Organic light emitting diodes (OLEDs) comprise a particularly advantageous form of electro-optic display. They are bright, colourful, fast switching, provide a wide viewing angle and are easy and cheap to fabricate on a variety of substrates.
Organic (which here includes organometallic) LEDs may be fabricated using either polymers or small molecules in a range of colours, depending upon the materials used. Examples of polymer-based organic LEDs are described in WO 90/13148, WO 95/06400 and WO 99/48160; examples of small molecule based devices are described in U.S. Pat. No. 4,539,507 and examples of dendrimer-based materials are described in WO 99/21935 and WO 02/067343.
A basic structure 100 of a typical organic LED is shown in
In the example shown in
Organic LEDs may be deposited on a substrate in a matrix of pixels to form a single or multi-colour pixellated display. A multi-coloured display may be constructed using groups of red, green and blue emitting pixels. In such displays the individual elements are generally addressed by activating row (or column) lines to select the pixels, and rows (or columns) of pixels are written to, to create a display. So-called active matrix displays have a memory element, typically a storage capacitor and a transistor, associated with each pixel whilst passive matrix displays have no such memory element and instead are repetitively scanned, somewhat similarly to a TV picture, to give the impression of a steady image.
b shows a cross-section through a passive matrix OLED display 150 in which like elements to those of
Referring now to
As illustrated pixel 212 of the display has power applied to it and is therefore illuminated. To create an image connection 210 for a row is maintained as each of the column lines is activated in turn until the complete row has been addressed, and then the next row is selected and the process repeated. Alternatively a row may be selected and all the columns written in parallel, that is a row selected and a current driven into each of the column lines simultaneously, to simultaneously illuminate each pixel in a row at its desired brightness. Although the latter arrangement requires more column drive circuitry it is preferred because it allows a more rapid refresh of each pixel. In a further alternative arrangement each pixel in a column may be addressed in turn before the next column is addressed, although this is generally not preferred because of the effect, inter alia, of column capacitance as discussed below. It will be appreciated that in the arrangement of
It is usual to provide a current-controlled rather than a voltage-controlled drive to an OLED because the brightness of an OLED is determined by the current flowing through it, thus determining the number of photons it outputs. In a voltage-controlled configuration the brightness can vary across the area of a display and with time, temperature, and age, making it difficult to predict how bright a pixel will appear when driven by a given voltage. In a colour display the accuracy of colour representations may also be affected.
b to 2d illustrate, respectively the current drive 220 applied to a pixel, the voltage 222 across the pixel and the light output 224 from the pixel over time 226 as the pixel is addressed. The row containing the pixel is addressed and at the time indicated by dashed line 228 the current is driven onto the column line for the pixel. The column line (and pixel) has an associated capacitance and thus the voltage gradually rises to a maximum 230. The pixel does not begin to emit light until a point 232 is reached where the voltage across the pixel is greater than the OLED diode voltage drop. Similarly when the drive current is turned off at time 234 the voltage and light output gradually decay as the column capacitance discharges. Where the pixels in a row are all written simultaneously, that is where the columns are driven in parallel, the time interval between times 228 and 234 corresponds to a line scan period.
The current driver 402 of
Referring to
As can be readily seen from
According to a first aspect of the present invention, there is provided a display driver control circuitry for controlling a display driver for an electroluminescent display, the display comprising at least one substantially constant current generator for driving the display element, the control circuitry comprising: a drive voltage sensor for sensing a drive voltage on a first line in which the current is regulated by the constant current generator; a reference voltage generator for providing a reference voltage offset from a supply voltage provided from a supply line to the constant current generator; means for determining a difference between the reference voltage and the drive voltage and for generating an adjustment signal, and wherein a voltage controller is configured to adjust the supply voltage responsive to the adjustment signal.
Preferably, the display is a passive matrix display having a plurality of electroluminescent display elements and a plurality of substantially constant current generators, wherein the drive voltage sensor is configured to sense a maximum voltage and the means for determining is a comparator configured to determine a difference between the reference voltage and the maximum voltage.
More preferably, the drive voltage sensor comprises a plurality of transistors each having a gate connection to a line in which the current is regulated by the constant current generator, and wherein each source terminal of the plurality of transistors is connected together to the supply line and each drain terminal of the plurality of transistors is connected together to a further line.
Preferably, the transistors are n-channel field effect transistors and optionally the further line is at ground potential or potential below the supply voltage.
Preferably, the reference voltage generator comprises a number of junction voltages and the voltage controller preferably comprises a dc to dc converter.
Whilst the first aspect of the present invention is compatible with general passive matrix driving schemes, the circuitry is preferably configured for multi-line addressing and the luminescence of an electroluminescent element is obtainable by a substantially linear sum of successive drive signals to the element.
According to a second aspect of the present invention, there is provided a method of regulating a power supply voltage of a display driver driving an electroluminescent display, the display comprising at least one electroluminescent display element, the driver including at least one substantially constant current generator for driving the display element and having a power supply line for supplying the power supply voltage for the current generator, the method comprising: sensing a drive voltage offset from the supply voltage; determining a difference between the reference voltage and the drive voltage and generating an adjustment signal; controlling the supply voltage responsive to the adjustment signal.
Preferably, the display is a passive matrix display having a plurality of electroluminescent display elements and a plurality of substantially constant current generators and wherein sensing a drive voltage comprises sensing a maximum voltage and the determining comprises determining a difference between the reference voltage and the maximum voltage.
Whilst the second aspect of the present invention is compatible with general passive matrix driving schemes, the method is preferably configured for multi-line addressing such that the passive matrix display comprises an array of rows and columns electrodes and the method of driving the display comprises driving a plurality of column electrodes at the same time as driving two or more row electrodes. More preferably, the desired luminescence of the electroluminescent element is obtainable by a substantially linear sum of successive drive signals to the pixel.
Preferably the step of controlling includes one of increasing the supply voltage or decreasing the supply voltage as appropriate and increasing the supply voltage is performed more rapidly than decreasing the supply voltage.
There is also a continuing need for techniques which can improve the lifetime of an OLED display. There is a particular need for techniques which are applicable to passive matrix displays since these are very much cheaper to fabricate than active matrix displays. Reducing the drive level (and hence brightness) of an OLED can significantly enhance the lifetime of the device—for example halving the drive/brightness of the OLED can increase its lifetime by approximately a factor of four. In applications, WO 2006 035246, WO 2006 035247 and WO 2006 035248, the contents of which are herein incorporated by reference, the applicant has recognised that one solution lies in multi-line addressing techniques employed to reduce peak display drive levels, in particular in passive matrix OLED displays, and hence increase display lifetime. Broadly speaking, these methods comprise driving a plurality of column electrodes of the OLED display with a first set of column drive signals at the same time as driving two or more row electrodes of the display with a first set of row drive signals; then the column electrodes are driven with a second set of column drive signals at the same time as the two or more row electrodes are driven with a second set of row drive signals. Preferably the row and column drive signals comprise current drive signals from a substantially constant current generator such as a current source or current sink. Preferably such a current generator is controllable or programmable, for example, using a digital-to-analogue converter.
The effect of driving a column at the same time as two or more rows is to divide the column drive between two or more rows in a proportion determined by the row drive signals—in other words for a current drive the current in a column is divided between the two or more rows in proportions determined by the relative values or proportions of the row drive signals. Broadly speaking this allows the luminescence profile of a row or line of pixels to be built up over multiple line scan period, thus effectively reducing the peak brightness of an OLED pixel thus increasing the lifetime of pixels of the display. With a current drive a desired luminescence of a pixel is obtained by means of a substantially linear sum of successive drive signals to the pixel.
The present invention is therefore concerned with improving the efficiency of, in particular, a passive matrix OLED display. Advantageously, the present invention is also compatible with multi-line addressing techniques.
These and further embodiments of the invention will now be described, by way of example only, and with reference to the accompanying figures in which:
a and 1b show cross sections through, respectively, an organic light emitting diode and a passive matrix OLED display;
a and 2d show, respectively, a conceptual driver arrangement for a passive matrix OLED display, a graph of current drive against time for a display pixel, a graph of pixel voltage against time, and a graph of pixel light output against time;
Thus,
As drawn in
Each column electrode line 1, 2, 3 . . . m is connected to a gate terminal G of an n-channel Field Effect Transistor (FET) 630, the source terminals S of which are connected together to a pull-down resistor 635 to ground 640 (or some other voltage below that of the supply voltage). The drain terminals D of the n-channel FETs 630 are connected together to the supply line 615.
A reference voltage source 645 comprises an array of built-in junction voltages and is connected at one end to the supply line 615 and at the other end to a first input terminal of a comparator 650. The comparator 650 has a second input terminal connected to each source terminal of the n-channel field effect transistors 630. An output terminal of the comparator is connected to a voltage controller 655, which is configured to alter the output supply voltage provided to the column drivers 605. Such a voltage controller 655 may comprise a dc to dc controller as is known in the art.
In operation, a power supply voltage Vdd takes initially, as an example, a value of 15V and the reference voltage source 645 provides a voltage drop of 3V thereby holding a reference voltage Vref at the first input to the comparator 650 of 12V. A source connection of each FET 630 is provided as a maximum column voltage Vmax and should any column electrode line 1, 2, 3 . . . m rise above the maximum column voltage then the gate terminal G of the corresponding FET 630 is pulled up above the source terminal S turning the FET 630 on and pulling the source terminal voltage S up until either the FET 630 turns off or sufficiently for the current of the corresponding FET 630 to match the current sunk through the pull-down resistor 635. The maximum column voltage Vmax is compared to the reference voltage Vref by the comparator 650 which generates a single bit signal indicating whether an increase or decrease in power voltage Vdd is required. When an increase in power voltage Vdd is required the dc to dc controller is operable to increase the power supply voltage rapidly. When a decrease in power voltage Vdd is required the dc to dc controller is operable to cause the power supply voltage to gradually decay down. In particular, a rapid increase in power supply voltage can be required due to an increase in display brightness and image content.
No doubt many other effective alternatives will occur to the skilled person. It will be understood that the invention is not limited to the described embodiments and encompasses modifications apparent to those skilled in the art lying within the spirit and scope of the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
0719512.6 | Oct 2007 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2008/003293 | 9/26/2008 | WO | 00 | 6/9/2010 |