Dynamic bandwidth allocation for multiple access communications using buffer urgency factor

Information

  • Patent Application
  • 20040179497
  • Publication Number
    20040179497
  • Date Filed
    January 29, 2004
    20 years ago
  • Date Published
    September 16, 2004
    20 years ago
Abstract
A base station provides wireless communication of digital signals over digital communication paths, with the digital signals being communicated using radio frequency channels via Code Division Multiple Access (CDMA) modulated radio signals. The base station includes a wireless transceiver for establishing communication sessions over the digital communication paths, and buffers for storing data to be transmitted by the wireless transceiver. Each buffer is associated with a particular digital communication path and has a threshold associated with a level of data stored therein. A transmission processor allocates code channels within the radio frequency channels to transmit the stored data during the communication sessions. A channel resource assignor connected to the transmission processor monitors a level of data stored in each buffer and computes an urgency factor for each buffer based upon the threshold associated therewith. The urgency factor represents a relative need for transmitting the stored data over the particular digital communication path associated with that buffer. The channel resource assignor compares the computed urgency factors for buffers for determining how many code channels are to be allocated to each digital communication path.
Description


FIELD OF THE INVENTION

[0002] The present field relates to the field of communications, and in particular, to a wireless digital communication system.



BACKGROUND OF THE INVENTION

[0003] The increasing use of wireless telephones and personal computers has led to a corresponding demand for advanced telecommunication services that were once thought to only be meant for use in specialized applications. In the 1980's, wireless voice communication became widely available through the cellular telephone network. Such services were at first typically considered to be the exclusive province of the business person because of expected high subscriber costs. The same was also true for access to remotely distributed computer networks, whereby until very recently, only business people and large institutions could afford the necessary computers and wireline access equipment.


[0004] As a result of the widespread availability of both technologies, the general population now increasingly wishes to not only have access to networks such as the Internet and private intranets, but also to access such networks in a wireless fashion as well. This is particularly of concern for the users of portable computers, laptop computers, hand-held personal digital assistants (PDAs) and the like who would prefer to access such networks without being tethered to a telephone line.


[0005] There still is no widely available satisfactory approach for providing low cost, high speed access to the Internet, private intranets, and other networks using the existing wireless infrastructure. This situation is most likely an artifact of several unfortunate circumstances. For one, the typical manner of providing high speed data service in the business environment over the wireline network is not readily adaptable to the voice grade service available in most homes or offices. Such standard high speed data services also do not lend themselves well to efficient transmission over standard cellular wireless handsets.


[0006] Furthermore, the existing cellular network was originally designed to deliver voice services. As a result, the emphasis in present day digital wireless communication schemes lies with voice, although certain schemes such as CDMA do provide some measure of asymmetrical behavior for the accommodation of data transmission. For example, the data rate on an IS-95 forward traffic channel can be adjusted in increments from 1.2 kilobits per second (kbps) up to 9.6 kbps for so-called Rate Set 1, and in increments from 1.8 kbps up to 14.4 kbps for Rate Set 2. On the reverse link traffic channel, however, the data rate is fixed at 4.8 kbps.


[0007] The design of such existing systems therefore typically provides a radio channel which can accommodate maximum data rates only in the range of 14.4 kilobits per second (kbps) at best in the forward direction. Such a low data rate channel does not lend itself directly to transmitting data at rates of 28.8 or even 56.6 kbps that are now commonly available using inexpensive wire line modems, not to mention even higher rates such as the 128 kbps which are available with Integrated Services Digital Network (ISDN) type equipment. Data rates at these levels are rapidly becoming the minimum acceptable rates for activities such as browsing web pages. Other types of data networks using higher speed building blocks such as Digital Subscriber Line (xDSL) service are just now coming into use in the United States. However, their costs have only been recently reduced to the point where they are attractive to the residential customer.


[0008] Although such networks were known at the time that cellular systems were originally deployed, for the most part, there is no provision for providing higher speed ISDN- or xDSL-grade data services over cellular network topologies. Unfortunately, in wireless environments, access to channels by multiple subscribers is expensive and there is competition for them. Whether the multiple access is provided by the traditional Frequency Division Multiple Access (FDMA) using analog modulation on a group of radio carriers, or by newer digital modulation schemes the permit sharing of a radio carrier using Time Division Multiple Access (TDMA) or Code Division Multiple Access (CDMA), the nature of the radio spectrum is that it is a medium that is expected to be shared. This is quite dissimilar to the traditional environment for data transmission, in which the wireline medium is relatively inexpensive to obtain, and is therefore not typically intended to be shared.


[0009] Other considerations are the characteristics of the data itself. For example, consider that access to web pages in general is burst-oriented, with asymmetrical data rate transmission requirements. In particular, the user of a remote client computer first specifies the address of a web page to a browser program. The browser program then sends this web page address data, which is typically 100 bytes or less in length, over the network to a server computer. The server computer then responds with the content of the requested web page, which may include anywhere from 10 kilobytes to several megabytes of text, image, audio, or even video data. The user then may spend at least several seconds or even several minutes reading the content of the page before requesting that another page be downloaded. Therefore, the required forward channel data rates, that is, from the base station to the subscriber, are typically many times greater than the required reverse channel data rates.


[0010] In an office environment, the nature of most employees' computer work habits is typically to check a few web pages and then to do something else for extended period of time, such as accessing locally stored data or to even stop using the computer altogether. Therefore, even though such users may expect to remain connected to the Internet or private intranet continuously during an entire day, the actual overall nature of the need to support a required data transfer activity to and from a particular subscriber unit is actually quite sporadic.


[0011] Furthermore, prior art wireless communication systems provide a continuous bandwidth to individual subscribers. That is, in such networks, during a communication session the bandwidth available at all times is constant and has been designed, as noted above, primarily for voice grade use.


[0012] Prior art methodologies for transmission of data over wireless networks thus suffer numerous problems. As noted above, the bandwidth available for a single subscriber unit channel is typically fixed in size. However, data communications tend to be bursty in nature, often requiring a need for large amounts of bandwidth at certain times, while requiring very little amounts, or even none, at other times. These wide swings in bandwidth requirements can be very close together in time.



SUMMARY OF THE INVENTION

[0013] In view of the foregoing background, an object of the present invention is to more efficiently transmit digital signals in a wireless digital communication system.


[0014] This and other objects, advantages and features in accordance with the present invention are provided by a base station providing wireless communication of digital signals over a plurality of digital communication paths, with the digital signals being communicated using at least one radio frequency channel via Code Division Multiple Access (CDMA) modulated radio signals.


[0015] The base station may comprises a wireless transceiver for establishing communication sessions over the plurality of digital communication paths, and a plurality of buffers for storing data to be transmitted by the wireless transceiver. Each buffer may be associated with a particular digital communication path and may have at least one threshold associated with a level of data stored therein.


[0016] A transmission processor may allocate a plurality of code channels within the at least one radio frequency channel to transmit the stored data during the communication sessions. A channel resource assignor may be connected to the transmission processor for monitoring a level of data stored in each buffer and for computing an urgency factor for each buffer based upon the at least one threshold associated therewith. The urgency factor may represent a relative need for transmitting the stored data over the particular digital communication path associated with that buffer. The channel resource assignor may compare the computed urgency factor for the plurality of buffers for determining how many code channels are to be allocated to each digital communication path.


[0017] The present invention advantageously provides high speed data and voice service over standard wireless connections via an unique integration of protocols and existing cellular signaling, such as is available with Code Division Multiple Access (CDMA) type systems. The invention achieves high data rates through more efficient allocation of access to the CDMA channels.


[0018] The at least one threshold associated with each buffer may comprise a plurality of thresholds. The computed urgency factors may represent how full the plurality of buffers are. The computed urgency factor for each buffer may also be based upon a number of code channels currently allocated to the particular digital communication path associated therewith.


[0019] The computed urgency factor for each buffer is also based upon how much time has passed since stored data has been transmitted therefrom. The computed urgency factor for each buffer may also be based upon a quality of service of the communication sessions. The quality of service may be based upon at least one of throughput, data rate, latency and jitter.


[0020] The digital signals may comprise at least one of voice and data signals. The wireless communication of digital signals may be performed with a plurality of subscriber units over the plurality of digital communication paths. The at least one radio frequency channel may comprise a first and second radio frequency channels. The first radio frequency channel establishes forward code channels between the wireless transceiver and the plurality of subscriber units, with the stored data from the plurality of buffers being transmitted by the wireless transceiver on the forward code channels. The second radio frequency channel establishes reverse code channels between the plurality of subscriber units and the wireless transceiver.


[0021] Each subscriber unit may comprise a buffer for storing data to be transmitted to the wireless transceiver, and has at least one threshold associated with a level of data stored therein. Each subscriber unit may transmit to the wireless transceiver on a reverse code channel the level of data stored in its buffer with respect to the threshold associated therewith. The channel resource assignor also computes an urgency factor for each subscriber unit.


[0022] The forward and reverse code channels may be multiplexed on a single radio frequency channel. Alternatively, the forward and reverse code channels may be on different radio frequency channels.


[0023] Another aspect of the present invention is directed to a subscriber unit for providing wireless communication of digital signals between terminal equipment connected therewith and a digital communication path, with the digital signals being communicated using at least one radio frequency channel via Code Division Multiple Access (CDMA) modulated radio signals.


[0024] The subscriber unit may comprise a wireless transceiver for establishing a respective communication session over the digital communication path, and a buffer for storing data to be transmitted by the wireless transmitter. The buffer may have at least one threshold associated with a level of data stored therein. The subscriber unit may further comprise a transmission processor for receiving over the digital communication path at least one allocated code channel within the at least one radio frequency channel to transmit the data stored in the buffer during the respective communication session.


[0025] The wireless transceiver may transmit a level of data stored in the buffer with respect to the at least one threshold associated therewith. The transmission processor may receive over the digital communication path an adjustment in a number of at least one allocated code channel within the at least one radio frequency channel received based upon an urgency factor. The urgency factor may be computed for representing a relative need for transmitting the data stored in the buffer over the digital communication path.


[0026] Yet another aspect of the present invention is directed to a digital communication system comprising a plurality of subscriber units as defined above for providing wireless communication of digital signals, and a base station as defined above for establishing communication sessions with the plurality of subscriber units over a plurality of digital communication paths.







BRIEF DESCRIPTION OF THE DRAWINGS

[0027] The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views.


[0028]
FIG. 1 is a block diagram of an example wireless communication system making use of a bandwidth management scheme according to the invention.


[0029]
FIG. 2 is a diagram showing how channels are assigned within a given radio frequency (RF) channel.


[0030]
FIG. 3 is a block diagram illustrating the internal components of a base station and subscriber units that provide the dynamic bandwidth allocation mechanism.


[0031]
FIG. 4 illustrates the structure of the buffers used in either the base station or subscriber units.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0032] Turning attention now to the drawings, FIG. 1 is a block diagram of a system 100 for providing high speed data service over a wireless connection by seamlessly integrating a digital data protocol such as, for example, Integrated Services Digital Network (ISDN) with a digitally modulated wireless service such as Code Division Multiple Access (CDMA).


[0033] The system 100 comprises two different types of components, including subscriber units 101-1, 101-2, and 101-3 (collectively subscribers 101) as well as one or more base stations 104 to provide the functions necessary in order to achieve the desired implementation of the invention. The subscriber units 101 provide wireless data and/or voice services and can connect devices such as, for example, laptop computers, portable computers, personal digital assistants (PDAs) or the like through base station 104 to a network 105 which can be a Public Switched Telephone Network (PSTN), a packet switched computer network, or other data network such as the Internet or a private intranet.


[0034] The base station 104 may communicate with the network 105 over any number of different efficient communication protocols such as primary rate ISDN, or other LAPD based protocols such as IS-634 or V5.2, or even TCP/IP if network 105 is an Ethernet network such as the Internet. The subscriber units 101 may be mobile in nature and may travel from one location to another while communicating with the base station 104.


[0035]
FIG. 1 illustrates one base station 104 and three mobile subscriber units 101 by way of example only and for ease of description of the invention. The invention is applicable to systems in which there are typically many more subscriber units communicating with one or more base stations.


[0036] It is also to be understood by those skilled in the art that FIG. 1 may be a standard cellular type communication system such as a CDMA, TDMA, GSM or other system in which the radio channels are assigned to carry between the base stations 104 and subscriber units 101. This invention, however, applies more particularly to non-voice transmissions, and preferably to digital data transmissions of varying bandwidths. Thus, in a preferred embodiment, FIG. 1 is a CDMA-like system, using code division multiplexing principles for the air interface. However, it is also to be understood that the invention is not limited to using standardized CDMA protocols such as IS-95, or the newer emerging CDMA protocol referred to as IS-95B. The invention is also applicable to other multiple access techniques.


[0037] In order to provide data and voice communications between the subscriber units 101 and base station 104, wireless transmission of data over a limited number of radio channel resources is provided via forward communication channels 110-a through 110-c, and reverse communication channels 111-a through 111-c. The invention provides dynamic bandwidth management of these limited channel resources on an as needed basis for each subscriber unit 101. It should also be understood that data signals travel bidirectionally across the CDMA radio channels 110 and 111, i.e., data signals originating at the subscriber units 101 are coupled to the network 105, and data signals received from the network 105 are coupled to the subscriber units 101.


[0038]
FIG. 2 provides an example of how dynamic allocation of radio bandwidth may take place in an example system 100. First a typical transceiver within a subscriber unit 101 or the base station 104 can be tuned on command to any 1.25 MegaHertz (MHZ) channel within a much larger bandwidth, such as up to 30 MHZ in the case of the radio spectrum allocated to cellular Telephony. This bandwidth is typically made available in the range of from 800 to 900 MHZ in the United States. For PCS type wireless systems, a 5 or 10 MHZ bandwidth is typically allocated in the range from about 1.8 to 2.0 GigaHertz (GHz). In addition, there are typically two matching bands active simultaneously, separated by a guard band, such as 80 MHZ. The two matching bands form a forward and reverse full duplex link between the base station 104 and the subscriber units 101.


[0039] For example, within the subscriber unit 101 and the base station 170, transmission processors (i.e., transceivers) are capable of being tuned at any given point in time to a given 1.25 MHZ radio frequency channel. It is generally understood that such 1.25 MHZ radio frequency carrier provides, at best, a total equivalent of about a 500 to 600 kbps maximum data rate transmission speed within acceptable bit error rate limitations.


[0040] In the prior art, it was thus generally understood that in order to support an ISDN type like connection which may contain information at a rate of 128 kbps that, at best, only about (500 kbps/128 kbps) or only three (3) ISDN subscriber units could be supported at best.


[0041] In contrast to this, the present invention subdivides the available approximately 500 to 600 kbps data rate among a relatively large number of channels and then provides a way to determine how to allocate these channels to best transmit data between the base station 104 and each of the subscriber units 101, and vice versa. In the illustrated example in FIG. 2, the bandwidth is divided into sixty-four (64) subchannels 300, each providing an 8 kbps data rate. It should be understood herein that within a CDMA type system, the subchannels 300 are physically implemented by encoding a data transmission with one of a number of different assignable codes. For example, the subchannels 300 may be defined within a single CDMA radio frequency (RF) carrier by using different orthogonal Walsh codes for each defined subchannel 300. The subchannels 300 are also referred to as “channels” in the following discussion, and the two terms are used interchangeably herein.


[0042] As mentioned above, the channels 300 are allocated only as needed. For example, multiple channels 300 are granted during times when a particular subscriber unit 101 is requesting that large amounts of data be transferred. In this instance and in the preferred embodiment, the single subscriber unit 101 may be granted as many as 20 of these channels in order to allow data rates of up to 160 kbps (20*8 kbps) for this individual subscriber unit 101. These channels 300 are then released during times when the subscriber unit 101 is relatively lightly loaded. The invention determines the way in which the limited number of channels are divided at any moment in time among the subscriber units 101.


[0043] Before discussing how the channels 300 are preferably allocated and deallocated, it will help to understand the general architecture of relevant parts of a typical subscriber unit 101 and base station 104 in greater detail. Turning attention now to FIG. 3, the base station 104 accepts data from incoming data sources 201 through 203. Each data source 201 through 203 represents any type of data source that is sending data to one or more of the subscriber units 101. For example, data source 202 may be web server software on network 105 serving web pages to a client web browser operating in conjunction with subscriber unit 101-1, while data source 203 may be an ISDN terminal on network 105 that is sending voice and data to subscriber unit 101-3.


[0044] For each subscriber unit 101 that is in communication with this particular base station 104, the base station 104 establishes and allocates a respective data buffer 211 through 213. Data buffers 211 through 213 store the data that is to be transmitted to their respective subscriber units 101. That is, in a preferred embodiment, there is a separate data buffer in the base station 104 for each respective subscriber unit 101. As subscriber units enter into and exit out of communication sessions or connections with base station 104, the number of buffers may change. There is always a one-to-one correspondence between the number of buffers 211 through 213 allocated to the number of subscriber units 101 communicating with base station 104. The buffers 111 through 213 may be, for example, queues or other memory structures controlled by software, or may be hardware controlled fast cache memory.


[0045] As data is queued up in the buffers 211 through 213, transmission processor 210 transmits the data from the base station 104 to the respective subscriber units 101. In the case of forward link transmission (from the base station 104 to the subscriber units 101), a selection of a limited number of forward link channels 110a through 110c are used. As will be explained, the invention is able to accommodate greater bandwidth for one particular subscriber unit 101, as more and more data is queued at the base station 104. That is, as the transmission processor 210 in the base station 104 accepts data from each buffer 211 through 213 for transmission to that buffers' respective subscriber unit 101, the transmission processor 210 uses only the allocated number of forward link 110 resources assigned to that particular respective subscriber unit. To determine how these channel resources are assigned, the invention provides a channel resource assignor 209 which implements a unique algorithm according to the invention that monitors buffer usage to determine an urgency characteristic of each subscriber unit 101 in order to dynamically assign an optimum number of channel resources to be allocated to each subscriber unit.


[0046] In the reverse direction, each subscriber unit 101 also contains a respective data source 221 through 223 that provides data to data buffers 225 through 227. The data stored in buffers 225 through 227 is data to be transmitted on one or more of the reverse links 111a-c back to the base station 104, for eventual transmission to processes or devices on network 105 that are connected at a network session layer with the subscriber units 101. Each subscriber unit 101 also contains a transmission processor 231 through 233 for controlling the transmission of data from buffers 225 through 227 back to base station 104. As in the base station 104, the transmission processors 231 through 233 only use an allocated number of reverse channel 111a-c resources assigned to that particular respective subscriber unit 101.


[0047] In a preferred embodiment of the invention, the channel resource assignor 209 in the base station also monitors the usage of buffers 225 through 227 within subscriber units 101. This is accomplished via buffer monitors 235 through 237 in each subscriber unit 101 which periodically report buffer characteristics back to base station 104. The buffer characteristics reports may be piggybacked onto the regular transmission of data on the reverse links 111a-c.


[0048] Upon receipt of this buffer characteristic information, the channel resource assignor 209 then determines an urgency factor representing the relative need for each subscriber unit 101 to transmit data on the reverse links 111a-c from their respective buffers 225 through 227. Using these urgency factors, the channel resource assignor 209 can then dynamically assign an optimum number of channel resources which each subscriber unit may use on the reverse links 111a-c. This channel assignment information sent back to the subscriber units 101 on the forward links 110, so that the transmission processors 231 through 233 know their currently allocated channels at all times.


[0049] The channel resource assignor 209 is thus a bandwidth management function that includes the dynamic management of the bandwidth allocated to a particular network layer session connection. Before a further description of the channel assignor 209 is given, it should be first understood that no matter what bandwidth allocation is given to a particular subscriber unit 101, a network layer communication session will be maintained even though wireless bandwidth initially allocated for transmission is reassigned to other connections when there is no information to transmit. One manner of maintaining network layer communication sessions during periods of reduced allocation of bandwidth for a particular subscriber unit is discussed in detail in the above-referenced U.S. patents, which are assigned to the current assignee of the present invention, and the entire contents of which are hereby incorporated by reference in their entirety.


[0050] In general, bandwidth assignments are made for each network layer session based upon measured short term data rate needs as determined by buffer statistics. One or more channels are then assigned based upon these measurements and other parameters such as amount of data in the buffer, the present resources allocated to a subscriber unit, and probabilities of a requirement of a subscriber unit to transmit data or priority of service as assigned by the service provider. In addition, when a given session is idle, a connection is preferably still maintained end to end, although with a minimum number of channel resources allocated, such as a single subchannel being assigned. This single subchannel may eventually be dropped after a predetermined minimum idle time is observed.


[0051]
FIG. 4 illustrates a buffer 360 in detail. Buffer 360 can be any one of the buffers 211 through 213 or 225 through 227 in either the subscriber units 101 or base station 104. The buffer 360 accepts data 365 and stores this data while awaiting transmission on forward links 110 from the base station 104 to a respective subscriber unit 101, or on reverse links 111 from one of the subscriber units to the base station 104. Each buffer has associated with it L thresholds, which in this example are labeled 1, 2, . . . L and numbered 361, 362 and 363 respectively. These L thresholds are an indication of how much data is currently stored in the buffer 360. That is, the thresholds are “characteristics” in the sense that they provide an indication of how much buffer memory is currently in use.


[0052] As data 365 enters and fills buffer 360, until transmission of this data takes place, the data may fill buffer 360 so much so as to cross certain of the thresholds 361 through 363. For instance, in FIG. 4, data blocks 365-a through 365-d have just filled buffer 360 enough to approach the first threshold 361. The last block of data 365-n exists between thresholds 361 and 362 and so the buffer 360 has stored data in an amount exceeding the first threshold 361. In other words, buffer 360 as shown has a threshold level of “1”, corresponding to the first threshold 361.


[0053] As explained above, the channel resource assignor 209 in base station 104 obtains an indication of the threshold level for each buffer 225 through 227 in each respective subscriber unit 101-1 through 101-3. By determining how much data is in each buffer, the resulting data arrival rates of data to each buffer, and the resources currently allocated to transmit data from a buffer, an urgency factor for each data source attempting to transmit on the reverse links 111 is computed. A similar computation takes place for each data transmitter on the forward links 110.


[0054] More particularly, an urgency factor is calculated for each buffer based on these buffer characteristics, that indicates the relative need to empty the buffer for that particular receiver as compared to the buffers in other receivers. Given urgency factors for each buffer having data queued for transmission to a waiting receiver, the invention is able to determine how to allocate the available channels to best transmit this data.


[0055] The urgency factor for buffer 360, for example, is based on statistical information gathered for the accumulation of data 365. The statistical information is used to compute probabilities of when data 365 exceeds or does not exceed certain of the L discrete data thresholds 361, 362 and 363. Thus, as data 365 enters buffer 360 and exceeds the first threshold 361, the urgency factor for that buffer, and hence for the receiver associated with that buffer (i.e., for example, one of the subscriber units 101 for which data 365 in buffer 360 is destined) increases.


[0056] The urgency factor for buffer 360 is also based upon conditional probabilities of how much time has passed since buffer 360 has had data 365 transmitted from the buffer to its intended receiver, as well as how much time has passed since data 365 has been received at the buffer 360 for storage until transmission may occur. The urgency factor depends partly on the history of the time that the data level in the buffer exists between each threshold in the buffer and on the number of times each threshold, including the maximum buffer capacity, is exceeded.


[0057] The urgency factor is also based on how close data 365 is to the last threshold L 363, which indicates that the buffer is reaching maximum capacity. The urgency factor therefore also accounts for the probability of exceeding the capacity of buffer 360, based on exceeding the maximum threshold L 363.


[0058] The channel resource allocator 209 therefore calculates an urgency factor, U, for each of M buffers, where M is the total number of buffers used in the reverse 111 and forward 110 links. The urgency factor for the buffers servicing the forward links 110 are calculated independently of urgency factors for the other buffers servicing the reverse links 111, and the buffers servicing each transmission direction of a particular connection between a particular one of the subscriber units 101 and the base station 104 are independent of one another.


[0059] At any given time, a given buffer J has a number of channels, NJ, which is the number of channels already allocated to that particular buffer J. Accordingly, NJ must range from 1<NJ<NMAX, where NMAX is the maximum number of channel resources 300 that may be assigned to any one particular buffer, and hence to any one link. In the preferred embodiment, NMAX can be as high as 20 channels, with each channel operating at approximately 8.55 kilobits per second (kbps) or at 13.3 kbps, depending upon a rate selection as determined by which CDMA standard is used. Thus, if a particular buffer is assigned the maximum number of channels to accommodate data transfers for high bandwidth applications, instantaneous data rates may be achieved as high as from about 171 kbps to 260 kbps.


[0060] The urgency factor U for a given buffer is equal to the sum of weighted conditional probabilities. Each conditional probability represents the chance of exceeding the last threshold L, within a time frame, TS given that the data in the buffer has already exceeded a particular threshold Ei. The time frame TS corresponds to the maximum time needed to reallocate a resource. The probabilities for an urgency factor U for a single buffer are all computed in a similar manner, but are based upon different thresholds within that buffer. Thus, as the probabilities for each threshold change with the various demands for service, the urgency factor for that particular buffer also changes. The computed urgency factor for each buffer may also be based upon a quality of service of the communication sessions, wherein the quality of service is based upon at least one of throughput, data rate, latency and jitter, for example.


[0061] In a preferred embodiment, the probability of exceeding a particular threshold EL in time TS given that another threshold Ei is exceeded is given by:
1PEL(TS|Ei)=PEL(Ei)·PEL(TS)PEL(Ei)


[0062] Threshold Ei is used in the above equation when computing the probability of exceeding a threshold EL, in a time period TS, given that the data level in the buffer has already crossed threshold Ej. Since this is an indirect computation, it may be derived from the formula:
2(PELwithinTSofEi/(EiforTS)PEL(Ej)


[0063] The probabilities that make up the urgency factor U for a particular buffer are also weighted before they are summed, such as




U=Σ


i


P


EL
(TS|EiWi(N)



[0064] The weight Wi (N) for each probability is selected to optimize the resource allocation. For example, the weight is selected based upon which threshold is crossed and therefore effects the urgency factor for that buffer by increasing the weight of the summed probabilities used to compute that urgency factor for that buffer.


[0065] Once an urgency factor U for each buffer has been computed, the channel resource assignor 209 determines how to allocate the available channels among the buffers. This is accomplished in a preferred embodiment by determining which buffer has the highest urgency factor and which one has the lowest. Next, the highest and lowest urgency factors must exceed respective high and low urgency thresholds. If this is true, one resource channel is deallocated from the buffer with the lowest urgency factor and is reallocated to the buffer with the highest urgency factor. In this manner, the channel resources for buffers may change over time based upon the urgency factors of the buffers.


[0066] Also, when NJ is 1, there is only one channel allocated to a particular buffer. In this state, the assigned channel resource may be reallocated (i.e., taken away) to another buffer if there is no data in buffer and if the probability of exceeding the buffer capacity within the time it takes to reassign this initial resource, PEL (TS|EO), is less than the probability of reaching the buffer overflow limit P(EL), which is a predetermined constant.


[0067] While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Those skilled in the art will recognize or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described specifically herein. Such equivalents are intended to be encompassed in the scope of the claims.


Claims
  • 1. A base station for providing wireless communication of digital signals over a plurality of digital communication paths, the digital signals being communicated using at least one radio frequency channel via Code Division Multiple Access (CDMA) modulated radio signals, the base station comprising: a wireless transceiver for establishing communication sessions over the plurality of digital communication paths; a plurality of buffers for storing data to be transmitted by said wireless transceiver, each buffer being associated with a particular digital communication path and having at least one threshold associated with a level of data stored therein; a transmission processor for allocating a plurality of code channels within the at least one radio frequency channel to transmit the stored data during the communication sessions; and a channel resource assignor connected to said transmission processor for monitoring a level.,of data stored in each buffer and for computing an urgency factor for each buffer based upon the at least one threshold associated therewith, the urgency factor representing a relative need for transmitting the stored data over the particular digital communication path associated with that buffer, said channel resource assignor comparing the computed urgency factors for the plurality of buffers for determining how many code channels are to be allocated to each digital communication path.
  • 2. A base station according to claim 1 wherein the at least one threshold associated with each buffer comprises a plurality of thresholds.
  • 3. A base station according to claim 1 wherein the computed urgency factors represent how full the plurality of buffers are.
  • 4. A base station according to claim 1 wherein the computed urgency factor for each buffer is also based upon a number of code channels currently allocated to the particular digital communication path associated therewith.
  • 5. A base station according to claim 1 wherein the computed urgency factor for each buffer is also based upon how much time has passed since stored data has been transmitted therefrom.
  • 6. A base station according to claim 1 wherein the computed urgency factor for each buffer is also based upon a quality of service of the communication sessions.
  • 7. A base station according to claim 6 wherein the quality of service is based upon at least one of throughput, data rate, latency and jitter.
  • 8. A base station according to claim 1 wherein the digital signals comprise at least one of voice and data signals.
  • 9. A base station according to claim 1 wherein the wireless communication of digital signals is performed with a plurality of subscriber units over the plurality of digital communication paths.
  • 10. A base station according to claim 9 wherein the at least one radio frequency channel comprises: a first radio frequency channel for establishing forward code channels between said wireless transceiver and the plurality of subscriber units, with the stored data from said plurality of buffers being transmitted by said wireless transceiver on the forward code channels; and a second radio frequency channel for establishing reverse code channels between the plurality of subscriber units and said wireless transceiver.
  • 11. A base station according to claim 10 wherein each subscriber unit comprises a buffer for storing data to be transmitted to said wireless transceiver, and having at least one threshold associated with a level of data stored therein, each subscriber unit transmitting to said wireless transceiver on a reverse code channel the level of data stored in its buffer with respect to the threshold associated therewith; and wherein said channel resource assignor also computes an urgency factor for each subscriber unit.
  • 12. A base station according to claim 10 wherein the forward and reverse code channels are multiplexed on a single radio frequency channel.
  • 13. A base station according to claim 10 wherein the forward and reverse code channels are on different radio frequency channels.
  • 14. A subscriber unit for providing wireless communication of digital signals between terminal equipment connected therewith and a digital communication path, the digital signals being communicated using at least one radio frequency channel via Code Division Multiple Access (CDMA) modulated radio signals, the subscriber unit comprising: a wireless transceiver for establishing a respective communication session over the digital communication path; a buffer for storing data to be transmitted by said wireless transmitter, and having at least one threshold associated with a level of data stored therein; a transmission processor for receiving over the digital communication path at least one allocated code channel within the at least one radio frequency channel to transmit the data stored in said buffer during the respective communication session; said wireless transceiver transmitting a level of data stored in said buffer with respect to the at least one threshold associated therewith; said transmission processor receiving over the digital communication path an adjustment in a number of at least one allocated code channel within the at least one radio frequency channel received based upon an urgency factor, the urgency factor being computed for representing a relative need for transmitting the data stored in said buffer over the digital communication path.
  • 15. A subscriber unit according to claim 14 wherein the wireless communication of digital signals is performed with a base station over the respective digital communication path, with the urgency factor being computed by the base station, the base station comparing the computed urgency factor with other computed urgency factors corresponding to other subscriber units, and reallocating a number of code channels to the subscriber unit.
  • 16. A subscriber unit according to claim 14 wherein the computed urgency factor represents how full said buffer is.
  • 17. A subscriber unit according to claim 14 wherein the computed urgency factor for said buffer is also based upon a number of code channels currently allocated to said transmission processor.
  • 18. A subscriber unit according to claim 14 wherein the computed urgency factor for said buffer is also based upon a how much time has passed since data has been transmitted therefrom.
  • 19. A subscriber unit according to claim 14 wherein the computed urgency factor for said buffer is also based upon a quality of service of the subscriber unit.
  • 20. A subscriber unit according to claim 19 wherein the quality of service is based upon at least one of throughput, data rate, latency and jitter.
  • 21. A subscriber unit according to claim 14 wherein the digital signals comprise at least one of voice and data signals.
  • 22. A subscriber unit according to claim 15 wherein the at least one radio frequency channel comprises: a first radio frequency channel for establishing a forward code channel between the base station and said wireless transceiver, with the at least one allocated channel being transmitted by the base station on the forward code channel; and a second radio frequency channel for establishing a reverse code channel between said wireless transceiver and the base station, with the level of data stored in said buffer with respect to the threshold associated therewith being transmitted by said wireless transceiver on the reverse code channel.
  • 23. A subscriber unit according to claim 22 wherein the forward and reverse code channels are multiplexed on a single radio frequency channel.
  • 24. A subscriber unit according to claim 22 wherein the forward and reverse code channels are on different radio frequency channels.
  • 25. A digital communication system comprising: a plurality of subscriber units for providing wireless communication of digital signals; and a base station for establishing communication sessions with said plurality of subscriber units over a plurality of digital communication paths, said base station comprising a plurality of buffers for storing data to be transmitted to said plurality of subscriber units, each buffer being associated with a particular subscriber unit and having at least one threshold associated with a level of data stored therein, a transmission processor for allocating a plurality of code channels within the at least one radio frequency channel to transmit the data stored in said plurality of buffers during the communication sessions, at least one of said subscriber units being allocated at least one code channel, and a channel resource assignor connected to said transmission processor for monitoring a level of data stored in each buffer and for computing an urgency factor for each buffer based upon the at least one threshold associated therewith, the urgency factor representing a relative need for transmitting the stored data in a respective buffer to the subscriber unit associated with that buffer, said channel resource assignor comparing the computed urgency factors for said plurality of buffers for determining how many code channels to allocate to each subscriber unit.
  • 26. A digital communication system according to claim 25 wherein the at least one threshold associated with each buffer comprises a plurality of thresholds.
  • 27. A digital communication system according to claim 25 wherein the computed urgency factors represent how full said plurality of buffers are.
  • 28. A digital communication system according to claim 25 wherein the computed urgency factor for each buffer is also based upon a number of code channels currently allocated to the particular subscriber unit associated therewith.
  • 29. A digital communication system according to claim 25 wherein the computed urgency factor for each buffer is also based upon a how much time has passed since stored data has been transmitted therefrom to the particular subscriber unit associated therewith.
  • 30. A digital communication system according to claim 25 wherein the computed urgency factors are based upon a quality of service of the communication sessions.
  • 31. A digital communication system according to claim 30 wherein the quality of service is based upon at least one of throughput, data rate, latency and jitter.
  • 32. A digital communication system according to claim 25 wherein the digital signals comprise at least one of voice and data signals.
  • 33. A digital communication system according to claim 25 wherein the at least one radio frequency channel comprises: a first radio frequency channel for establishing forward code channels between said base station and said plurality of subscriber units, with the data stored in said plurality of buffers being transmitted on the forward code channels; and a second radio frequency channel for establishing reverse code channels between said plurality of subscriber units and said base station.
  • 34. A digital communication system according to claim 33 wherein each subscriber comprises a buffer for storing data to be transmitted to said base station and has at least one threshold associated with a level of data stored therein, each subscriber unit transmitting to said base station on a reverse channel the level of data stored in its buffer with respect to the threshold associated therewith; and wherein said channel resource assignor in said base station also computes an urgency factor for each subscriber unit.
  • 35. A digital communication system according to claim 33 wherein the forward and reverse code channels are multiplexed on a single radio frequency channel.
  • 36. A digital communication system according to claim 33 wherein the forward and reverse code channels are on different radio frequency channels.
RELATED APPLICATIONS

[0001] This application is a divisional of Ser. No. 10/345,810 filed on Jan. 16, 2003 which is a continuation of U.S. Pat. No. 6,542,481 filed Jan. 31, 2001, which is a continuation-in-part of U.S. Pat. No. 6,388,999 filed Jun. 1, 1998, which is a continuation of U.S. Pat. No. 6,236,647 filed Feb. 24, 1998, U.S. Pat. No. 6,151,332 filed on Dec. 17, 1997 and U.S. Pat. No. 6,081,536 filed Dec. 17, 1997, which claims the benefit of U.S. Provisional Application No. 60/050,338 filed Jun. 20, 1997 and U.S. Provisional Application No. 60/050,277 filed Jun. 20, 1997, the entire contents of which are incorporated herein by reference.

Provisional Applications (2)
Number Date Country
60050338 Jun 1997 US
60050277 Jun 1997 US
Continuations (5)
Number Date Country
Parent 10345810 Jan 2003 US
Child 10767016 Jan 2004 US
Parent 09773252 Jan 2001 US
Child 10345810 Jan 2003 US
Parent 09030049 Feb 1998 US
Child 09088527 Jun 1998 US
Parent 08992759 Dec 1997 US
Child 09088527 Jun 1998 US
Parent 08992760 Dec 1997 US
Child 09088527 Jun 1998 US
Continuation in Parts (1)
Number Date Country
Parent 09088527 Jun 1998 US
Child 09773252 Jan 2001 US