DVE system with dynamic range processing

Information

  • Patent Grant
  • 6594368
  • Patent Number
    6,594,368
  • Date Filed
    Wednesday, February 21, 2001
    23 years ago
  • Date Issued
    Tuesday, July 15, 2003
    21 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Harvey; Minsun Oh
    • Grier; Laura A.
    Agents
    • Andrus, Sceales, Starke & Sawall, LLP
Abstract
A digital voice enhancement, DVE, communication system includes a dynamic range processor and method altering dynamic range of the electrical signal from the microphone to the loudspeaker by applying nonlinear and/or differential gain thereto, preferably applied by a slope intercept formula.
Description




BACKGROUND AND SUMMARY OF THE INVENTION




The invention relates to digital voice enhancement, DVE, communication systems, and more particularly to improvements enabling increased gain.




The invention is applicable to DVE systems, including duplex systems, for example as shown in U.S. Pat. No. 5,033,082, and in U.S. application Ser. No. 08/927,874, filed Sep. 11, 1997, simplex systems, for example as shown in U.S. application Ser. No. 09/050,511, filed Mar. 30, 1998, all incorporated herein by reference, and other systems. The DVE communication system includes a first acoustic zone, a second acoustic zone, a microphone at the first zone, and a loudspeaker at the second zone and electrically coupled to the microphone such that the speech of a person at the first zone can be heard by a person at the second zone as transmitted by an electrical signal from the microphone to the loudspeaker.




Speech signals tend to have large peak-to-rms (root mean square) ratios, which define the signal levels permissible before hardware clipping, and the energy levels contained within those signals. Often when processing speech signals it is desired for more rms energy at the output of the signal path. This is usually accomplished by increasing the signal gain in a linear fashion. At some limit the speech signals can no longer have gain added to them, and they will clip analog electronics and/or saturate numerical processes.




In the present invention, the dynamic range of the electrical signal from the microphone is altered, to effectively allow more gain to be added to small signals increasing the rms level while limiting the peaks of the large signals by adding less gain preventing hard clipping. Nonlinear and/or differential gain is applied. In one embodiment, a slope intercept formula is used to calculate gain of the speech input signal when the signal passes a designated threshold, which formula is preferably a soft clipping algorithm. If the speech input signal is less than the threshold, a unity linear gain is applied, and the signal passes through the process unaffected. Typically a net gain is added downstream of the soft clipping process before transmission to the loudspeaker. The system allows the gain to be increased for low level signals, e.g. soft talkers, and limited for high level signals, e.g. loud talkers. The system reduces the problem of talker level dependency for the effectiveness of the DVE system.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

illustrates a DVE system in accordance with the invention.





FIG. 2

illustrates a DVE method in accordance with the invention.











DETAILED DESCRIPTION OF THE INVENTION





FIG. 1

shows a digital voice enhancement, DVE, communication system


10


including a first acoustic zone


12


, a second acoustic zone


14


, a microphone


16


at zone


12


, and a loudspeaker


18


at zone


14


and electrically coupled by channel or line


18


to microphone


16


such that the speech of a person at zone


12


can be heard by a person at zone


14


as transmitted by an electrical signal on line


18


from microphone


16


to loudspeaker


18


. A dynamic range processor


20


alters the dynamic range of the electrical signal by applying nonlinear gain thereto. The dynamic range processor adds smaller gain to larger signals, and larger gain to smaller signals, to limit peaks of the larger signals and prevent hard clipping thereof, and to increase rms level of the smaller signals. The nonlinear gain preferably has a transition at a given threshold of the electrical signal, to be described, and applies a first gain factor below the threshold, and a second different gain factor above the threshold, to provide differential gain. The first gain factor is constant. The second gain factor is variable.




Dynamic range processor


20


includes a signal level detector


22


having an input


24


from the electrical signal from microphone


16


, and an output


26


. Output


26


has a first state when the electrical signal at input


24


is below a designated threshold, and a second state when the electrical signal at input


24


is above the threshold. Dynamic range processor


20


includes a first gain element


28


having a first input


30


from the electrical signal from microphone


16


, a second input


32


from output


26


of signal level detector


22


, and an output


34


. Gain element


28


applies a first gain factor to the electrical signal at first input


30


when the second input


32


receives the noted first state from output


26


of signal level detector


22


. Gain element


28


applies a second different gain factor to the electrical signal at first input


30


when second input


32


receives the noted second state from output


26


of signal level detector


22


. Dynamic range processor


20


includes a second gain element


36


having an input


38


from output


34


of first gain element


28


, and having an output


40


to loudspeaker


18


. Gain element


36


applies a third gain factor to the electrical signal at input


38


for transmission to loudspeaker


18


. The electrical signal from microphone


16


is supplied in parallel to input


24


of signal level detector


22


and to input


30


of gain element


28


. Gain elements


28


and


36


are in series with each other and in series between microphone


16


and loudspeaker


18


. The noted second gain factor applied by gain element


28


is less than the noted first gain factor applied by element


28


, to apply smaller gain to the larger signals, and larger gain to the smaller signals, and to enable a larger third gain factor to be applied by gain element


36


than otherwise possible without the noted second gain factor, to increase rms level of the smaller signals without hard clipping of the larger signals. In the preferred embodiment, for simplicity, the noted first gain factor is unity such that the electrical signal passes through first gain element


28


unaffected when below the noted threshold. Further preferably, the noted first and third gain factors are constant, and the noted second gain factor is variable.




In preferred form, dynamic range processor


20


processes the input from microphone


16


according to a slope intercept formula when the input is above a given threshold. When x is greater than the given threshold,








y


(


x


)=


mx+b








where x is the first input


30


to first gain element


28


, y is output


34


of first gain element


28


, m is slope, and b is y-intercept. When x is less than the given threshold,








y


(


x


)=


x.








The noted slope m and y-intercept b are selected as a soft clip slope and soft clip y-intercept, respectively, such that the electrical signal from microphone


16


is compressed while retaining the shape thereof to prevent hard clipping of the peaks, which would otherwise result in a change of shape thereof, i.e. m and b are selected to compress the electrical signal while also retaining the shape thereof including peaks. Output y is supplied through gain element


36


to loudspeaker


18


, which gain element applies a gain factor larger than otherwise possible without the slope intercept formula, to enable increase rms level of smaller signals without hard clipping of peaks of larger signals. Slope m is preferably less than 1, and b is selected to provide the noted transition between the noted first and second gain factors. The noted first gain factor is y(x)=x. The noted second gain factor is y(x)=mx+b. The input


38


to second gain element


36


is y. The output


40


of second gain element


36


is z and is supplied to loudspeaker


18


.





FIG. 2

illustrates the processing method. At the start, activity on microphone


16


is sampled, and if there is none, then the output z is equal to the input. If there is activity on microphone


16


, the process determines whether the input is positive or negative, and if negative, a sign change is instituted, and if positive, the sign stays the same. The absolute value of the input is then compared against a designated soft clip threshold, and if greater than the threshold, the slope intercept formula is applied to apply the noted second gain factor, and if below the threshold, the noted first unity gain factor is applied. The noted third gain factor is then applied to y by gain element


36


to provide the noted z output.




It is recognized that various equivalents, alternatives and modifications are possible within the scope of the appended claims.



Claims
  • 1. A digital voice enhancement communication system comprising:a first acoustic zone; a second acoustic zone; a microphone at said first zone; a loudspeaker at said second zone and electrically coupled to said microphone such that the speech of a person at said first zone can be heard by a person at said second zone as transmitted by an electrical signal from said microphone to said loudspeaker; a dynamic range processor having an input from said microphone and an output to said loudspeaker and processing said input according to a slope intercept formula when said input is above a given threshold, wherein said input is x, said output is y, and when x is greater than said given threshold, y(x)=mx+b where m is slope, and b is y-intercept,and when x is less than said given threshold, y(x)=x.
  • 2. The invention according to claim 1 wherein m and b are selected as a soft clip slope and soft clip y-intercept, respectively, such that said electrical signal is compressed while retaining the shape thereof to prevent hard clipping of the peaks thereof which would otherwise result in a change of shape thereof.
  • 3. The invention according to claim 1 wherein m and b are selected as a soft clip slope and soft clip y-intercept, respectively, to compress said electrical signal while also retaining the shape thereof including peaks.
  • 4. The invention according to claim 1 wherein y is supplied through a gain element to said loudspeaker, said gain element applying a gain factor larger than otherwise possible without said slope intercept formula, to enable increased rms level of smaller signals without hard clipping of peaks of larger signals.
  • 5. The invention according to claim 1 wherein m<1.
  • 6. The invention according to claim 1 wherein said dynamic range processor comprises:a signal level detector having an input from said electrical signal from said microphone, and having an output, said output having a first state when said electrical signal at said input of said detector is below a designated threshold, said output having a second state when said electrical signal at said input of said signal level detector is above said threshold; a first gain element having a first input from said electrical signal from said microphone, a second input from said output of said signal level detector, and an output, said first gain element applying a first gain factor to said electrical signal at said first input of said first gain element when said second input of said first gain element receives said first state from said output of said signal level detector, said first gain element applying a second different gain factor to said electrical signal at said first input of said first gain element when said second input of said first gain element receives said second state from said output of said signal level detector; a second gain element having an input from said output of said first gain element, and having an output to said loudspeaker, said second gain element applying a third gain factor to said electrical signal at said input of said second gain element for transmission to said loudspeaker; said first input to said first gain element is x; said output of said first gain element is y; said first gain factor is y(x)=x; said second gain factor is y(x)=mx+b; said input to said second gain element is y; said output of said second gain element is z and is supplied to said loudspeaker.
  • 7. A method for processing an electrical signal in a digital voice enhancement communication system having a first acoustic zone, a second acoustic zone, a microphone at said first zone, a loudspeaker at said second zone and electrically coupled to said microphone such that the speech of a person at said first zone can be heard by a person at said second zone as transmitted by an electrical signal from said microphone to said loudspeaker, said method comprising altering dynamic range of said electrical signal by applying at least one of nonlinear and differential gain thereto, and comprising:detecting the level of said electrical signal from said microphone with a signal level detector having an input from said electrical signal from said microphone, providing said signal level detector with an output having a first state when said electrical signal is below a designated threshold, and having a second state when said electrical signal is above said threshold; selectively applying first and second gain factors to said electrical signal from said microphone at a first gain element having a first input from said electrical signal from said microphone, a second input from said output of said signal level detector, and having an output, applying said first gain factor to said electrical signal at said first input of said first gain element when said second input of said first gain element receives said first state from said output of said signal level detector, applying a second different gain factor to said electrical signal at said first input of said first gain element when said second input of said first gain element receives said second state from said output of said signal level detector; applying a third gain factor to said electrical signal by a second gain element having an input from said output of said first gain element, and an output to said loudspeaker, applying said third gain factor to said electrical signal at said input of said second gain element for transmission to said loudspeaker.
  • 8. The method according to claim 7 comprising applying said electrical signal from said microphone in parallel to said first input of said first gain element and to said input of said signal level detector, applying said gain factors in series to said electrical signal by supplying said first and second gain elements in series with each other and in series between said microphone and said loudspeaker.
  • 9. The method according to claim 7 comprising applying a larger said second gain factor than said first gain factor, to apply smaller gain to larger signals, and larger gain to smaller signals, to enable a larger said third gain factor, to increase rms level of said smaller signals without hard clipping of peaks of said larger signals.
  • 10. The method according to claim 7 comprising applying said first gain factor as unity, and passing said electrical signal through said first gain element unaffected when below said threshold.
  • 11. The method according to claim 7 comprising applying constant said first and third gain factors, and a variable said second gain factor.
  • 12. A method for processing an electrical signal in a digital voice enhancement communication system having a first acoustic zone, a second acoustic zone, a microphone at said first zone, a loudspeaker at said second zone and electrically coupled to said microphone such that the speech of a person at said first zone can be heard by a person at said second zone as transmitted by an electrical signal from said microphone to said loudspeaker, said method comprising processing said electrical signal from said microphone according to a slope intercept formula when said electrical signal is above a given threshold, and comprising processing said electrical signal according toy(x)=mx+b where x is the electrical signal from said microphone, y is the electrical signal sent to said loudspeaker, m is slope, and b is y-intercept, and comprising supplying y as x, namely y(x)=x, when x is below said given threshold.
  • 13. A method for processing an electrical signal in a digital voice enhancement communication system having a first acoustic zone, a second acoustic zone, a microphone at said first zone, a loudspeaker at said second zone and electrically coupled to said microphone such that the speech of a person at said first zone can be heard by a person at said second zone as transmitted by an electrical signal from said microphone to said loudspeaker, said method comprising processing said electrical signal from said microphone according to a slope intercept formula when said electrical signal is above a given threshold, and comprising processing said electrical signal according toy(x)=mx+b where x is the electrical signal from said microphone, y is the electrical signal sent to said loudspeaker, m is slope, and b is y-intercept, and comprising applying said slope intercept formula when the absolute value of x is above said threshold.
  • 14. A method for processing an electrical signal in a digital voice enhancement communication system having a first acoustic zone, a second acoustic zone, a microphone at said first zone, a loudspeaker at said second zone and electrically coupled to said microphone such that the speech of a person at said first zone can be heard by a person at said second zone as transmitted by an electrical signal from said microphone to said loudspeaker, said method comprising processing said electrical signal from said microphone according to a slope intercept formula when said electrical signal is above a given threshold, and comprising processing said electrical signal according toy(x)=mx+b where x is the electrical signal from said microphone, y is the electrical signal sent to said loudspeaker, m is slope, and b is y-intercept, and comprising selecting m and b as soft clip slope and soft clip y-intercept, respectively, such that said electrical signal is compressed while retaining the shape thereof to prevent hard clipping of the peaks thereof which would otherwise result in a change of shape thereof.
  • 15. A method for processing an electrical signal in a digital voice enhancement communication system having a first acoustic zone, a second acoustic zone, a microphone at said first zone, a loudspeaker at said second zone and electrically coupled to said microphone such that the speech of a person at said first zone can be heard by a person at said second zone as transmitted by an electrical signal from said microphone to said loudspeaker, said method comprising processing said electrical signal from said microphone according to a slope intercept formula when said electrical signal is above a given threshold, and comprising processing said electrical signal according toy(x)=mx+b where x is the electrical signal from said microphone, y is the electrical signal sent to said loudspeaker, m is slope, and b is y-intercept, and comprising supplying y through a gain element to said loudspeaker, and applying at said gain element a gain factor larger than otherwise possible without said slope intercept formula, to enable increased rms level of smaller signals without hard clipping of peaks of larger signals.
  • 16. A method for processing an electrical signal in a digital voice enhancement communication system having a first acoustic zone, a second acoustic zone, a microphone at said first zone, a loudspeaker at said second zone and electrically coupled to said microphone such that the speech of a person at said first zone can be heard by a person at said second zone as transmitted by an electrical signal from said microphone to said loudspeaker, said method comprising processing said electrical signal from said microphone according to a slope intercept formula when said electrical signal is above a given threshold, and processing said electrical signal according toy(x)=mx+b where x is the electrical signal from said microphone, y is the electrical signal sent to said loudspeaker, m is slope, and b is y-intercept, and comprising:detecting the level of said electrical signal from said microphone with a signal level detector having an input from said electrical signal from said microphone, providing said signal level detector with an output having a first state when said electrical signal is below a designated threshold, and having a second state when said electrical signal is above said threshold; selectively applying first and second gain factors to said electrical signal from said microphone at a first gain element having a first input from said electrical signal from said microphone, a second input from said output of said signal level detector, and having an output, applying said first gain factor to said electrical signal at said first input of said first gain element when said second input of said first gain element receives said first state from said output of said signal level detector, applying a second different gain factor to said electrical signal at said first input of said first gain element when said second input of said first gain element receives said second state from said output of said signal level detector; applying a third gain factor to said electrical signal by a second gain element having an input from said output of said first gain element, and an output to said loudspeaker, applying said third gain factor to said electrical signal at said input of said second gain element for transmission to said loudspeaker, wherein: said first input to said first gain element is x; said output of said first gain element is y; said first gain factor is y(x)=x; said second gain factor is y(x)=mx+b; said input to said second gain element is y; said output of said second gain element is z and is supplied to said loudspeaker.
US Referenced Citations (15)
Number Name Date Kind
4736431 Allie et al. Apr 1988 A
4837834 Allie Jun 1989 A
5033082 Eriksson et al. Jul 1991 A
5172416 Allie et al. Dec 1992 A
5357609 Sellers et al. Oct 1994 A
5396561 Popovich et al. Mar 1995 A
5396562 Ishimitsu et al. Mar 1995 A
5602928 Eriksson et al. Feb 1997 A
5631968 Frey et al. May 1997 A
5706344 Finn Jan 1998 A
5715320 Allie et al. Feb 1998 A
5910994 Lane et al. Jun 1999 A
6107879 Hoshino et al. Aug 2000 A
6122384 Mauro Sep 2000 A
6295364 Finn et al. Sep 2001 B1