The present disclosure relates generally to the control of work site dust conditions. More particularly the present disclosure relates to a dust detection and suppression system for a drilling machine.
Work sites associated with certain industries, such as the mining and construction industries, are susceptible to undesirable dust conditions. For example, work sites associated with mining, excavation, construction, landfills, and material stockpiles may be particularly susceptible to dust due to the nature of the materials composing the work site ground surface.
Work sites employ various types of drilling machines to perform drilling operations. The drilling operation is known to generate large amounts of dust, especially on encountering hard and abrasive rocks. Various dust control systems and methods have been developed for suppressing dust and controlling the amount of dust released during drilling operation. One of the methods for suppressing dust is water spraying or injecting water into the blast holes for treating work site dust conditions. For example, Chinese Patent No. 202991046U discloses a mine automatic watering and dust removal device. Particularly, 046' discloses an electric valve can be controlled to be opened and closed automatically for achieving automatic spraying of water and removing dust under an unmanned situation. Further, Chinese Patent No. 103422881A discloses an intelligent mining atomization dust settling device wherein adjustable electromagnetic valves can be used for automatically adjusting water and gas supply according to different dust concentrations, to achieve low concentration of dust.
The dust detection systems disclosed in the 046' patent and the 881' patent may however not be efficient in suppressing dust. For example, the amount of water to be sprayed cannot be efficiently determined for varying ground or operation conditions. As a result, excess water may be sprayed causing wastage or insufficient water may be sprayed resulting in poor dust control.
In an aspect of the present disclosure, a method for dust suppression for an autonomous drilling machine operating at a work site is disclosed. The method comprises of generating by a perception module a perception data of the work site, receiving at least one machine parameter from a machine sensor of the autonomous drilling machine, predicting by a controller a dust level for the autonomous drilling machine at the work site based on one of the perception data or the machine parameter, determining a fluid discharge rate for a fluid discharge unit based on the predicted dust level, and adjusting the fluid discharge rate based on dust level detected during the drilling operation.
In another aspect of the present disclosure, a dust suppression system for an autonomous drilling machine operating at a work site is disclosed. The dust suppression system comprises of a perception module configured to generate a perception data of a work site, at least one machine sensor configured to communicate at least one machine parameter of the autonomous drilling machine, a fluid discharge unit for discharge of fluid to a work site for suppression of dust, and a controller. Further, the controller is configured to receive the perception data from the perception module, receive the machine parameter from the machine sensor, predict a dust level for the autonomous drilling machine at the work site based on one of the perception data or the machine parameter, determine a fluid discharge rate for the fluid discharge unit based on the predicted dust level, and adjust the fluid discharge rate based on dust level detected during the drilling operation.
In yet another aspect of the present disclosure, an autonomous drilling machine is disclosed. The autonomous drilling machine comprises of at least one machine sensor configured to communicate at least one machine parameter of the autonomous drilling machine, a fluid discharge unit for discharge of fluid to a work site for suppression of dust, and a controller. The controller is configured to receive a perception data from a perception module configured to generate the perception data of a work site, receive the machine parameter from the machine sensor, predict a dust level for the autonomous drilling machine at the work site based on one of the perception data or the machine parameter, determine a fluid discharge rate for the fluid discharge unit based on the predicted dust level, detect a dust level for the autonomous drilling machine at the work site during the drilling operation based on the perception data, and adjust the fluid discharge rate based on the dust level detected during the drilling operation.
Reference will now be made in detail to the embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference number will be used throughout the drawings to refer to the same or like parts.
The autonomous drilling machine 200 may include a frame 202 supported on a transport mechanism, such as, crawler tracks 204 in the rear portion 219 as illustrated in the
In accordance with a further embodiment, the autonomous drilling machine 200 may include a control panel (not shown). The control panel may be located in the cabin 210. The on-board controllers may be configured to receive control signals from an operator or from a remote location for controlling various components or operation of the autonomous drilling machine 200.
The autonomous drilling machine 200 further includes a work tool 214, supported by the mast 206, for performing the drilling operation. The work tool 214 may be a drill bit or a bore bit. In various other embodiments, the work tool 214 may be any other work tool used in the performance of a work-related task. For example, work implement may include one or more of a blade, a shovel, a ripper, a dump bed, a fork arrangement, a broom, a grasping device, a cutting tool, a digging tool, a propelling tool, a bucket, a loader or any other tool known in the art.
The autonomous drilling machine 200 may include a dust containment assembly 218 provided below the frame 202, of the autonomous drilling machine 200. The dust containment assembly 218 defines an enclosure 220 for covering the work tool 214 between one or more walls 222 and a dust curtain 224 In an embodiment, a plurality of dust curtains 224 may define the enclosure for covering the work tool 214. The drilling operation is performed by the work tool 214 within the enclosure 220 of the dust containment assembly 218.
The dust containment assembly 218 may further include one or more actuators 226 attached to the frame 202 of the autonomous drilling machine 200. The one or more actuators 226 may be connected to the dust curtain 224. Based on the movement of the actuators 226, height 244 of the dust curtain 224 with respect to a ground surface 101 of the work site 100 can be adjusted, as shown in
In the embodiment illustrated, the dust containment assembly 218 may be communicably coupled to a dust suppression system 230. Further, the dust suppression system 230 is operatively coupled to the autonomous drilling machine 200 as shown in
In accordance with an embodiment, the autonomous drilling machine 200 may include one or more of these components of the dust suppression system 230. In accordance with another embodiment, one or more these components of the dust suppression system 230 may be located at a remote or a central location and may be configured to communicate the control signals for the autonomous drilling machine 200 through the control panel located in the autonomous drilling machine 200.
The perception module 232 may include at least one perception sensor (not shown). The perception module is configured to generate perception data of the work site 100. In accordance with an embodiment, the perception module 232 may include a light detection and ranging (LIDAR) device. In accordance with alternate embodiments, the perception module 232 may include perception sensors such as RADAR (radio detection and ranging) device, a stereo camera, a monocular camera, or another device known in the art. The perception module 232 may be disposed on the autonomous drilling machine 200. In other embodiments, at least one perception module 232 may be located on the autonomous drilling machine 200 and at least one perception module 232 may be remotely located, such as on a vertical structure (pole, tower) overseeing the site, an unmanned aerial vehicle or a satellite to generate the perception data.
The perception data obtained from the perception module 232 is used to determine the terrain and geometrical properties of the work site 100. The perception data along with position co-ordinates obtained from a position detection device to generate a terrain map for the work site including identifying the terrain features of the work site 100, such as a crest, a trough, a wall, spill pile, cuttings pile, high fidelity ground etc. The position detection device may be any one or a combination of a Global Positioning System (GPS), a Global Navigation Satellite System, a Pseudolite/Pseudo-Satellite, any other Satellite Navigation System, an Inertial Navigation System or any other known position detection system known in the art.
In accordance with an embodiment, the perception data generated by the perception module 232 includes a three dimensional (3D) point cloud representation of the work site 100. In another embodiment, the perception module 232 may generate 2D images of the work site 100 or at least the portion of the work site 100. The perception module 232 may analyze the 3D point cloud/2D images to determine the ground, non-ground regions of the terrain, and dust. The ground regions may be an indicator of the ground surface 101 of the work site 100. The non-ground region may be an indicator of and obstacle detected at the work site 100.
The machine sensor 234 may be disposed on the autonomous drilling machine 200 and is configured to communicate at least one machine parameter of the autonomous drilling machine 200, as shown in
The fluid discharge unit 236 may be disposed on the autonomous drilling machine 200, at a location in the enclosure 220 of the dust containment assembly 218. In an alternate embodiment, the fluid discharge unit 236 may be located at one or more locations of the work site 100. In accordance with another embodiment, the fluid discharge unit 236 may be disposed on one or more mobile fluid delivery machines for the purpose of spraying fluid at the work site 100.
The fluid discharge unit 236 may include a fluid storage tank (not shown) for storing fluid, one or more spray heads (not shown) that are configured to spray the fluid stored in the fluid storage tank, and various other component such a piping, hoses, pumps, and valves. In an embodiment, some of the spray heads may be mounted on the frame 202 surrounding the dust containment assembly 218.
The controller 238 is communicably coupled to the fluid discharge unit 236. The controller 238 is also communicably coupled to the perception module 232 and the one or more machine sensors 234. In accordance with an embodiment, the controller 238 may be communicably coupled to the control panel located on the autonomous drilling machine 200. In accordance with an embodiment, the controller 238 may be integrated with the control panel of the autonomous drilling machine 200.
The controller 238 is configured to receive the perception data from the perception module 232 and one or more machine parameters from the machine sensors 234, to predict dust levels at the work site 100. Based on the location co-ordinates of the autonomous drilling machine 200, the controller 238 may identify the terrain where the drilling operation is taking place. The controller 238 may further obtain the height 244 of the dust curtain 224 and the walls 222 of the enclosure from the machine sensors 234 and compare the height 244 of the dust curtain 224 with the ground surface 101 of the work site 100 on which drilling operation takes place. In other embodiments, standard height for various dust curtains 224 and the walls 222 of the enclosure may be available with the controller 238. Based on the comparison, a gap 250 is determined by the controller 238 between the dust curtain 224 and the ground surface 101 of the work site 100. Further the dust likely to be generated due to the gap 250 is predicted by the controller 238. If the gap 250 is large, more dust is likely to escape, and if the gap 250 is small, less dust is likely to escape. Accordingly, the dust level may be predicted in a proportional amount corresponding to the gap 250.
The controller 238 may also be configured to receive one or more machine parameters from the machine sensors 234 to predict dust levels at the work site 100. For example, the controller 238 may be configured to receive inertial measurements of the drill, vibration levels of the drill or power and torque requirements. Further, the controller 238 may be configured to predict dust generation by correlating these machine parameters to an encounter of hard rock, a hard ground or a high fidelity terrain of the work site 100. For example, large amount of dust generation can be predicted by the controller 238 on detection of an increase in machine vibration. Whereas, low level of vibration, power, and torque can be correlated to a soft ground and therefore low levels of dust can be predicted.
Further, based on the predicted dust levels, the controller 238 is configured to determine a fluid discharge rate for the fluid discharge unit 236. The controller 238 may also be configured to actuate the fluid discharge unit 236. Further, the controller 238 is also configured to automatically adjust the fluid discharge rate based on actual dust levels detected to bring the dust levels within control. The controller 238 may be configured to compare the dust level predicted and the actual dust levels detected to adjust the fluid discharge rate of the fluid discharge unit 236. The dust 242 may be detected at the work site 100 from the perception data generated by the perception module 232, as disclosed above and shown in
In accordance with another embodiment, the controller 238 may also be configured to adjust the height 244 of the dust curtain 224. In accordance with another embodiment, the fluid discharge unit 236 may be used in conjunction with the adjustable dust curtain 224 by the dust suppression system 230 to control the dust generation by the autonomous drilling machine 200 at the work site 100.
The controller 238 may embody a single microprocessor or multiple microprocessors that include means for receiving signals from the perception module 232, the machine sensors 234, and the fluid discharge unit 236. Numerous commercially available microprocessors may be configured to perform the functions of the controller 238. It should be appreciated that the controller 238 may readily embody a general machine microprocessor capable of controlling numerous machine functions. A person of ordinary skill in the art will appreciate that the controller 238 may additionally include other components and may also perform other functionalities not described herein.
In accordance with an embodiment, the dust suppression system 230 may include a learning module 256 in communication with the controller 238 and the perception module 232, as shown in
Work sites associated with mining, excavation, construction, landfills, and material stockpiles may be particularly susceptible to dust due to the nature of the materials composing the work site ground surface. This may reduce productivity of the machine operation. Further, the machines working in dusty conditions may have low visibility thereby being susceptible to accidents.
In an aspect of the present disclosure, a dust suppression system 230 is provided for the autonomous drilling machine 200. The dust suppression system 230 detects and controls the dust generated by the autonomous drilling machine during operation. Further, the dust suppression system 230 predicts the amount of dust generated and controls the fluid discharge rate to efficiently minimize dust present in the work site 100. The dust suppression system 230 includes a perception module 232, at least one machine sensor 234, a fluid discharge unit 236, and a controller 238.
Further, the present disclosure provides a method 500 of dust suppression for an autonomous drilling machine 200. The method 500 of dust suppression for an autonomous drilling machine 200 will now be explained with reference to
The controller 238 receives the perception data from the perception module 232 and receives the machine parameter from the machine sensor 234. Based on the data received by the controller 238 predicts the dust level for the autonomous drilling machine 200 at the work site 100 (Step 506). Based on the dust level predicted by the controller 238 a fluid discharge rate is determined (Step 508). The fluid discharge rate is then transmitted to the fluid discharge unit 236. Accordingly, the fluid discharge unit 236 sprays fluid at the work site 100 to suppress the dust generated at the work site 100. After the fluid discharge rate is determined, the perception module 232 detects the dust level generated by the autonomous drilling machine 200 during operation. The detected dust level is then transmitted to the controller 238. Based on the detected dust level the controller 238 adjusts the fluid discharge rate (Step 510).
In accordance with an aspect of the present disclosure, the predicting the dust level (step 506) includes comparing the ground surface 101 of the work site 100 and the height 244 of the dust curtain 224, to estimate a gap 250 between the ground surface 101 and the dust curtain 224. In accordance with another aspect of the present disclosure, predicting the dust level (step 506) is also based on the machine vibrations, power and torque obtained from the machine sensors 234. This ensures that optimum amount of fluid is sprayed to suppress the dust generated at the work site 100.
In case the controller 238 predicts a low level of dust and the autonomous drilling machine 200 generates a high level of dust, the fluid discharge rate may be accordingly automatically adjusted to suppress the dust level at the work site 100. This ensures adequate amount of fluid being sprayed by the fluid discharge unit 236 during operation. Further, in case the controller 238 predicts a high level of dust and the autonomous drilling machine 200 generates a low level of dust, the fluid discharge rate may be automatically reduced to suppress the dust level at the work site 100. This prevents loss of fluid due to incorrect predictions by the controller 238. The automatic adjustment of the fluid discharge rate obviates operator input to suppress the dust levels at the work site 100. Further, automatic suppression of the dust levels by the dust suppression system also helps maintain safety, health and environmental standards during the drilling operation.
While aspects of the present disclosure have seen particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems and methods without departing from the spirit and scope of what is disclosed. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
6954719 | Carter, Jr. et al. | Oct 2005 | B2 |
7001444 | Small | Feb 2006 | B2 |
8360343 | Gudat et al. | Jan 2013 | B2 |
9026270 | Poettker et al. | May 2015 | B2 |
9046895 | Orr et al. | Jun 2015 | B2 |
20110160919 | Orr | Jun 2011 | A1 |
20140343754 | Poettker | Nov 2014 | A1 |
20170138192 | Wang | May 2017 | A1 |
Number | Date | Country |
---|---|---|
2097903 | Mar 1992 | CN |
202991046 | Jun 2013 | CN |
103422881 | Dec 2013 | CN |
203702231 | Jul 2014 | CN |
Number | Date | Country | |
---|---|---|---|
20170226808 A1 | Aug 2017 | US |