This application is a National Stage of International Application No. PCT/JP2020/024038 filed Jun. 18, 2020, claiming priority based on Japanese Patent Application No. 2019-117354 filed Jun. 25, 2019.
The present disclosure relates to a dust cover disposed over a gap between a steering shaft and a dash panel.
A steering apparatus of vehicles includes a steering shaft. The steering shaft passes through a through part of a dash panel separating a vehicle cabin and an engine room from each other. The steering shaft moves along with adjustment of the position of the steering wheel, vibrations during traveling, or the like, and thus a certain gap is provided between the steering shaft and the through part of the dash panel. Meanwhile, it is required that entry of outside air containing foreign matters such as dust, sound generated in an engine room, and the like into the vehicle cabin be prevented. Given these circumstances, a dust cover is provided over the gap between the steering shaft and the through part of the dash panel (refer to Patent Literature 1, for example).
Patent Literature 1: Japanese Patent Application Laid-open No. 2019-6268
The dust cover may be required to be transported to a work area in which the dust cover is mounted on the dash panel with a first flexible part and a second flexible part of a bellows fixed to a mounting member.
The present disclosure has been made in view of the above problem, and an object thereof is to provide a dust cover capable of maintaining a state in which a first flexible part and a second flexible part of a bellows are fitted onto a mounting member.
To achieve the above object, a dust cover according to an embodiment of the present disclosure comprising: a bushing mounted on an outer circumferential face of a steering shaft passing through a tubular member of a dash panel; an annular bellows covering a gap between the tubular member and the bushing; and a tubular mounting member pressing the bellows against the tubular member, the mounting member having: a main body extending along a circumferential direction about a central axis of the steering shaft; and a flange part protruding outward in a radial direction of the steering shaft, the bellows having: a bushing fitting part being in contact with an outer circumferential face of the bushing; a first outer rim part being in contact with an outer circumferential face of the main body; a first flexible part coupling the bushing fitting part and the first outer rim part to each other; a second outer rim part disposed on an outer circumferential side of the first outer rim part; a fixing member fixing the first outer rim part or the second outer rim part to the flange part; a second flexible part coupling the bushing fitting part and the second outer rim part to each other; a first convex part provided on one of an outer circumferential face of the first outer rim part and an inner circumferential face of the second outer rim part and protruding in a radial direction from the one toward another; and a first concave part provided on the other and fitted with the first convex part, and with the first outer rim part or the second outer rim part fixed to the flange part via the fixing member, the first convex part being fixed in an axial direction of the central axis by the first concave part.
With the fixing member fixed to the flange part, the first concave part fixes the first convex part in the axial direction, and thus a state in which the first flexible part and the second flexible part of the bellows are fitted onto the mounting member can be maintained. The first convex part is held between the first concave part and the flange part, whereby positioning of the first outer rim part and the second outer rim part in the axial direction can be performed more surely and easily. Furthermore, the first outer rim part, the second outer rim part, and the mounting member are integral with each other, thus water is inhibited from entering among the first outer rim part, the second outer rim part, and the mounting member, and thus waterproofness also improves.
As a desirable aspect of the dust cover, the fixing member is an elastic member, and the first outer rim part or the second outer rim part is elastically held on the flange part by the fixing member. With this aspect, even when outer force in a direction in which the bellows becomes detached from the mounting member is applied while the dust cover is transported to a work area in which the dust cover is mounted on the dash panel, the state in which the bellows is fixed to the mounting member is maintained.
As a desirable aspect of the dust cover, the flange part is provided with a through hole, and the fixing member is a falling prevention member passing through the through hole to be fixed to the flange part. With this aspect, a worker grips a tip part and causes the tip part to pass through the through hole, whereby the falling prevention member can be fixed to the flange part. Thus, the falling prevention member can be mounted on the flange part by easy work.
As a desirable aspect of the dust cover, the falling prevention member and the first outer rim part are an insert molded product molded integrally with the flange part. With this aspect, compared with a method in which the tip part of the falling prevention member is elongated and is caused to pass through the through hole, a thicker falling prevention member can be fixed to the flange part. In addition, insert molding does not impose an excessive load on the falling prevention member, and thus damage is unlikely to occur in the falling prevention member.
As a desirable aspect of the dust cover, a plurality of the falling prevention members are provided at regular intervals along the circumferential direction. With this aspect, holding force when the second outer rim part is held on the flange part is made uniform along the circumferential direction.
As a desirable aspect of the dust cover, the fixing member is a gripping member having a U shape in a section including the central axis and gripping the flange part from an outer circumferential side. With this aspect, gripping force with which the gripping member grips the flange part increases, and the state in which the bellows is fitted onto the mounting member can be maintained more surely.
As a desirable aspect of the dust cover, the gripping member extends annularly along the circumferential direction. With this aspect, work for mounting the gripping member on the mounting member can be performed more easily. In addition, gripping force with which the gripping member grips the flange part further increases.
As a desirable aspect of the dust cover, one of the outer circumferential face of the first outer rim part and the inner circumferential face of the second outer rim part is provided with a second convex part, whereas the other is provided with a second concave part fitted with the second convex part. With this aspect, the second convex part is fitted into the second concave part, and thus a radial face of the second convex part presses a radial face of the second concave part. Consequently, the holding force of the first flexible part and the second flexible part to the mounting member increases.
The present disclosure can provide a dust cover capable of maintaining a state in which a first flexible part and a second flexible part of a bellows are fitted onto a mounting member.
The following describes the present invention in detail with reference to the accompanying drawings. The present invention is not limited by the following modes for performing the invention (hereinafter, referred to as embodiments). Components in the following embodiments include ones that those skilled in the art can easily think of, substantially the same ones, and so-called equivalents. Furthermore, the components disclosed in the following embodiments can be combined with each other as appropriate.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
The ECU 90 controls the operation of the electric motor 93. The ECU 90 acquires a signal from each of the torque sensor 94 and the vehicle speed sensor 95. To the ECU 90, with an ignition switch 98 turned on, electric power is supplied from a power supply apparatus 99 (an on-vehicle battery, for example). The ECU 90 calculates an auxiliary steering command value based on the steering torque and the vehicle speed. The ECU 90 regulates an electric power value to be supplied to the electric motor 93 based on the auxiliary steering command value. The ECU 90 acquires information on induced voltage from the electric motor 93 or information output from a resolver or the like provided in the electric motor 93. The ECU 90 controls the electric motor 93 to reduce the force required for the operation of the steering wheel 81.
In the following description, the direction along a central axis Z of the second steering shaft 85 is referred to as an axial direction, the direction orthogonal to the axial direction is referred to as a radial direction, and the direction along a circle with the central axis Z as the center is referred to as a circumferential direction. In
As illustrated in
The dust cover 1 is fitted to the inner circumferential face of the tubular member 101. The dust cover 1 is fixed to the tubular member 101 by a band 7 mounted on an outer circumferential face of the tubular member 101. The tubular member 101 becomes deformed by being clamped by the band 7. The tubular member 101 is made of metal, for example. When the tubular member 101 is metal, the tubular member 101 preferably has a slit 102 along the axial direction as illustrated in
As illustrated in
As illustrated in
The mounting member 6 is a member pressing the bellows 2 against the tubular member 101 illustrated in
The bellows 2 is made of rubber, for example. The bellows 2 is an annular member covering a gap between the tubular member 101 and the bushing 5. As illustrated in
The bushing fitting part 20 is positioned at an end of the bellows 2 on the inside in the radial direction. The bushing fitting part 20 is fitted to the bushing 5. That is to say, the bushing fitting part 20 is in contact with an outer circumferential face of the bushing 5. As illustrated in
As illustrated in
Thus, the first convex part 221 has a rectangular shape in a section including the central axis Z. The first convex part 221 and the first outer rim part 22 have an L shape in a section including the central axis Z. The radial face 221c is in contact with the vertical wall face 62b of the flange part 62. The radial face 221c and the tip face 22b are flush with each other. Thus, the first outer rim part 22 is positioned in the axial direction along the central axis Z.
The second outer rim part 26 is provided on an outer circumferential side of the first outer rim part 22. The second flexible part 25 couples the bushing fitting part 20 and the second outer rim part 26 to each other. In a section including the central axis Z, the second flexible part 25 is substantially U-shaped. The second outer rim part 26 is disposed at an end of the second flexible part 25. The second outer rim part 26 has a vertical wall part 261 protruding outward in the radial direction. The vertical wall part 261 has a vertical wall face 261a on the right side of
A first concave part 262 is provided inside the vertical wall part 261 in the radial direction. The first concave part 262 has an inner circumferential face 262a extending along the axial direction of the central axis Z and a radial face 262b extending along the radial direction in a section including the central axis Z. The inner circumferential face 262a is in contact with the outer circumferential face 221b of the first convex part 221. The radial face 262b is in contact with the radial face 221a of the first convex part 221. The first concave part 262 is fitted with the first convex part 221.
A falling prevention member 266 is provided integrally with the vertical wall part 261. The falling prevention member 266 is a fixing member fixing the second outer rim part 26 to the flange part 62. The falling prevention member 266 is rubber (an elastic member). The falling prevention member 266 has a small diameter part 266a, a large diameter part 266b, a tapered part 266c, and a tip part 266d.
The small diameter part 266a is disposed in the through hole 62c of the flange part 62. An outer circumferential face of the small diameter part 266a is in contact with an inner circumferential face of the through hole 62c. The large diameter part 266b and the tip part 266d have a cylindrical shape. The large diameter part 266b has a larger diameter than that of the tip part 266d. Consequently, an outer circumferential face of the tapered part 266c has a truncated cone shape having a gradually decreasing diameter toward the right side of
The following describes the length of the small diameter part 266a of the falling prevention member 266 in the axial direction (a right-and-left direction in
In a state after the falling prevention member 266 is mounted on the flange part 62, the length of the small diameter part 266a in the axial direction (the right-and-left direction in
The bellows 2 as rubber is molded using a mold, for example. As illustrated in
Thus, the first flexible part 21 is substantially S-shaped in a section including the central axis Z. The bent part 211 is reversed by the time when the bellows 2 is mounted on the bushing 5. That is to say, the bent part 211 is pushed toward the second flexible part 25.
The bushing 5 is a bearing rotatably supporting the second steering shaft 85. The bushing 5 is made of nylon, for example. As illustrated in
The base part 50 is in contact with the second steering shaft 85. The base part 50 includes concave parts 501 on its outer circumferential face. The number of concave parts 501 is four, for example. The four concave parts 501 are disposed at regular intervals in the circumferential direction. The convex parts 201 illustrated in
The outer flange 51 protrudes from an end of the base part 50 on the engine room side outward in the radial direction. The inner flange 52 protrudes from an end of the base part 50 on the vehicle cabin side outward in the radial direction. The bushing fitting part 20 of the bellows 2 is fitted into the space formed by the base part 50, the outer flange 51, and the inner flange 52. The lubricant grooves 59 are grooves provided on an inner circumferential face of the base part 50 and are along the axial direction, for example. The lubricant grooves 59 are across the full length of the bushing 5 in the axial direction. The lubricant grooves 59 are disposed at regular intervals in the circumferential direction, for example. The lubricant grooves 59 are filled with grease as a lubricant. Thus, friction between the bushing 5 and the second steering shaft 85 is reduced.
As illustrated in
The third protrusion 28 and the third protrusion 29 come into intimate contact with the bushing 5, and thus a gap between the bushing fitting part 20 and the bushing 5 is sealed. Furthermore, when a load in the axial direction is applied to the bushing fitting part 20 by vibrations or the like, the third protrusion 28 or the third protrusion 29 that has become deformed is restored. Thus, the state in which the third protrusion 28 or the third protrusion 29 is in contact with the bushing 5 is maintained. Even when the load is applied to the bushing fitting part 20, the sealing property of the gap between the bushing fitting part 20 and the bushing 5 is maintained.
An inner diameter D20 of the bushing fitting part 20 illustrated in
The seal lip 11 is a sealing member separating a gap between the second steering shaft 85 and the bushing 5 and the engine room from each other. The seal lip 11 is nitrile rubber (NBR), for example, and is integral with the bushing 5 through vulcanization adhesion. As illustrated in
Thus, when the seal lip 11 comes into contact with the second steering shaft 85, the seal lip 11 becomes deformed. Owing to the elasticity of the seal lip 11, a gap between the seal lip 11 and the second steering shaft 85 is unlikely to occur. Thus, the seal lip 11 can prevent entry of foreign matters from the engine room to the inside of the bushing 5 and can also prevent leakage of the grease from the inside of the bushing 5 to the engine room. In addition, the seal lip 11 can reduce leakage of sound generated in the engine room to the vehicle cabin.
The seal lip 12 is a sealing member separating the gap between the second steering shaft 85 and the bushing 5 and the vehicle cabin from each other. The seal lip 12 is nitrile rubber (NBR), for example, and is integral with the bushing 5 through vulcanization adhesion. As illustrated in
As illustrated in
The band 7 does not necessarily have the structure described above. The band 7 is only required to clamp the tubular member 101 and is not limited to a particular structure. The band 7 may also be called a binding band or a hose band.
The tubular member 101 is not necessarily metal. The tubular member 101 may be made of synthetic resin or rubber, for example. When the tubular member 101 is synthetic resin or rubber, the tubular member 101 does not necessarily have the slit 102 illustrated in
In the production process of the bellows 2, the bent part 211 illustrated in
As described in the foregoing, the dust cover 1 includes the bushing 5, the bellows 2, and the mounting member 6. The mounting member 6 has the main body 61 extending along the circumferential direction about the central axis Z of the second steering shaft 85 (the steering shaft) and the flange part 62. The bellows 2 has the first outer rim part 22 being in contact with the outer circumferential face 61a of the main body 61, the first convex part 221 protruding from the first outer rim part 22 outward in the radial direction, the second outer rim part 26 provided with the first concave part 262 fitted with the first convex part 221 on its inner circumferential side, and the falling prevention member 266 (the fixing member) fixing the second outer rim part 26 to the flange part 62.
As illustrated in
The falling prevention member 266 (the fixing member) is an elastic member. The second outer rim part 26 is elastically held on the flange part 62 by the falling prevention member 266. As described in
The flange part 62 is provided with the through hole 62c, and the falling prevention member 266 (the fixing member) extends in the axial direction and passes through the through hole 62c to be fixed to the flange part 62. As illustrated in
Three (a plurality of) falling prevention members 266 are provided at regular intervals along the circumferential direction. Thus, the second outer rim part 26 is held on the flange part 62 uniformly along the circumferential direction.
The following describes a first modification of the first embodiment.
In a dust cover 1A, a second convex part 263 is provided on an inner circumferential face of the second outer rim part 26, whereas a second concave part 222 is provided on an outer circumferential face of the first outer rim part 22. The second convex part 263 and the second concave part 222 are provided annularly along the circumferential direction of the central axis Z. The second convex part 263 protrudes from the inner circumferential face of the second outer rim part 26 inward in the radial direction. The second concave part 222 is provided on the outer circumferential face of the first outer rim part 22 and is recessed inward in the radial direction. The second convex part 263 and the second concave part 222 have a rectangular shape in a section including the central axis Z. The second convex part 263 is fitted into the second concave part 222. The second convex part 263 and the second concave part 222 overlap with the band 7 illustrated in
The following describes a second modification of the first embodiment.
In a dust cover 1B, a second concave part 264 is provided on the inner circumferential face of the second outer rim part 26, whereas a second convex part 223 is provided on the outer circumferential face of the first outer rim part 22. The second convex part 223 and the second concave part 264 are provided annularly along the circumferential direction of the central axis Z. The second convex part 223 protrudes from the outer circumferential face of the first outer rim part 22 outward in the radial direction. The second concave part 264 is provided on the inner circumferential face of the second outer rim part 26 and is recessed outward in the radial direction. The second convex part 223 and the second concave part 264 have a rectangular shape in a section including the central axis Z. The second convex part 223 is fitted into the second concave part 264. The second convex part 223 and the second concave part 264 overlap with the band 7 illustrated in
The following describes a third modification of the first embodiment.
In a dust cover 1C, a first convex part 267 is provided on the inner circumferential face of the second outer rim part 26, whereas a first concave part 224 is provided on the outer circumferential face of the first outer rim part 22. The first convex part 267 and the first concave part 224 are provided annularly along the circumferential direction of the central axis Z. The first convex part 267 protrudes from the inner circumferential face of the second outer rim part 26 inward in the radial direction. The first concave part 224 is provided on the outer circumferential face of the first outer rim part 22 and is recessed inward in the radial direction. The first convex part 267 and the first concave part 224 have a rectangular shape in a section including the central axis Z. The first convex part 267 is fitted into the first concave part 224. The first convex part 267 and the first concave part 224 overlap with the band 7 illustrated in
Consequently, the holding force of the first flexible part 21 and the second flexible part 25 to the mounting member 6 increases.
The following describes a fourth modification of the first embodiment.
In a dust cover 1D, a first concave part 268 is provided on the inner circumferential face of the second outer rim part 26, whereas a first convex part 225 is provided on the outer circumferential face of the first outer rim part 22. The first convex part 225 and the first concave part 268 are provided annularly along the circumferential direction of the central axis Z. The first convex part 225 protrudes from the outer circumferential face of the first outer rim part 22 outward in the radial direction. The first concave part 268 is provided on the inner circumferential face of the second outer rim part 26 and is recessed outward in the radial direction. The first convex part 225 and the first concave part 268 have a rectangular shape in a section including the central axis Z. The first convex part 225 is fitted into the first concave part 268. The first convex part 225 and the first concave part 268 overlap with the band 7 illustrated in
The following describes a fifth modification of the first embodiment.
In a dust cover 1E, the falling prevention member 266 is provided integrally with the first outer rim part 22 by insert molding described below. The falling prevention member 266 is a fixing member fixing the first outer rim part 22 to the flange part 62. The second outer rim part 26 is mounted on the first outer rim part 22 and the flange part 62 while being stretched on the outer circumference of the first outer rim part 22. The falling prevention member 266 is rubber (an elastic member). The falling prevention member 266 has the small diameter part 266a, the large diameter part 266b, the tapered part 266c, and the tip part 266d.
The small diameter part 266a is disposed in the through hole 62c of the flange part 62. The outer circumferential face of the small diameter part 266a is in contact with the inner circumferential face of the through hole 62c. The large diameter part 266b and the tip part 266d have a cylindrical shape. The large diameter part 266b has a larger diameter than that of the tip part 266d. Consequently, the outer circumferential face of the tapered part 266c has a truncated cone shape having a gradually decreasing diameter toward the right side of
The first convex part 267 is provided on the inner circumferential face of the second outer rim part 26, whereas the first concave part 224 is provided on the outer circumferential face of the first outer rim part 22. The first convex part 267 is fixed in the axial direction by the first concave part 224. Consequently, the holding force of the first flexible part 21 and the second flexible part 25 to the mounting member 6 increases.
The following simply describes a method for insert molding the falling prevention member 266. First, the mounting member 6 is placed inside a mold. Subsequently, a liquid rubber material is poured into the mold. Thus, the small diameter part 266a is disposed in the through hole 62c of the flange part 62. After being held for an appropriate cross-linking (vulcanization) time, a molded product is taken out. Thus, as illustrated in
Consequently, compared with a method in which the tip part 266d of the falling prevention member 266 is elongated and is caused to pass through the through hole 62c to fix the falling prevention member 266 to the flange part 62, insert molding can form the falling prevention member 266 having the large diameter part 266b having a larger outer diameter. In addition, when the tip part 266d of the falling prevention member 266 is elongated, and an excessive load is imposed on the falling prevention member 266, damage may occur in the falling prevention member 266. However, insert molding does not impose an excessive load on the falling prevention member 266, and thus damage is unlikely to occur in the falling prevention member 266.
The following describes a sixth modification of the first embodiment.
In a dust cover 1F, the falling prevention member 266 is provided integrally with the first outer rim part 22 by insert molding. The falling prevention member 266 is a fixing member fixing the first outer rim part 22 to the flange part 62. The second outer rim part 26 is mounted on the first outer rim part 22 and the flange part 62 while being stretched on the outer circumference of the first outer rim part 22. The falling prevention member 266 is rubber (an elastic member). The structure of the falling prevention member 266 and the method for molding the same are the same as those of the fifth modification. In the sixth modification, the first concave part 268 is provided on the inner circumferential face of the second outer rim part 26, whereas the first convex part 225 is provided on the outer circumferential face of the first outer rim part 22. With the falling prevention member 266 (the fixing member) fixed to the flange part 62, the radial face of the first convex part 225 presses the radial face of the first concave part 268 toward the right side of
According to the sixth modification, in like manner with the fifth modification, the falling prevention member 266 having the large diameter part 266b having a larger outer diameter can be formed by insert molding. In addition, insert molding does not impose an excessive load on the falling prevention member 266, and thus damage is unlikely to occur in the falling prevention member 266.
The following describes a second embodiment.
In a dust cover 1G, a gripping member 265 is provided integrally with the second outer rim part 26. The gripping member 265 is a fixing member fixing the second outer rim part 26 to the flange part 62. The gripping member 265 is rubber (an elastic member) and elastically grips the flange part 62 from an outer circumferential side. The gripping member 265 has the vertical wall part 261, an outer circumferential part 265a, and a vertical wall part 265b. The gripping member 265 has a U shape in a section including the central axis Z. The outer circumferential part 265a is in contact with an outer circumferential face of the flange part 62 and covers the outer circumferential face. The outer circumferential part 265a extends toward the vehicle cabin side (the right side of
The following describes a mode of the elastic deformation of the gripping member 265 with reference to
As described in the foregoing, the gripping member 265 (the fixing member) has a U shape in a section including the central axis Z and grips the flange part 62 from the outer circumferential side. Thus, gripping force with which the gripping member 265 grips the flange part 62 increases, and the state in which the bellows 2 is fitted onto the mounting member 6 can be maintained more surely.
The following describes a first modification of the second embodiment (with illustration omitted). In the first modification, the gripping member 265 is provided integrally with the first outer rim part 22. The gripping member 265 is a fixing member fixing the first outer rim part 22 to the flange part 62. The gripping member 265 is rubber (an elastic member) and elastically grips the flange part 62 from the outer circumferential side. In like manner with
The embodiments have been described; the embodiments are not limited by the details described above. Although the first embodiment describes the falling prevention member 266, a falling prevention member 366 illustrated in
As illustrated in
As illustrated in
Subsequently, when the tip part 366c is released, as illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2019-117354 | Jun 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/024038 | 6/18/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/262203 | 12/30/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20060108782 | Kanazawa | May 2006 | A1 |
Number | Date | Country |
---|---|---|
10 2007 027 135 | Dec 2008 | DE |
10 2007 052 721 | May 2009 | DE |
2004-283976 | Oct 2004 | JP |
2018016149 | Feb 2018 | JP |
2018016152 | Feb 2018 | JP |
2018017278 | Feb 2018 | JP |
2019-006268 | Jan 2019 | JP |
2004025152 | Mar 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20220316599 A1 | Oct 2022 | US |