Description of the Prior Art
Usually, a conventional filter device transports air or liquid to be filtered into the filter device, and impurities in the air or liquid to be filtered are filtered by a sheet filter cylinder around the filter device. Some filter devices are further formed with an outermost mesh cylinder to restrain a shape of the sheet filter cylinder. However, the convention filter device as disclosed in TWM305049 filters the air or liquid to be filtered only through a single pore diameter of the sheet filter cylinder; therefore, a filtering effect is not good, and a service life of the sheet filter cylinder is shorter. Furthermore, a position where the sheet filter cylinder and the mesh cylinder contact with each other constantly is easily abraded.
U.S. Pat. No. 5,427,597 discloses that separation of pleats is provided by dimples on both tips on overall regions of the sheet filter cylinder, and the dimples are not disposed only at top and bottom end of the sheet filter cylinder, so that the structure is complicated. Besides, the dimples do not fill up inner and outer spaces between the pleated portions, the sheet filter cylinder is not stable; the potting material is not flexible and is hard so that it has poor shake-absorbing and impact-buffering effects.
The present invention has arisen to mitigate and/or obviate the afore-described disadvantages.
The major object of the present invention is to provide a dust filter barrel which has multiple pore diameters and can prevent a sheet filter cylinder and the mesh cylinder from being broken due to abrasion with each other.
To achieve the above and other objects, a dust filter barrel is provided, including a sheet filter barrel, a mesh cylinder and a fixation base. The sheet filter cylinder has an upper end face and a lower end face and has an inner layer and an outer layer which is laminated on the inner layer; wherein, the inner layer has a plurality of pores having a first pore diameter, the outer layer has a plurality of pores having a second pore diameter, and the second pore diameter is smaller than the first pore diameter. The mesh cylinder is non-contact with the outer layer of the sheet filter cylinder and sleeved outside the sheet filter cylinder, and the mesh cylinder has an upper end face and a lower end face. The fixation base has a first cover body covering the upper end faces of the sheet filter cylinder and the mesh cylinder and a second cover body covering the lower end faces of the sheet filter cylinder and the mesh cylinder, and the second cover body is formed with at least one opening which is communicated with an interior of the sheet filter cylinder.
The present invention will become more obvious from the following description when taken in connection with the accompanying drawings, which show, for purpose of illustrations only, the preferred embodiment(s) in accordance with the present invention.
The present invention will be clearer from the following description when viewed together with the accompanying drawings, which show, for purpose of illustrations only, the preferred embodiment in accordance with the present invention.
Please refer to
The sheet filter cylinder 2 has an upper end face and a lower end face and has an inner layer 21 and an outer layer 22 which is laminated on the inner layer 21. The sheet filter cylinder 2 may be a paper filter cylinder. The inner layer 21 has a plurality of pores having a first pore diameter, and the outer layer 22 has a plurality of pores having a second pore diameter. The second pore diameter is smaller than the first pore diameter. The sheet filter cylinder 2 has two different pore diameters to achieve multi-filtering. Larger particles are filtered out through the inner layer 21 of the sheet filter cylinder 2, and the second pore diameter is smaller than the first pore diameter; therefore, the outer layer 22 of the sheet filter cylinder 2 filters air flowing therethrough again to decrease a number of particles in the air. Wherein, the outer layer 22 is thinner than the inner layer 21 (as shown in
It is to be noted that the filtering effect depends on a size of the particles filtered out; that is, the filtering effect depends on a size of the first and second pore diameters. As technology advances, air pollution becomes more serious, and suspended matter is viewed as one of the indexes of air quality standards. The Environmental Protection Administration Executive Yuan of Taiwan defines particles under 10 μm as particulate matters. The particulate matters are tiny, and when the particulate matters are inhaled into human bodies, the particulate matters may cause harm to the respiratory tract or other organs. Generally speaking, particles larger than 10 μm can be filtered out through nasal cavity, but particles smaller than 2.5 μm can be inhaled and enter human bodies through the trachea, the bronchus and the pulmonary alveolus and cause bronchitis or bronchial fibrosis. What's more, if there are toxic substances attached on the particles smaller than 2.5 μm, the particles would cause serious harms to different organs in human bodies.
To achieve preferable filtering efficiency and effect, the sheet filter cylinder 2 has a plurality of pleated portions 23 circumferentially arranged. With the pleated 23, a contact area with air is largely increased to elevate the filtering efficiency. The inner layer 21 of the sheet filter cylinder 2 is made of a plurality of fibers, and the fibers may be chemical fibers or glass fibers. A diameter of each said fiber is 0.5 μm to 2.0 μm, so the fibers can be interwoven with each other to form the inner layer 21 having a plurality of pores having the first pore diameter. Then, a surface of the inner layer 21 can be coated or sprayed with a film to form the outer layer 22. Therefore, the outer layer 22 has the second pore diameter which is smaller than the first pore diameter, wherein a nominal pore size of the second pores is smaller than 0.5 μm. When the sheet filter cylinder 2 is used, the larger particles, for example, sawdust, pollen or dust are filtered out through the first pore diameter; and then, the smaller particles, for example, wood dust or other industrial dust produced during a processing procedure, are filtered out by the second pore diameter; therefore, the air vented out from the dust filter barrel barely contains particulate matters. Furthermore, through the multi-filtering method, the larger particles are filtered out first, and a service life of the outer layer 22 can be prolonged. Preferably, the second pore diameter of the outer layer 22 is smaller than 0.3 μm and can filter out 99.97% of air particles whose diameter are larger than 0.3 μm to reach the standard of High-Efficiency Particulate Air (HEPA).
Please further refer to
Specifically, the fixation base 4 has a first cover body 41 and a second cover body 42. The first cover body 41 is disposed on the upper end faces of the sheet filter cylinder 2 and the mesh cylinder 3, and the second cover body 42 is disposed on the lower end faces of the sheet filter cylinder 2 and the mesh cylinder 3. The second cover body 42 is formed with at least one opening 43 which is communicated with an interior of the sheet filter cylinder 2. The fixation base 4 at least encapsulates a part of one of the upper and lower faces of the sheet filter cylinder 2, and the mesh cylinder 3 is fixed outside the sheet filter cylinder 2 by the fixation base 4. In this embodiment, the second cover body 42 is formed with two said openings 43 which are substantially semi-circle and symmetrical to each other. Preferably, the fixation base 4 is stuck with the sheet filter cylinder 2 and the mesh cylinder 3. Specifically, the first and second cover bodies 41, 42 are respectively formed with a notch 44 with a binder disposed therein, and the upper end faces and the lower end faces of both the sheet filter cylinder 2 and the mesh cylinder 3 are stuck in each said notch 44 by the binder respectively. Each said notch 44 has a first annular side wall 441 having a relatively smaller radius and a second annular side wall 442 having a relatively larger radius, and the upper and lower end faces of the mesh cylinder 3 tightly engage with each said second annular side wall 442 laterally respectively. The upper and lower end faces of the sheet filter cylinder 2 are arranged between each said first annular side wall 441 and each said second annular side wall 442 respectively and are non-contact with each said first annular side wall 441 and each said second annular side wall 442. In a radial direction of each said notch 44, the upper and lower end faces of the sheet filter cylinder 2 are of 80% to 90% of a radial dimension of each said notch 44 respectively. Hence, the sheet filter cylinder 2 can keep a fixed distance from the mesh cylinder 3 to prevent the sheet filter cylinder 2 from colliding and abrading with the mesh cylinder 3.
Preferably, an outer periphery of the second cover body 42 is further provided with a fastening strip 5. The fastening strip 5 fastens the second cover body 42 to a connection channel which is communicated with the interior of the sheet filter cylinder 2 so as to seal a gap between the connection channel and the outer periphery of the second cover body 42 and prevent the particulate matters filtered from leaking out. In addition, it is convenient for a user to assemble or disassemble the fastening strip 5. Furthermore, when the sheet filter cylinder 2 is cleaned, the dust or particles in the sheet filter cylinder 2 fall directly from the opening 43 of the second cover body 42 through the connection channel into an additional collection bag. Therefore, it is convenient for the user to clean the sheet filter cylinder 2 and throw away the collection bag.
The upper end faces and the lower end faces of both the sheet filter cylinder 2 and the mesh cylinder 3 are fixedly embedded into the binders 45 in said notches 44 respectively, and the mesh cylinder 3 and the outer layer 22 of the sheet filter cylinder 2 are radially annularly spaced apart from each other by a part of the binder 45 therebetween. The sheet filter cylinder 2 has a plurality of pleated portions 23 circumferentially arranged, the binder 45 is annularly continuously attached radially to an inner face 46 of the notch 44 of second cover body 42 and the outer layer 22 of the sheet filter cylinder 2, and the binder 45 further fills up outer spaces 47 between the plurality of pleated portions 23. The binder 45 is preferably a flexible material which can absorb shake well and lower the impact when operating or cleaning The binder 45 may be an epoxy, rubber or elastomeric member. Preferably, the binder 45 further fills up inner spaces 48 between the plurality of pleated portions 23, thus improving shake-absorbing and impact-buffering effects. Preferably, the binder 45 is further disposed through part of grids 31 of the mesh cylinder 3 and binds the part of grids 31 of the mesh cylinder 3, thus improving assembling of parts.
Preferably, the dust filter barrel 1 may further include a whisking assembly 6. The whisking assembly 6 has a handle 61, a pivoted rod 62 and at least one whisking blade 63, wherein an end of the pivoted rod 62 is disposed through the first cover body 41 and connected with the handle 61, the other end is pivoted to the second cover body 42, the at least one whisking blade 63 is fixed on the pivoted rod 62, and the at least one whisking blade 63 contacts an inner wall of the sheet filter cylinder 2. In this embodiment, as viewed from a direction substantially perpendicular to the fixation base 4, a depth of each said whisking blade 63 protruding into one said pleated portion 23 is substantially half of a depth of each said pleated portion 23. When the handle 61 is rotated, the handle 61 actuates the pivoted rod 62 and the whisking blades 63 to rotate. The whisking blades 63 hit the sheet filter cylinder 2 continuously to make the particles on the inner layer 21 of the sheet filter cylinder 2 fall off, and the particles on the outer layer 22 of the sheet filter cylinder 2 can be cleaned through jetting air. In addition, the dust and particles may be cleaned through a pressure difference between an interior and exterior air pressures of the dust filter barrel 1 which can produce air shockwaves to shake off the particles on the sheet filter cylinder 2.
Given the above, the sheet filter cylinder of the dust filter barrel has an inner layer and an outer layer which is laminated on the inner layer, wherein the outer layer is formed by coating or spraying a film on the surface of the inner layer; therefore, the outer layer has the smaller pore diameter than the inner layer does to filter out more particles. The sheet filter cylinder can achieve multi-filtering without additional sheet filter cylinders in different dimensions.
In addition, the sheet filter cylinder is non-contact with the mesh cylinder; therefore, the sheet filter cylinder can be prevented from being broken due to abrasion with the mesh cylinder and losing the filtering effect.
While we have shown and described various embodiments in accordance with the present invention, it should be clear to those skilled in the art that further embodiments may be made without departing from the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
103213737 | Aug 2014 | TW | national |
Field of the Invention This application is a Continuation-in-Part of application Ser. No. 14/733,374, filed on Jun. 8, 2015, for which priority is claimed under 35 U.S.C. §120; and this application claims priority of Application No. 103213737 filed in Taiwan on Aug. 1, 2014 under 35 U.S.C. §119, the entire contents of all of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14733374 | Jun 2015 | US |
Child | 15612410 | US |