The present invention generally relates to the field of vacuum cleaners. In particular, the present invention relates to a dust indicator for a vacuum cleaner which utilizes an airflow for keeping the dust indicator free from dust and dirt.
Recently, the use of bag less vacuum cleaners, that is vacuum cleaners which do not make use of disposable dust bags, has increased. Dust from the dust laden airstream which is sucked into the vacuum cleaner is separated in a dust separation chamber and collected in a dustbin, which must be frequently emptied by the user. As long as the dust level in the dustbin is below a critical level, normal functionality of the dust separation in the vacuum cleaner is provided. However, a common problem for bag less vacuum cleaners is that the user forgets to empty the dustbin before the critical level is reached, which results in unnecessary clogging of filters and other parts of the vacuum cleaner. The consequences of this are loss of cleaning performance and increased amount of maintenance of e.g. the main filter and filter screen. Thus, there is a need for indicating to the user when it is time to empty the dustbin before the critical level is reached.
It is known to arrange optical dust indicators in vacuum cleaners for the purpose of detecting dust. The optical dust indicators are typically based on optical sensors providing a detections system, such as a light emitter in combination with a light receiver, which are arranged such that when dust is present in the optical path of the optical signal provided by the light emitter, the light detector detects a decreased or blocked light signal. The optical dust indicators are sensitive to dust getting stuck somewhere in the optical path of the detection system, as this blocks the light signal.
A dust detector utilized in a vacuum cleaner to indicate the amount of dust in a dust laden air stream is disclosed in U.S. Pat. No. 5,163,202. The dust detector is arranged in a suction passage in fluid contact with e.g. a floor nozzle of the vacuum cleaner. A light-emitting element and a light-detecting element, are arranged in a respective opening. The openings are diametrically oppositely arranged in the suction passage wall. The light-emitting element and the light-detecting element are arranged in optical communication and dust is detected when being present in the optical path of the detection system. Further, air passages guarded by pressure responsive valves are defined in the suction passage wall. These are arranged for introducing ambient air into the suction passage via the openings during operation of the vacuum cleaner. The pressure difference created between the ambient space and the suction passage during operation of the vacuum cleaner activates the valves and ambient air flushes over the light-emitting element and the light-detecting element, thereby keeping them free from dust-particles which may otherwise contaminate them. The known dust detector is quite complicated as it comprises a plurality of mechanically complex, moving constituents.
Thus, there is a need within the art for an optical dust indicator for indicating the dust level in a dustbin. In particular, it would be advantageous to have an optical dust indicator which constitutes only fixed parts and which prevents from contamination caused by dust-particles in areas overlapping its optical path.
In view of the above, an objective of the invention is to provide an improved dust indicator for a vacuum cleaner which is suitable for arranging in for instance a dustbin thereof, and which at least alleviates the problems discussed above.
One or more of these objectives are achieved by a dust indicator in accordance with the independent claim.
According to a first aspect of the invention, there is provided a dust indicator for a vacuum cleaner, the dust indicator being arranged in a wall at least partly defining a space of the vacuum cleaner that is set under negative pressure with respect to the outside of the wall during operation of the vacuum cleaner. The dust indicator comprises an air channel having an air inlet arranged at an outer side of the wall, and an air outlet arranged at an inner side of the wall. The air channel thereby provides an airflow into the space during operation of the vacuum cleaner due to the negative pressure. The dust indicator further comprises a sensor arranged for detecting dust by means of sending and/or receiving an electromagnetic signal transmitted through the space. The air channel is arranged such that the airflow prevents dust from sticking in an area of the path of the electromagnetic signal of the sensor. The dust indicator further comprises a transparent window behind which the sensor is arranged, thereby obtaining shielding of the sensor from dust and debris within the space.
Thereby, a dust indicator is provided in which the sensor for detecting the dust in a space, being for instance a dustbin, is protected from dust and debris in the dustbin by means of a transparent window arranged between the sensor and the dusty interior of the dustbin. Further, an airflow is utilized to prevent dust from sticking in the area in front of the sensor. The invention has the advantage that the airflow is created automatically when the dustbin is set under negative pressure during operation of the vacuum cleaner. Since the air channel is providing air from the outside of the dustbin, the airflow typically contains no dust, in contrast to any airflow present within e.g. the dust separation system and the dustbin of the vacuum cleaner in operation. Further, the dust indicator comprises no moving parts which makes it reliable, simple and hassle free.
According to an embodiment of the dust indicator, the airflow is directed to a clean area of the transparent window, the clean area being arranged in the path of the electromagnetic signal of the sensor. By directing the airflow to the area of the transparent window through which the electromagnetic signal of the sensor is passing, dust and dirt is prevented from sticking to this area and thereby to influence the transmission of the electromagnetic signal. Thereby, sensor functionality is improved.
According to an embodiment of the dust indicator, the airflow is arranged having an angle of incidence to the clean spot which is selected within a range of 0 to 90 degrees, which is applicable for keeping the clean area free from dust and debris.
According to an embodiment of the dust indicator, the cross-section area of the air channel varies along its extension. The shape and size of the cross-section area may be varied to fit a certain design or application of the dust indicator. Further, the shape of the air channel may be designed for creating a well defined, high speed airflow towards the clean area.
According to an embodiment of the dust indicator, the cross-section area of the air inlet is larger than the cross-section area of the air outlet. The small cross-section area of the air outlet is advantageous as it decreases the risk of dust entering the air channel from the dustbin, which risk is highest when the vacuum cleaner is turned off. This risk occurs for instance during cleaning or emptying of the dustbin, and if the vacuum cleaner is tilted, dropped or moved in a way such that dust is pressed against the air outlet.
According to an embodiment of the dust indicator, the shape of the air channel is selected from one of a rectangular shape, a bevelled shape, and a funnel shape, which is advantageous.
According to an embodiment of the dust indicator, an exit length, L, of the air channel at the air outlet is less than 5 mm.
According to an embodiment of the dust indicator, the width of the air outlet along the transparent window is larger than the height of the air outlet in a direction normal to the transparent window. The wide and low design of the air outlet provides a large clean area in relation to the cross-section area of the air channel, while at the same time keeping the airflow provided via the air channel at a minimum level.
According to an embodiment of the dust indicator, a ratio width/height of the air outlet is selected within the range 1.1-4.0.
According to an embodiment of the dust indicator, the transparent window is arranged flush with the wall.
According to an embodiment of the dust indicator, the transparent window is arranged in a countersink.
According to an embodiment of the dust indicator, the air channel and the transparent window are arranged in a cover portion arranged for being mounted in the wall. Thus, the parts of the dust indicator may be arranged in a freestanding unit which may be manufactured separately and subsequently be mounted in the wall. Further, the cover portion may be arranged to include a seating for the sensor. Thereby, the whole dust indicator may be a separate part for mounting in a wall of e.g. a dustbin.
According to an embodiment of the dust indicator, the air channel is arranged in a tubular member.
According to an embodiment of the dust indicator, it further comprises a sealing element for sealing off the sensor from the air channel and the ambient space from which the air channel guides ambient air.
According a second aspect of the inventive concept there is provided a vacuum cleaner comprising at least one dust indicator or dust indicator system comprising at least two dust indicators, in which the two indicators are arranged for facing each other and having a common path for the electromagnetic signal through the space, wherein the sensors of the dust indicators are arranged to communicate. Thus, the dust indicator may be used in a system having a separate emitter and detector which work together to detect dust.
Other objectives, features and advantages of the present invention will appear from the following detailed disclosure, from the attached claims as well as from the drawings.
Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to “a/an/the [member, unit, component, means, etc]” are to be interpreted openly as referring to at least one instance of the member, unit, component, means, etc., unless explicitly stated otherwise.
The above, as well as additional objects, features and advantages of the present invention, will be better understood through the following illustrative and non-limiting detailed description of preferred embodiments of the present invention, with reference to the appended drawings, where the same reference numerals will be used for identical or similar elements throughout the views, wherein:
a and 3b show a perspective front side view and a perspective back side view, respectively, of an embodiment of a cover portion according to the present invention;
a and 4b are schematic cross-sectional top views of embodiments of a cover portion according to invention;
Throughout this description the exemplifying embodiments of the present inventive concept are based on optical detection of dust utilizing optical signals. This is for an illustrative purpose only. The present inventive concept is applicable for detection of dust using electromagnetic signals of other wavelengths then visible wavelengths, which is considered to fall within the scope of the present invention.
It is to be understood that the vacuum cleaner 100 further comprises a vacuum source, a suction pipe, a floor nozzle etc. (not shown) for achieving the dust and dirt cleaning capability of the vacuum cleaner, i.e. the parts needed to separate dirt from a dust laden air stream typically entered into the vacuum cleaner via the floor nozzle. However, because the dust and/or dirt sucking operation principles of the vacuum cleaner are not critical to the implementation of the present invention, detailed description thereof is omitted.
To continue, and now referring to
In the close-up top view of an embodiment of a dust indicator 200 in
It should be emphasized that according to an embodiment of a dust indicator the cover portion is an integrated part of the wall of the dustbin. Further, although the exemplifying embodiments herein are directed to arranging the dust indicator in the wall of a dustbin of a vacuum cleaner, the present inventive concept is applicable in other spaces of the vacuum cleaner that are put under negative pressure during operation of the vacuum cleaner.
During operation of the vacuum cleaner, the vacuum source (not shown) creates a vacuum to draw air and dirt into the vacuum cleaner. This further creates a pressure difference between the dustbin and ambient space. A negative pressure in the dustbin forces ambient air from outside the dustbin 101 to flow into the dustbin 101 via the air channel 211. As the air outlet 213 (and an end portion of the air channel, which will be described below) is arranged adjacent or in the direct vicinity of the transparent window 232, the air channel 211 thereby directs air towards the transparent window 232 thereby subjecting at least a portion of the transparent window, which is defined as a clean area 233, with a jet of air. Thus, the clean area 233 is kept clean from dust particles by means of the airflow from the air channel 211, which airflow is created during operation of the vacuum cleaner.
Referring now to
During operation of the vacuum cleaner 100, the optical emitter 220 transmits an optical signal with wavelength λ, λ being a predefined wavelength or range of wavelengths within the electromagnetic spectra, e.g. visible light, a specific colour of light, infrared light (IR), or ultraviolet light (UV). By utilizing a certain wavelength of the electromagnetic signal, the dust indicator may be arranged to be less sensitive to stray light or other electromagnetic energies present in the surroundings. In addition, a decreased sensitivity to surrounding noise and reflections for the dust indicator may be provided by modulating the electromagnetic signal, e.g. by frequency modulation or any other suitable modulation technique.
For a high efficiency of the transmission of the optical signal into the dustbin 101, the material of the transparent window 232 is selected to have a high light transmission for the predefined wavelength λ.
The optical signal is sent inside the dustbin and received by the second dust indicator 200′ which has basically the same structure as described for dust indicator 200 above, but which contains an optical receiver instead of an optical emitter. As long as the optical path is not blocked by dust, the optical receiver receives a high optical signal.
In an embodiment of the dust indicator, a transceiver is employed instead of a separate optical emitter or receiver. That is, the transceiver emits an optical signal into the dustbin, via the transparent window, which signal is reflected in e.g. an opposite reflecting portion arranged inside the dustbin. The reflected optical signal is detected by the transceiver. When the optical signal is blocked by dust, an indication of the dirt level reaching a critical level is provided.
a shows a perspective front view of the cover portion 210 as seen from the inside of the dustbin 101. The protruding portion 231 is shaped substantially as a rectangular block with bevelled edges. The air outlet 213 is here a rectangular aperture having a width of 2 mm and a height of 1.5 mm.
Referring now to
In an embodiment of the dust indicator, the width and height of the air outlet 213 is selected to be 2 mm and 1.5 mm, respectively. The dimensions of the air outlet is selected to provide a large size of the clean area 233, thus facilitating keeping the area in front of the sensor clean. Further, a ratio width/height of the air outlet is preferably selected within the range 1.1-4.0.
In the embodiments of the dust indicator, as described with reference to
According to an embodiment of the dust indicator 500 as illustrated in
In embodiments of the dust indicator, the air outlet is angled towards the transparent window, as is illustrated in embodiments described below with reference to
In
In
The invention has mainly been described above with reference to a few embodiments. However, as is readily appreciated by a person skilled in the art, other embodiments than the ones disclosed above are equally possible within the scope of the invention, as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
1000700 | Jun 2010 | SE | national |
This application is a national stage application filed under 35 U.S.C. 371 of International Application No. PCT/EP2011/060814, filed Jun. 28, 2011, which claims priority from Swedish Patent Application No. 1000700-3, filed Jun. 29, 2010, and U.S. Provisional Patent Application No. 61/361,093, filed Jul. 2, 2010, each of which is incorporated herein in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/060814 | 6/28/2011 | WO | 00 | 3/6/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/000991 | 1/5/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3199138 | Nordeen | Aug 1965 | A |
4601082 | Kurz | Jul 1986 | A |
4680827 | Hummel | Jul 1987 | A |
4769535 | Sasaki et al. | Sep 1988 | A |
4920605 | Takashima | May 1990 | A |
4937912 | Kurz | Jul 1990 | A |
4942640 | Hayashi et al. | Jul 1990 | A |
5134749 | Sakurai et al. | Aug 1992 | A |
5144714 | Mori et al. | Sep 1992 | A |
5144715 | Matsuyo et al. | Sep 1992 | A |
5152028 | Hirano | Oct 1992 | A |
5163202 | Kawakami et al. | Nov 1992 | A |
5182833 | Yamaguchi et al. | Feb 1993 | A |
5216777 | Moro et al. | Jun 1993 | A |
5233682 | Abe et al. | Aug 1993 | A |
5251358 | Moro et al. | Oct 1993 | A |
5319827 | Yang | Jun 1994 | A |
5323483 | Baeg | Jun 1994 | A |
5515572 | Hoekstra et al. | May 1996 | A |
5539953 | Kurz | Jul 1996 | A |
5542146 | Hoekstra et al. | Aug 1996 | A |
5613261 | Kawakami et al. | Mar 1997 | A |
5815884 | Imamura et al. | Oct 1998 | A |
5819367 | Imamura | Oct 1998 | A |
6023814 | Imamura | Feb 2000 | A |
6055702 | Imamura et al. | May 2000 | A |
6323570 | Nishimura et al. | Nov 2001 | B1 |
6400048 | Nishimura et al. | Jun 2002 | B1 |
6437465 | Nishimura et al. | Aug 2002 | B1 |
6910245 | Hawkins et al. | Jun 2005 | B2 |
20040177467 | Jones et al. | Sep 2004 | A1 |
20050138763 | Tanner et al. | Jun 2005 | A1 |
20070180649 | Pullins | Aug 2007 | A1 |
20070214597 | Suzuki | Sep 2007 | A1 |
20080047091 | Nguyen | Feb 2008 | A1 |
Number | Date | Country |
---|---|---|
0 327 936 | Aug 1989 | EP |
0 347 223 | Dec 1989 | EP |
1 836 941 | Sep 2007 | EP |
2002-143060 | May 2002 | JP |
WO 0108544 | Feb 2001 | WO |
Entry |
---|
International Search Report from International Patent Application No. PCT/EP2011/060814, mailed Nov. 22, 2011. |
International Search Report for PCT International Application PCT/US2010/027637 dated May 19, 2010. |
Non-final Office Action for U.S. Appl. No. 12/405,742 dated Oct. 3, 2011. |
Final Office Action for U.S. Appl. No. 12/405,742 dated Mar. 26, 2012. |
Number | Date | Country | |
---|---|---|---|
20130198993 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
61361093 | Jul 2010 | US |