dec 1999 | A |
6059372 | McDonald et al. | May 2000 | A |
6112946 | Bennett et al. | Sep 2000 | A |
6126307 | Black et al. | Oct 2000 | A |
6193402 | Grimland et al. | Feb 2001 | B1 |
6247594 | Garton | Jun 2001 | B1 |
6379086 | Goth | Apr 2002 | B1 |
6425627 | Gee | Jul 2002 | B1 |
6491421 | Rondeau et al. | Dec 2002 | B2 |
6517232 | Blue | Feb 2003 | B1 |
6536939 | Blue | Mar 2003 | B1 |
6537015 | Lim et al. | Mar 2003 | B2 |
6568567 | McKenzie et al. | May 2003 | B2 |
6622849 | Sperling | Sep 2003 | B1 |
6655548 | McClure, Jr. et al. | Dec 2003 | B2 |
6876904 | Oberg et al. | Apr 2005 | B2 |
6980914 | Bivens et al. | Dec 2005 | B2 |
7008163 | Russell | Mar 2006 | B2 |
7086342 | O'Neall et al. | Aug 2006 | B2 |
7100896 | Cox | Sep 2006 | B1 |
7114905 | Dibdin | Oct 2006 | B2 |
7252309 | Soon et al. | Aug 2007 | B2 |
7284579 | Elgan | Oct 2007 | B2 |
7451015 | Mazur et al. | Nov 2008 | B2 |
7475796 | Garton | Jan 2009 | B2 |
7500817 | Furrer et al. | Mar 2009 | B2 |
7513280 | Brashears et al. | Apr 2009 | B2 |
7665788 | Dibdin et al. | Feb 2010 | B2 |
7762281 | Schuld | Jul 2010 | B2 |
7997213 | Gauthier et al. | Aug 2011 | B1 |
8387824 | Wietgrefe | Mar 2013 | B2 |
8434990 | Claussen | May 2013 | B2 |
D688349 | Oren et al. | Aug 2013 | S |
D688350 | Oren et al. | Aug 2013 | S |
D688351 | Oren et al. | Aug 2013 | S |
D688772 | Oren et al. | Aug 2013 | S |
8505780 | Oren | Aug 2013 | B2 |
8545148 | Wanek-Pusset et al. | Oct 2013 | B2 |
8573917 | Renyer | Nov 2013 | B2 |
8585341 | Oren | Nov 2013 | B1 |
8607289 | Brown et al. | Dec 2013 | B2 |
8616370 | Allegretti et al. | Dec 2013 | B2 |
8622251 | Oren | Jan 2014 | B2 |
8662525 | Dierks et al. | Mar 2014 | B1 |
8668430 | Oren et al. | Mar 2014 | B2 |
D703582 | Oren | Apr 2014 | S |
8827118 | Oren | Sep 2014 | B2 |
8834012 | Case et al. | Sep 2014 | B2 |
8870990 | Marks et al. | Oct 2014 | B2 |
8887914 | Allegretti et al. | Nov 2014 | B2 |
RE45713 | Oren et al. | Oct 2015 | E |
9162261 | Smith | Oct 2015 | B1 |
9162603 | Oren | Oct 2015 | B2 |
9169706 | Kellam, III | Oct 2015 | B2 |
RE45788 | Oren et al. | Nov 2015 | E |
9248772 | Oren | Feb 2016 | B2 |
RE45914 | Oren et al. | Mar 2016 | E |
9296518 | Oren | Mar 2016 | B2 |
9296572 | Houghton et al. | Mar 2016 | B2 |
9340353 | Oren et al. | May 2016 | B2 |
9358916 | Oren | Jun 2016 | B2 |
9394102 | Oren et al. | Jul 2016 | B2 |
9403626 | Oren | Aug 2016 | B2 |
9421899 | Oren | Aug 2016 | B2 |
9440785 | Oren et al. | Sep 2016 | B2 |
9446801 | Oren | Sep 2016 | B1 |
9475661 | Oren | Oct 2016 | B2 |
9511929 | Oren | Dec 2016 | B2 |
9522816 | Taylor | Dec 2016 | B2 |
9527664 | Oren | Dec 2016 | B2 |
9580238 | Friesen et al. | Feb 2017 | B2 |
RE46334 | Oren et al. | Mar 2017 | E |
9617065 | Allegretti et al. | Apr 2017 | B2 |
9617066 | Oren | Apr 2017 | B2 |
9624030 | Oren et al. | Apr 2017 | B2 |
9624036 | Luharuka et al. | Apr 2017 | B2 |
9631471 | Fordyce | Apr 2017 | B2 |
9643774 | Oren | May 2017 | B2 |
9650216 | Allegretti | May 2017 | B2 |
9656799 | Oren et al. | May 2017 | B2 |
9669993 | Oren et al. | Jun 2017 | B2 |
9670752 | Glynn et al. | Jun 2017 | B2 |
9676554 | Glynn et al. | Jun 2017 | B2 |
9682815 | Oren | Jun 2017 | B2 |
9694970 | Oren et al. | Jul 2017 | B2 |
9694995 | Haraway | Jul 2017 | B2 |
9701463 | Oren et al. | Jul 2017 | B2 |
9718609 | Oren et al. | Aug 2017 | B2 |
9718610 | Oren | Aug 2017 | B2 |
9725233 | Oren et al. | Aug 2017 | B2 |
9725234 | Oren et al. | Aug 2017 | B2 |
9738439 | Oren et al. | Aug 2017 | B2 |
RE46531 | Oren et al. | Sep 2017 | E |
9758081 | Oren | Sep 2017 | B2 |
9758993 | Allegretti et al. | Sep 2017 | B1 |
9771224 | Oren et al. | Sep 2017 | B2 |
9783338 | Allegretti et al. | Oct 2017 | B1 |
9796319 | Oren | Oct 2017 | B1 |
9796504 | Allegretti et al. | Oct 2017 | B1 |
9809381 | Oren et al. | Nov 2017 | B2 |
9828135 | Allegretti et al. | Nov 2017 | B2 |
9840366 | Oren et al. | Dec 2017 | B2 |
9845210 | Oren | Dec 2017 | B2 |
9969564 | Oren et al. | May 2018 | B2 |
9988182 | Allegretti et al. | Jun 2018 | B2 |
10059246 | Oren | Aug 2018 | B1 |
10081993 | Walker et al. | Sep 2018 | B2 |
10189599 | Allegretti et al. | Jan 2019 | B2 |
10207753 | O'Marra et al. | Feb 2019 | B2 |
10287091 | Allegretti | May 2019 | B2 |
10308421 | Allegretti | Jun 2019 | B2 |
10486854 | Allegretti et al. | Nov 2019 | B2 |
10518828 | Oren et al. | Dec 2019 | B2 |
10569242 | Stegemoeller et al. | Feb 2020 | B2 |
10604338 | Allegretti | Mar 2020 | B2 |
20020121464 | Soldwish-Zoole et al. | Sep 2002 | A1 |
20030159310 | Hensley et al. | Aug 2003 | A1 |
20040008571 | Coody et al. | Jan 2004 | A1 |
20040031335 | Fromme et al. | Feb 2004 | A1 |
20040206646 | Goh et al. | Oct 2004 | A1 |
20040258508 | Jewell | Dec 2004 | A1 |
20050219941 | Christenson et al. | Oct 2005 | A1 |
20060013061 | Bivens et al. | Jan 2006 | A1 |
20070014185 | Diosse et al. | Jan 2007 | A1 |
20070201305 | Heilman et al. | Aug 2007 | A1 |
20080187423 | Mauchle | Aug 2008 | A1 |
20080277121 | Phillippi et al. | Nov 2008 | A1 |
20080294484 | Furman et al. | Nov 2008 | A1 |
20090078410 | Krenek et al. | Mar 2009 | A1 |
20090129903 | Lyons, III | May 2009 | A1 |
20090272629 | Mathis, Jr. et al. | Nov 2009 | A1 |
20090292572 | Alden et al. | Nov 2009 | A1 |
20090314791 | Hartley et al. | Dec 2009 | A1 |
20100196129 | Buckner | Aug 2010 | A1 |
20100319921 | Eia et al. | Dec 2010 | A1 |
20120017812 | Renyer et al. | Jan 2012 | A1 |
20120018093 | Zuniga et al. | Jan 2012 | A1 |
20120037231 | Janson | Feb 2012 | A1 |
20120090956 | Brobst | Apr 2012 | A1 |
20120181093 | Fehr et al. | Jul 2012 | A1 |
20120219391 | Teichrob et al. | Aug 2012 | A1 |
20120247335 | Stutzman | Oct 2012 | A1 |
20120275976 | Nicholson | Nov 2012 | A1 |
20130128687 | Adams | May 2013 | A1 |
20130135958 | O'Callaghan | May 2013 | A1 |
20130142601 | McIver et al. | Jun 2013 | A1 |
20130206415 | Sheesley | Aug 2013 | A1 |
20130284729 | Cook et al. | Oct 2013 | A1 |
20130309052 | Luharuka et al. | Nov 2013 | A1 |
20140023463 | Oren | Jan 2014 | A1 |
20140044508 | Luharuka et al. | Feb 2014 | A1 |
20140076569 | Pham et al. | Mar 2014 | A1 |
20140083554 | Harris | Mar 2014 | A1 |
20140093319 | Harris | Apr 2014 | A1 |
20140216736 | Leugemors et al. | Aug 2014 | A1 |
20140305769 | Eiden, III et al. | Oct 2014 | A1 |
20140377042 | McMahon | Dec 2014 | A1 |
20150003955 | Oren et al. | Jan 2015 | A1 |
20150016209 | Barton et al. | Jan 2015 | A1 |
20150079890 | Stutzman et al. | Mar 2015 | A1 |
20150157995 | Fordyce et al. | Jun 2015 | A1 |
20150183578 | Oren et al. | Jul 2015 | A9 |
20150191318 | Martel | Jul 2015 | A1 |
20150284194 | Oren et al. | Oct 2015 | A1 |
20150353293 | Richard | Dec 2015 | A1 |
20150366405 | Manchuliantsau | Dec 2015 | A1 |
20150368052 | Sheesley | Dec 2015 | A1 |
20150375930 | Oren et al. | Dec 2015 | A1 |
20160031658 | Oren et al. | Feb 2016 | A1 |
20160039433 | Oren et al. | Feb 2016 | A1 |
20160046438 | Oren et al. | Feb 2016 | A1 |
20160046454 | Oren et al. | Feb 2016 | A1 |
20160068342 | Oren et al. | Mar 2016 | A1 |
20160130095 | Oren et al. | May 2016 | A1 |
20160244279 | Oren et al. | Aug 2016 | A1 |
20160264352 | Oren | Sep 2016 | A1 |
20160332809 | Harris | Nov 2016 | A1 |
20160332811 | Harris | Nov 2016 | A1 |
20170021318 | Mclver et al. | Jan 2017 | A1 |
20170123437 | Boyd et al. | May 2017 | A1 |
20170129696 | Oren | May 2017 | A1 |
20170144834 | Oren et al. | May 2017 | A1 |
20170190523 | Oren et al. | Jul 2017 | A1 |
20170190524 | Oren | Jul 2017 | A1 |
20170203915 | Oren | Jul 2017 | A1 |
20170217353 | Pol et al. | Aug 2017 | A1 |
20170217671 | Allegretti | Aug 2017 | A1 |
20170225883 | Oren | Aug 2017 | A1 |
20170240350 | Oren et al. | Aug 2017 | A1 |
20170240361 | Glynn et al. | Aug 2017 | A1 |
20170240363 | Oren | Aug 2017 | A1 |
20170267151 | Oren | Sep 2017 | A1 |
20170283165 | Oren et al. | Oct 2017 | A1 |
20170313497 | Schaffner et al. | Nov 2017 | A1 |
20170320660 | Sanders et al. | Nov 2017 | A1 |
20170334639 | Hawkins et al. | Nov 2017 | A1 |
20170349226 | Oren et al. | Dec 2017 | A1 |
20180002120 | Allegretti et al. | Jan 2018 | A1 |
20180257814 | Allegretti et al. | Sep 2018 | A1 |
20180369762 | Hunter et al. | Dec 2018 | A1 |
20190009231 | Warren et al. | Jan 2019 | A1 |
20190111401 | Lucas et al. | Apr 2019 | A1 |
20200062448 | Allegretti et al. | Feb 2020 | A1 |
20200062488 | Jacob | Feb 2020 | A1 |
20200147566 | Stegemoeller et al. | May 2020 | A1 |
Number | Date | Country |
---|---|---|
2937826 | Oct 2015 | EP |
2066220 | Jul 1981 | GB |
2204847 | Nov 1988 | GB |
2008239019 | Oct 2008 | JP |
10-2009-0065780 | Jun 2009 | KR |
2008012513 | Jan 2008 | WO |
2013095871 | Jun 2013 | WO |
2013142421 | Sep 2013 | WO |
2014018129 | Jan 2014 | WO |
2014018236 | May 2014 | WO |
2015119799 | Aug 2015 | WO |
2015199993 | Dec 2015 | WO |
2015191150 | Dec 2015 | WO |
2015192061 | Dec 2015 | WO |
2016044012 | Mar 2016 | WO |
2016160067 | Oct 2016 | WO |
2016178691 | Nov 2016 | WO |
2016178692 | Nov 2016 | WO |
2016178694 | Nov 2016 | WO |
2016178695 | Nov 2016 | WO |
2017014768 | Jan 2017 | WO |
2017014771 | Jan 2017 | WO |
2017014774 | Jan 2017 | WO |
2017027034 | Feb 2017 | WO |
Entry |
---|
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2016/048420 dated May 22, 2017, 12 pages. |
Office Action issued in related Canadian Patent Application No. 2,996,055 dated Oct. 2, 2020, 5 pages. |
U.S. Pat. No. 0802254A, Oct. 17, 1905, “Can-Cooking Apparatus,” John Baker et al. |
Number | Date | Country | |
---|---|---|---|
20200048020 A1 | Feb 2020 | US |