Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods

Information

  • Patent Grant
  • 9319138
  • Patent Number
    9,319,138
  • Date Filed
    Thursday, August 21, 2014
    10 years ago
  • Date Issued
    Tuesday, April 19, 2016
    8 years ago
Abstract
Communication devices, systems, and methods for dynamic cell bonding (DCB) for networks and communication systems are disclosed. In one embodiment, a method of operating a wireless communication system is provided. The method includes determining a first plurality of remote units in a cloud bonded to a communication session, measuring a received signal strength from each of the first plurality of remote units, and measuring a received signal strength from each of a second plurality of remote units in the cloud not bonded to the communication session. One or more of the second plurality of remote units is dynamically bonded to the communication session if the measured received signal strength of the one of the second plurality of remote units is greater than the measured received signal strength of the first plurality of remote units.
Description
BACKGROUND

1. Field of the Disclosure


The technology of the disclosure relates to dynamic cell bonding (DCB) and, more specifically, to the use of DCB to compensate for the bandwidth limitations of multi-mode optical fiber (MMF).


2. Technical Background


Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. As an example, so-called “wireless fidelity” or “WiFi” systems and wireless local area networks (WLANs) are being deployed in many different types of areas (coffee shops, airports, libraries, etc.). Wireless communication systems communicate with wireless devices called “clients,” which must reside within the wireless range or “cell coverage area” in order to communicate with the access point device.


One approach to deploying a wireless communication system involves the use of “picocells.” Picocells are radio frequency (RF) coverage areas having a radius in the range from about a few meters up to about 20 meters. Picocells can be provided to provide a number of different services (e.g., WLAN, voice, radio frequency identification (RFID) tracking, temperature and/or light control, etc.). Because a picocell covers a small area, there are typically only a few users (clients) per picocell. Picocells also allow for selective wireless coverage in small regions that otherwise would have poor signal strength when covered by larger cells created by conventional base stations.


In conventional wireless systems, picocells are created by and centered on a wireless access point device connected to a head-end controller or head-end unit. The wireless access point device includes digital information processing electronics, an RF transmitter/receiver, and an antenna operably connected to the RF transmitter/receiver. The size of a given picocell is determined by the amount of RF power transmitted by the access point device, the receiver sensitivity, antenna gain and the RF environment, as well as by the RF transmitter/receiver sensitivity of the wireless client device. Client devices usually have a fixed RF receiver sensitivity, so that the above-mentioned properties of the access point device mainly determine the picocell size.


One problem that can exist with wireless communication systems is the multi-path (fading) nature of signal propagation. This simply means that local maxima and minima of desired signals can exist over a picocell coverage area. A receiver antenna located at a maximum location will have better performance or signal-to-noise ratio (SNR) than a receiver antenna located in a minimum position. In this regard, signal processing techniques can be employed to improve the SNR of wireless data transmission in such wireless communication systems. For example, special diversity can be utilized in instances involving many access points. Other signal processing techniques include Multiple Input/Multiple Output (MIMO) techniques for increasing bit rates or beam forming for SNR, or wireless distance improvement. These techniques involve multiple antennas separated by a distance such that individual RF channels are formed between the transmitter and receiver. This distance can be less than one (1) foot in some instances.


In addition to the factors affecting SNR, variation in bandwidth response distribution among optical fiber links can also impede wireless data transmission. For example, multi-mode optical fibers (MMF) used in providing communications links can have varying distributions of bandwidth responses thus causing varying loss responses. For example, FIGS. 1A-1C illustrate exemplary MMF bandwidth response distributions to highlight the degree to which similar MMFs having similar defined characteristics can vary in loss. FIG. 1A provides a graph 2A illustrating an exemplary bandwidth response of thirteen (13) MMFs having a 62.5 micrometer (μm) core measured in a Radio-over-Fiber (RoF) link with an eight hundred fifty (850) nanometer (nm) vertical-cavity surface-emitting laser (VCSEL) measured over a range of input frequencies extending from zero (0) to six (6) GigaHertz (GHz). An exemplary distribution of the bandwidth response 3A of the thirteen (13) MMFs in the graph 2A at five (5) GHz is also illustrated in FIG. 1A to the right of graph 2A. As illustrated in this example, the loss for all measured MMFs is approximately negative eight (−8) decibels (dB) with a relatively large standard deviation between the MMFs having similar defined characteristics. Thus, if the thirteen (13) MMFs illustrated in FIG. 1A were used in a wireless communication system, the picocells formed by each of the MMFs would have a varying loss, even in the case of equal-length MMFs. This variability results in the unpredictable behavior and operation of such wireless systems.


For comparison purposes, FIG. 1B provides a graph 2B illustrating an exemplary bandwidth response of eight (8) MMFs having a fifty (50) μm core measured in an RoF link with an eight hundred fifty (850) nm VCSEL measured over a range of input frequencies extending from zero (0) to six (6) GHz. An exemplary distribution of the bandwidth response 3B for the eight (8) MMFs at five (5) GHz is also illustrated FIG. 1B to the right of graph 2B. In this example, the bandwidth loss for all measured MMFs is approximately −2.4 dB, with a smaller standard deviation of loss when compared to the standard deviation of loss for the 62.5 μm core MMFs illustrated in FIG. 1A. However, the fifty (50) μm core MMFs provided in the example of FIG. 1B may be more expensive than the 62.5 μm core MMFs provided in the example of FIG. 1A.


Comparing the loss in the 62.5 μm core MMFs in FIG. 1A to the fifty (50) μm core MMFs in FIG. 1B, the loss variation is less pronounced for fifty (50) μm core MMFs than for 62.5 μm core MMFs. Therefore, depending on the MMF, the link loss among MMFs will have a distribution similar to that illustrated in FIG. 1C.


It would be advantageous to counteract the variations in loss caused by variations in bandwidth distribution of optical fibers used as communication links in wireless communication systems. MMFs having larger variations in bandwidth distribution may be less expensive to employ in wireless communication systems, but may result in unpredictable behavior having a deleterious effect on the operation of optical fiber enabled wireless communication systems. Therefore, it would be advantageous to counteract the variations in loss of MMFs having larger variations in bandwidth distribution among optical fibers having similar defined characteristics.


SUMMARY OF THE DETAILED DESCRIPTION

Embodiments disclosed in the detailed description include communication devices, systems, and methods for dynamic cell bonding (DCB) for networks and communication systems. In one embodiment, a method of operating an optical fiber-based wireless communication system is provided. The method comprises determining a first plurality of remote units in a cloud bonded to a communication session, measuring a received signal strength and/or a data rate from each of the first plurality of remote units, measuring a received signal strength and/or an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session, and dynamically bonding one of the second plurality of remote units to the communication session if the measured received signal strength or the estimated data rate of the one of the second plurality of remote units is greater than the measured received signal strength or the data rate of one of the first plurality of remote units.


Alternative embodiments disclosed in the detailed description include a controller for DCB for networks and communication systems. In this embodiment, the controller comprises a head end unit configured to determine a first plurality of remote units in a cloud bonded to a communication session, measure a received signal strength and/or a data rate from each of the first plurality of remote units, measure a received signal strength and/or an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session, and dynamically bond one of the second plurality of remote units to the communication session if the measured received signal strength or the estimated data rate of the one of the second plurality of remote units is greater than the measured received signal strength or the data rate of one of the first plurality of remote units.


Alternative embodiments disclosed in the detailed description include a system for DCB for networks and communication systems. In this embodiment, the system comprises a plurality of remote units, and a head end unit comprising a controller for directing a signal to the plurality of remote units, wherein the controller is configured to determine a first plurality of remote units in a cloud bonded to a communication session, measure a received signal strength and/or a data rate from each of the first plurality of remote units, measure a received signal strength and/or an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session, and dynamically bond one or several of the second plurality of remote units to the communication session if the measured received signal strength or the estimated data rate of the one of the second plurality of remote units is greater than the measured received signal strength or the data rate of one of the first plurality of remote units.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description that follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A-1C are diagrams illustrating exemplary varying bandwidth distributions and losses among multi-mode optical fibers (MMFs) having similarly defined characteristics;



FIG. 2 is a schematic diagram of an exemplary generalized embodiment of an optical fiber-based wireless picocellular system;



FIG. 3 is a more detailed schematic diagram of an exemplary embodiment of the system of FIG. 2;



FIG. 4 is a schematic diagram of an exemplary embodiment of a centralized optical fiber-based wireless picocellular system that includes multiple optical fiber cables optically coupled to a central head-end unit;



FIG. 5 is a “top down” view of the system of FIG. 4, showing an exemplary extended picocellular coverage area formed by using multiple optical fiber cables;



FIGS. 6A-6C are diagrams illustrating exemplary signal strength and bit rate within an exemplary square elementary cell;



FIGS. 7A and 7B are diagrams illustrating exemplary signal strength and bit rate within an exemplary square elementary cell;



FIGS. 8A and 8B are diagrams illustrating signal strength and bit rate within an exemplary square elementary cell employing dynamic cell bonding (DCB);



FIG. 9 is an illustration of a hardware configuration for practicing a two-by-two (2×2) Multiple Input/Multiple Output (MIMO) communication processing scheme in accordance with exemplary embodiments described herein;



FIG. 10 is a flowchart of DCB in accordance with exemplary embodiments described herein;



FIG. 11 is an illustration of a hardware configuration for practicing a four-by-four (4×4) MIMO communication processing scheme in accordance with exemplary embodiments described herein;



FIG. 12 shows a schematic representation (not to scale) of the refractive index profile of a cross-section of the glass portion of an exemplary embodiment of multimode optical fiber disclosed herein wherein the depressed-index annular portion is offset from the core and is surrounded by an outer annular portion; and



FIG. 13 is a schematic representation (not to scale) of a cross-sectional view of the optical waveguide fiber of FIG. 12.





DETAILED DESCRIPTION

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.


There is described below, in exemplary and non-limiting embodiments, embodiments that include communications devices, systems, and methods for dynamic cell bonding (DCB) for Radio-over-Fiber (RoF)-based networks and communication systems. In one embodiment, a method of operating an optical fiber-based wireless communication system is provided. The method comprises determining a first plurality of remote units in a cloud bonded to a communication session, measuring a received signal strength and/or a data rate from each of the first plurality of remote units, measuring a received signal strength and/or an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session, and dynamically bonding one or several of the second plurality of remote units to the communication session if the measured received signal strength or the estimated data rate of the one of the second plurality of remote units is greater than the measured received signal strength or the data rate of one of the first plurality of remote units.


In accordance with exemplary embodiments disclosed herein, DCB can be employed in a dense (i.e., separated by several meters) grid of antennas to compensate for link loss variation due to the use of multi-mode optical fibers (MMFs) in the system. As discussed more fully below, DCB can equalize link loss for different optical fibers and mitigate fading effects. This can result in an increase in the coverage area with maximum bit rate in a radio-over-multi-mode-fiber picocellular system.


DCB can be performed continually and/or periodically to measure the signal strengths of remote units near to remote units involved in a Multiple Input/Multiple Output (MIMO) communication session. When it is determined that switching the operation of a remote unit currently utilized in a communication session to a nearby unutilized or underutilized remote unit not bonded to the communication session can result in greater signal strength or a faster data rate, the operation of the two remote units is dynamically swapped. This swapping is referred to herein as “dynamic cell bonding” or, more simply, “dynamic bonding.” As a result of the dynamic bonding, the remote unit previously engaged in the MIMO communication session is subsequently unbonded from the MIMO communication session.


More specifically, in accordance with exemplary embodiments described below, a picocell infrastructure can be utilized to achieve wireless transmission gains by combining the separate single antennas (fed by single optical link) at remote units of neighboring cells by signal processing from a central location. Specifically, in a relatively dense grid of antennas, DCB can be utilized to compensate for the bandwidth limitations of MMFs. As discussed more fully below, a network based on low-bandwidth MMF with DCB has even slightly better coverage than a fixed-cell network where only the highest-bandwidth MMFs are used.


Before discussing exemplary embodiments of an MMF network employing DCB, FIGS. 2-5 are provided to discuss examples of an optical fiber-based wireless communication system which may employ the fiber optic array cables and other systems and methods described herein to enable wireless communication.



FIG. 2 illustrates a schematic diagram of an exemplary embodiment of an optical fiber-based wireless picocellular system 10 employing MMF. The optical fiber-based wireless picocellular system 10 is also referred to herein as “system 10.” The system 10 in this embodiment includes a head-end unit 12, a plurality of transponder units or remote antenna units 14, or simply “remote units 14.” At least one optical fiber radio frequency (RF) communication link 16 optically couples the head-end unit 12 to each remote unit 14. The head-end unit 12 may be any type of controller or control system, or any other device or system that can control communications directed to and from the remote units 14, as described in more detail below. As also discussed in detail below, the system 10 facilitates the formation of a picocell 18 substantially centered about remote unit 14 and extending in a generally conical form away from an associated remote unit 14. The plurality of remote units 14 forms a picocellular coverage area 20. While illustrated as covering separate and distinct regions of space, picocellular coverage areas associated with different remote units may intersect and overlap. The head-end unit 12 is adapted to perform or to facilitate any one of a number of RoF applications, such as radio frequency identification (RFID), wireless local area network (WLAN) communication, or cellular phone service, as examples. Shown within the picocell 18 is a client device 22 in the form of a computer. The client device 22 may be any device capable of receiving and transmitting RF communications and signals. The client device 22 includes an antenna system 24 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF signals.



FIG. 3 is a detailed schematic diagram of an exemplary embodiment of system 10 of FIG. 2. In an exemplary embodiment, the head-end unit 12 includes a service unit 26 that provides electrical RF service signals for a particular wireless service or application. In an exemplary embodiment, the service unit 26 provides electrical RF service signals by passing (or conditioning and then passing) such signals from one or more outside networks 28, as described below. In a particular example embodiment, this includes providing WLAN signal distribution as specified in the Institute of Electrical Engineers (IEEE) 802.11 standard, i.e., in the frequency range from 2.4 to 2.5 GigaHertz (GHz) and from 5.0 to 6.0 GHz. In another exemplary embodiment, the service unit 26 provides electrical RF service signals by generating the signals directly. In another exemplary embodiment, the service unit 26 coordinates the delivery of the electrical RF service signals between client devices within the picocellular coverage area 20.


The service unit 26 is electrically coupled to an electrical-to-optical (E/O) converter 30 that receives an electrical RF service signal from the service unit 26 and converts it to a corresponding optical signal, as discussed in greater detail below. In an exemplary embodiment, the E/O converter 30 includes a laser suitable for delivering sufficient dynamic range for the RoF applications described herein, and optionally includes a laser driver/amplifier electrically coupled to the laser. Examples of suitable lasers for the E/O converter 30 include, but are not limited to, laser diodes, distributed feedback (DFB) lasers, Fabry-Perot (FP) lasers, and vertical cavity surface emitting lasers (VCSELs).


The head-end unit 12 also includes an optical-to-electrical (O/E) converter 32 electrically coupled to the service unit 26. The O/E converter 32 receives an optical RF service signal and converts it to a corresponding electrical signal. In an example embodiment, the O/E converter 32 is a photodetector, or a photodetector electrically coupled to a linear amplifier. The E/O converter 30 and the O/E converter 32 constitute a “converter pair” 34.


In accordance with an exemplary embodiment, the service unit 26 includes an RF signal modulator/demodulator unit 36 for modulating/demodulating RF signals, a digital signal processing unit (“digital signal processor”) 38, a central processing unit (CPU) 40 for processing data and otherwise performing logic and computing operations, and a memory unit 42 for storing data, such as data to be transmitted over a WLAN.


The remote unit 14 includes a converter pair 44, wherein the E/O converter 30 and the O/E converter 32 therein are electrically coupled to an antenna system 24 via an RF signal-directing element 46, such as a circulator. The signal-directing element 46 serves to direct the downlink and uplink electrical RF service signals, as discussed below. In accordance with an exemplary embodiment, the antenna system 24 includes one or more patch antennas, such as disclosed in U.S. patent application Ser. No. 11/504,999, filed Aug. 16, 2006 entitled “RADIO-OVER-FIBER TRANSPONDER WITH A DUAL-BAND PATCH ANTENNA SYSTEM,” and U.S. patent application Ser. No. 11/451,553, filed Jun. 12, 2006 entitled “CENTRALIZED OPTICAL-FIBER-BASED WIRELESS PICOCELLULAR SYSTEMS AND METHODS,” both of which are incorporated herein by reference in their entireties.


The optical fiber RF communication link 16 includes a downlink optical fiber 48D having a downlink optical fiber input end 50 and an output end 52, and an uplink optical fiber 48U having an uplink optical fiber input end 54 and an output end 56. The downlink and uplink optical fibers 48D and 48U optically couple the converter pair 34 at the head-end unit 12 to the converter pair 44 at the remote unit 14. Specifically, the downlink optical fiber input end 50 is optically coupled to the E/O converter 30 of the head-end unit 12, while the output end 52 is optically coupled to the O/E converter 32 at the remote unit 14. Similarly, the uplink optical fiber input end 54 is optically coupled to the E/O converter 30 of the remote unit 14, while the output end 56 is optically coupled to the O/E converter 32 at the head-end unit 12.


In accordance with an exemplary embodiment, the optical fiber-based wireless picocellular system 10 employs a known telecommunications wavelength, such as eight hundred fifty (850) nanometers (nm), one thousand three hundred (1300) nm, or one thousand five hundred fifty (1550) nm. In another exemplary embodiment, the system 10 employs other less common but suitable wavelengths such as nine hundred eighty (980) nm.


Exemplary embodiments of the system 10 include using multi-mode optical fiber for downlink and uplink optical fibers 48D and 48U. The particular type of optical fiber depends on the application of the system 10. For many in-building deployment applications, maximum transmission distances typically do not exceed three hundred (300) meters (m). The maximum length for the intended RoF transmission needs to be taken into account when considering using multi-mode optical fibers for the downlink and uplink optical fibers 48D and 48U. For example, it has been shown that a one thousand four hundred (1400) MHz/km multi-mode optical fiber bandwidth-distance product is sufficient for 5.2 GHz transmission up to three hundred (300) m.


In an exemplary embodiment, the system 10 employs fifty (50) μm multi-mode optical fiber (MMF) for the downlink and uplink optical fibers 48D and 48U, and E/O converters 30 that operate at eight hundred fifty (850) nm using commercially available VCSELs.


The system 10 also includes a power supply 58 that generates an electrical power signal 60. The power supply 58 is electrically coupled to the head-end unit 12 for powering the power-consuming elements therein. In an exemplary embodiment, an electrical power line 62 runs through the head-end unit 12 and over to the remote unit 14 to power the E/O converter 30 and the OLE converter 32 in the converter pair 44, the optional RF signal-directing element 46 (unless the RF signal-directing element 46 is a passive device such as a circulator), and any other power-consuming elements (not shown). In an exemplary embodiment, the electrical power line 62 includes two wires 64 and 66 that carry a single voltage and that are electrically coupled to a DC power converter 68 at the remote unit 14. The DC power converter 68 is electrically coupled to the E/O converter 30 and the OLE converter 32 in the converter pair 44, and changes the voltage or levels of the electrical power signal 60 to the power level(s) required by the power-consuming components in the remote unit 14. In an exemplary embodiment, the DC power converter 68 is either a DC/DC power converter, or an AC/DC power converter, depending on the type of electrical power signal 60 carried by the electrical power line 62. In an exemplary embodiment, the electrical power line 62 includes standard electrical-power-carrying electrical wire(s), e.g., 18-26 American Wire Gauge (AWG) used in standard telecommunications and other applications. In another example embodiment, the electrical power line 62 (dashed line) runs directly from the power supply 58 to the remote unit 14 rather than from or through the head-end unit 12. In another example embodiment, the electrical power line 62 includes more than two wires and carries multiple voltages.


In an example embodiment, the head-end unit 12 is operably coupled to one or more outside networks 28 via a network link 72.


With reference to the optical fiber-based wireless picocellular system 10 of FIGS. 2 and 3, the service unit 26 generates an electrical downlink RF service signal SD (also referred to herein as “electrical signal SD”) corresponding to its particular application. In an exemplary embodiment, this is accomplished by the digital signal processor 38 providing the RF signal modulator/demodulator unit 36 with an electrical signal (not shown) that is modulated onto an RF carrier to generate a desired electrical signal SD.


The electrical signal SD is received by the E/O converter 30, which converts this electrical signal into a corresponding optical downlink RF signal SD′ (also referred to herein as “optical signal SD′”), which is then coupled into the downlink optical fiber 48D at the downlink optical fiber input end 50. In an exemplary embodiment, the amount of power provided to antenna system 24 is varied to define the size of the associated picocell 18 (FIG. 2), which in example embodiments range anywhere from about a meter across to about twenty meters across.


The optical signal SD′ travels over the downlink optical fiber 48D to the output end 52, where it is received by the O/E converter 32 in the remote unit 14. The O/E converter 32 converts the optical signal SD′ back into the electrical signal SD, which then travels to the RF signal-directing element 46. The RF signal-directing element 46 then directs the electrical signal SD to the antenna system 24. The electrical signal SD is fed to the antenna system 24, causing it to radiate a corresponding electromagnetic downlink RF signal SD″ (also referred to herein as “electromagnetic signal SD″”). Because the client device 22 is within the picocell 18, the electromagnetic signal SD″ is received by the antenna system 24 of the client device 22, which may be part of a wireless card, or a cell phone antenna, for example. The antenna system 24 converts the electromagnetic signal SD″ into an electrical signal SD in the client device 22 (the electrical signal SD is not shown therein). The client device 22 then processes the electrical signal SD, e.g., stores the signal information in memory, displays the information as an e-mail or text message, etc.


In an exemplary embodiment, the client device 22 generates an electrical uplink RF signal SU (not shown in the client device 22), which is converted into an electromagnetic uplink RF signal SU″ (also referred to herein as “electromagnetic signal SU″”) by the antenna system 24.


Because the client device 22 is located within the picocell 18, the electromagnetic signal SU″ is detected by the antenna system 24 of the remote unit 14, which converts this signal back into the electrical signal SU. The electrical signal SU is directed by the RF signal-directing element 46 to the E/O converter 30, which converts this electrical signal SU into a corresponding optical uplink RF signal SU′ (also referred to herein as “optical signal SU”), which is then coupled into the uplink optical fiber input end 54 of the uplink optical fiber 48U. The optical signal SU′ travels over the uplink optical fiber 48U to the output end 56, where it is received by the OLE converter 32 at the head-end unit 12. The OLE converter 32 converts the optical signal SU′ back into the electrical signal SU, which is then directed to the service unit 26. The service unit 26 receives and processes the electrical signal SU, which in an example embodiment includes one or more of the following: storing the signal information, digitally processing or conditioning the signals, sending the signals on to one or more outside networks 28 via the network links 72, and sending the signals to one or more client devices 22 in the picocellular coverage area 20. In an example embodiment, the processing of the electrical signal SU includes demodulating the electrical signal SU in the RF signal modulator/demodulator unit 36, and then processing the demodulated signal in the digital signal processor 38.



FIG. 4 is a schematic diagram of an exemplary embodiment of an optical fiber-based wireless picocellular system 200 according the disclosure. The optical fiber-based wireless picocellular system 200 is also referred to herein as the “system 200.” The system 200 is similar to the system 10 as described above and illustrated in FIGS. 2 and 3, but includes multiple optical fiber cables 202 optically coupled to a central head-end station 204. The central head-end station 204 includes a number of E/O converter arrays 206 and a corresponding number of O/E converter arrays 208, arranged in pairs in converter array units 210, with one converter array unit 210 optically coupled to one optical fiber cable 202. Likewise, the system 200 includes a number of downlink multiplexers 212 and uplink multiplexers 214, arranged in pairs in multiplexer units 216, with one multiplexer unit 216 electrically coupled to one converter array unit 210. In an exemplary embodiment, a controller 215 is electrically coupled to each multiplexer unit 216 and is adapted to control the operation of the downlink and uplink multiplexers 212 and 214 therein. Here, the term “array” is not intended to be limited to components integrated onto a single chip as is often done in the art, but includes an arrangement of discrete, non-integrated components.


While described above with reference to the operation of a single remote unit 14, in accordance with exemplary embodiments disclosed below, remote units 14 are grouped into clouds of remote units 14 for use in DCB. As used herein, a “cloud” refers to a set comprising all remote units 14 each associated with one another in such a way that each may be counted when determining the number of nodes (NumNodes) available for the purposes of performing DCB. As described more fully below, a cloud may be further defined, for example, as the set of all remote units 14 physically linked to the same access point. For example, a plurality of remote units 14 forming a cloud may be used in combination with diversity antennas on client devices 22 (FIG. 2) to provide a Multiple-Input/Multiple-Output (MIMO) configuration. MIMO is the use of multiple antennas at both the transmitter and receiver to improve communication performance to maximize the performance of a system, such as the system 200. Such an arrangement can be used to achieve an increased bit rate at the same antenna power level. It achieves this by employing higher spectral efficiency (more bits per second per hertz of bandwidth) and link reliability or diversity (reduced fading).


Each E/O converter array 206 is electrically coupled to the downlink multiplexer 212 in the corresponding multiplexer unit 216. Likewise, each O/E converter array 208 is electrically coupled to the uplink multiplexer 214 in the corresponding multiplexer unit 216. Service units 218 are each electrically coupled to both the downlink and uplink multiplexers 212 and 214 within each multiplexer unit 216. Respective downlink and uplink optical fiber cables 220 and 222 optically couple each converter array unit 210 to a corresponding optical fiber cable 202. In an example embodiment, the central head-end station 204 includes connector ports 224 and optical fiber cables 202 include connectors 226 adapted to connect to the connector ports 224. In an exemplary embodiment, the connectors 226 are Mechanical Transfer (MT) connectors, such as the UNICAM™ MTP connector available from Corning Cable Systems LLC, Hickory, N.C. In an example embodiment, the connectors 226 are adapted to accommodate the electrical power line 62 connected to the connector port 224.



FIG. 5 is an illustration of a “top down” view of the system 200, showing an extended picocellular coverage area 20 formed by using multiple optical fiber cables 202 as might, for example, be spread across a floor of a building or other structure in a generally planar manner. A grid 228 is superimposed over the resultant array of remote units 14. In the exemplary embodiment shown, the remote unit 14 is located at each intersection of every two generally orthogonal grid lines to form a regularly distributed array of the remote units 14. In an example embodiment, the system 200 supports anywhere from two remote units 14 to hundreds of remote units 14, to even thousands of remote units 14. The particular number of remote units 14 employed is not fundamentally limited by the design of the system 200, but rather by the particular application.


The system 200 operates in a manner similar to the system 10 as described above, except that instead of the remote units 14 being disposed in a single optical fiber cable 202, they are distributed over two or more optical fiber cables 202 through the use of corresponding two or more converter array units 210. The electrical signals SD from the service units 218 are distributed to each multiplexer unit 216. The downlink multiplexers 212 therein convey electrical signals SD to one, some, or all of the converter array units 210, depending on which remote units 14 are to be addressed by which service unit 218. The electrical signals SD are then processed as described above, with the downlink optical signals SD′ being sent to one, some, or all of remote units 14. The uplink optical signals SU′ generated by the client devices 22 in the corresponding picocells 18 return to the corresponding converter array units 210 at the central head-end station 204. The optical signals SU′ are converted to electrical signals SU at the receiving converter array unit(s) 210 and are then sent to the uplink multiplexers 214 in the corresponding multiplexer unit(s) 216. The uplink multiplexers 214 therein are adapted (e.g., programmed by the controller 215) to direct the electrical signals SU to the service unit(s) 218 that require(s) receiving electrical signals SU. The receiving service units 218 process the electrical signals SU, which as discussed above in an exemplary embodiment includes one or more of: storing the signal information; digitally processing or conditioning the signals; sending the signals on to the one or more outside networks 28 via the network links 72; and sending the signals to one or more client devices 22 in the picocellular coverage area 20.



FIGS. 6-8 discussed below are provided in order to illustrate examples of implementing DCB in a MIMO communication session. In this regard, FIGS. 6A-6C are illustrations of exemplary disparaging that can occur in maximum bit rates achievable by the client device 22 of the system 200 operating within one or more picocells bounded by four remote units 14 forming a square elementary cell 230, as an example. With reference to FIG. 6A, the grid 228 corresponds to the grid 228 of FIG. 5. At each intersection of grid lines is a node 232 corresponding to the position of a remote unit 14. As used herein, references to a “node 232” may be used interchangeably with references to the “remote unit 14” associated with the node 232. For purposes of explanation, nodes 232 active in a communication session are designated as “node 232A.” More specifically, nodes 232 initially active in a MIMO communication session prior to the performance of DCB as described in accordance with reference to exemplary embodiments described herein are referred to as “node 232A”′ (see FIG. 9). Nodes 232 not bonded to a communication session but included in a cloud that includes nodes that are bonded to the communication session are referred to as “node 232C.” Returning to FIG. 6A, the four nodes 232A active in a communication session forming the square elementary cell 230 are surrounded by other adjacent nodes 232C. The eight adjacent nodes 232C are candidate nodes that can be utilized in a DCB scenario. In the simulation illustrated in FIG. 6A, each square elementary cell 230 has an a=five (5) meter (m) period.



FIG. 6B is an illustration showing the maximum bit rate achievable by a client device 22 within an exemplary square elementary cell 230 of a 4×4 MIMO system. In this example, the square elementary cell 230 has a period of a=5 m. There is assumed a path loss exponent of 4.0 and a shadow fading parameter of 3.5 dB. It is further assumed that each client device antenna system 24 is onmidirectional. Gaussian distribution for the fiber loss is assumed with σ=3 dB. Lastly, it is assumed that each MMF utilized to communicate with each remote unit 14 at each node 232A is a 62.5 μm fiber and is selected to be in the top 5% of bandwidth compared to other MMFs having the same characteristics. It is evident that, when utilizing the top five percent (5%) of MMFs from a random distribution of MMFs, up to approximately ninety four percent (94%) of the square elementary cell 230 is covered at the maximum bit rate. This result is further illustrated in FIG. 6C where there is plotted the percentage of the cell area coverage (% of cell area) for each bit rate (bit rate, Mb/s).



FIGS. 7A and 7B illustrate the percentage of coverage at varying bit rates for a square elementary cell 230 having the same dimensions and operating with the same parameters as in FIG. 6B with one exception. Specifically, in this example, each MMF utilized to communicate with each remote unit 14 at each node 232A is randomly selected so as to mirror the distribution of characteristics across all MMFs of the same or similar type. As a result, the MMFs utilized in the present example have a lower-bandwidth on average than do those utilized with reference to FIGS. 6B and 6C. The resulting increased variability in the quality of individual MMFs thus selected is reflected in the decreased percentage of the cell area covered at the maximum bit rate. Specifically, as seen in FIGS. 7A and 7B, the cell area covered at the maximum bit rate drops considerably to less than 80%. Note that in the exemplary embodiments of FIGS. 6A, 6B, 7A, and 7B, the same four (4) nodes 232A bonding the square elementary cell 230 are utilized as bonded to an RoF communication session.


In an exemplary embodiment in accordance with the disclosure, DCB is utilized to increase the percentage of a cell area covered at the maximum bit rate. In accordance with the simulated results illustrated in FIGS. 8A and 8B, it is possible to achieve results superior to those illustrated in FIGS. 6B and 6C even while utilizing the MMFs employed in FIGS. 7A and 7B. As described more fully below, DCB is employed to expand the set of nodes 232 that may be utilized in, for example, the 4×4 MIMO situation illustrated in FIG. 6A. Specifically, instead of merely using remote units 14 associated with the four nodes 232A forming the square elementary cell 230, each of the remote units 14 associated with the eight adjacent nodes 232C may be dynamically swapped, or “bonded”, with one of the four nodes 232A when it is determined that doing so would increase the percentage of the square elementary cell 230 within which the maximum bit rate can be achieved. As described more fully below, in an exemplary embodiment, this determination is made based, in part, upon which remote units 14 associated with nodes 232 belonging to the cloud of nodes 232 including adjacent nodes 232C exhibit the best signal-to-interference (S/I) and S/N ratios.


With continued reference to FIG. 8A, there is illustrated the cell area coverage using a random distribution of MMFs (as in FIGS. 7A and 7B) but employing DCB. The results are illustrated in FIGS. 8A and 8B, where it is demonstrated that the performance of the system when DCB is employed increases such that nearly one hundred percent (100%) of the square elementary cell 230 enjoys a maximum bit rate.


An exemplary embodiment of a method by which DCB can be performed in accordance with the disclosure is described with reference to FIG. 9 and the flowchart of FIG. 10. With reference to FIG. 9, there is illustrated a hardware configuration for a 2×2 MIMO scenario engaged in a communication session with, for example, a client device 22 (not shown), whereby multiple antenna systems 24 each at one of a number of remote units 14 and a corresponding number of antennas at the client device 22 engage in a communication session. In the exemplary illustrated configuration in FIG. 9, the system 200 (FIG. 4) operates to select two (2) of the five (5) nodes 232 each associated with a remote unit 14 exhibiting, for example, the highest measured received signal strength and/or data rate. In exemplary embodiments, all of the nodes 232 are presumed to be distributed in a generally planar manner such as across a floor of a building.


In this example, as illustrated in FIG. 10, the process of DCB begins with a first node 232A′ already selected, though in practice it need not be (block 300). As illustrated, node 232A′, located at center, is hardwired to service unit 26 and remains in a selected state throughout DCB. Next, beginning at N=1, the signal strength at each remote unit 14 corresponding to each of the four (4) other nodes is measured. Note that, in this example, the number of possible nodes from which to chose when performing DCB is five (5). As the node 232A′, located at center, is always selected, there remain four (4) possible other nodes 232 that can be utilized. Node 232A′, at center, is darkened to indicate that it is selected. As a result, the total possible number of nodes (NumNodes) in the present example is four (4) (total number of nodes (5)−number of nodes always activated (1)=4). The process proceeds to measure the signal strength of each of the remaining four (4) nodes 232. To achieve these measurements, a computing device, such as the CPU 40, queries the received signal strength from a client device 22 via the remote unit 14 corresponding to N=1 (block 302). The CPU 40 stores the measured signal strength corresponding to N=1 in memory, such as in memory unit 42 (block 304).


Next, a check is performed to see if N=NumNodes (block 306). As noted above, in the present example, NumNodes=4. As a result the comparison of N, having a value of “1,” does not equal NumNodes (equal to “4”). As a result, N is increased by one (block 308) and the process of measuring the signal strength of the other nonmeasured nodes continues once again (block 302). After three more iterations, it will be determined that N is equal to NumNodes.


Next, processing continues to select those remote units 14 corresponding to measured nodes, numbering NumNodes in total, having the highest signal strength (block 310). Because the present example is a 2×2 MIMO configuration in which only two nodes are utilized at any one time and, further, because the node 232A′, located at center, is always selected, this block requires that only the remote unit 14 corresponding to the node with the single highest associated value be selected. In the present example, the node 232A′ selected is the node directly to the left of center node 232A′. As a result, the CPU 40 instructs the 4×1 switch receiving an input signal from the service unit 26 to direct or otherwise transmit the signal to the node 232A′ at left of center (block 312). As a result, in the present example, the nodes 232C remain as adjacent, unutilized and unbonded nodes.


Next, MIMO signal processing is performed (block 314). During MIMO signal processing, data is transmitted to and received from the client device 22 via the selected remote units 14 having the highest measured signal strength.


Note that thus far there has been described only the first iteration of blocks by which the first number of remote units 14 are selected for use in MIMO processing (block 300 to block 314). After the initial selection of nodes is performed, a decision to perform dynamic cell bonding is made (block 316). Dynamic cell bonding is the process by which the nodes utilized in MIMO communication (e.g., two (2) nodes in 2×2 MIMO processing, four (4) nodes in 4×4 MIMO processing, etc.) are periodically, in a dynamic fashion, reassessed to determine the optimal configuration and utilization of the nodes. In the present example, if a determination is made to perform DCB, the process continues to block 302. As described above, the received signal strengths of all four (4) nodes (not including the central node 232A′) are again measured and, if necessary, a node 232C is chosen to replace the operation of node 232A′. This newly selected node 232C is then dynamically bonded with the communication session to become an active node 232A′ while, in approximate synchronicity, the formerly activated node 232A′ is unbounded from the communication session. If a decision is made to forgo DCB, the process terminates (block 316).


In an alternative exemplary and non-limiting embodiment, a data rate of a remote unit 14 can be used in addition to or in lieu of antenna signal strength in FIG. 10. In this regard, the data rate of remote units 14 proximate to the selected center node 232A′ can be used to provide a MIMO configuration and to determine dynamic cell bonding in FIG. 10. Data rate is another measure of the performance of a remote unit 14. Thus, in the embodiment of FIG. 10, the remote units 14 totaling NumNodes with the highest data rates can be used to provide the active nodes 232A for the MIMO configuration (blocks 302-312 in FIG. 10). Further, the data rate of nodes 232A selected for the MIMO configuration in FIG. 10 can also be used to determine communication performance and thus if an active node 232A should be selected for release in a dynamically bonded communication session. In this regard, the processing at block 316 in FIG. 10 can use the measured data rates of the active nodes 232A to reassess whether any of the active nodes 232A should be replaced with unbounded nodes 232C. In this regard, the measured estimated data rate(s) of nodes 232C, i.e., estimated based on the measured signal strength of nodes 232C, is compared with the data rate(s) of active nodes 232A. An estimated data rate is used to determine the performance of unbonded nodes 232C, because unbonded nodes 232C are not part of the communication session in this embodiment. As used herein, reference to “measured estimated data rate” refers to the process of determining an estimated data rate for an unbonded node 232C. If the estimated data rate(s) of unbonded nodes 232C are greater than the data rate(s) of active nodes 232A, as previously described above, such unbonded node(s) 232C can be chosen to replace the operation of active node(s) 232A and be dynamically bonded with the communication session to become an active node 232A (block 316 in FIG. 10).



FIG. 11 is an illustration of a hardware configuration for a 4×4 MIMO scenario. In the exemplary illustrated configuration, the system 200 (FIG. 4) operates to select four (4) of the best nine (9) nodes each associated with a remote unit 14. Note that, in the example, four nodes 232A′ have been initially chosen as exhibiting the highest signal strength. Once again, the node 232A′, located at center, is always activated so that the total number of nodes available for DCB (NumNodes) is equal to eight (8). Thus, when DCB is performed, N will cycle from one (1) to eight (8) as the signal strength of each node is measured.


The rapidity with which DCB occurs may vary. DCB may be configured to be performed at time intervals ranging from hours to minutes to seconds and even to subsecond intervals. When utilizing MMF at high bandwidths, the transmission quality of the fiber is unstable. In addition, the position of the client device 22 can move thus altering the remote units 14 being utilized for MIMO communication. Further, the temperature of the lasers used and the state of the physical couplings along a MMF can both change over time. As a result, it is beneficial to periodically perform DCB as described in accordance with exemplary embodiments herein.


In addition, the flowchart of FIG. 10 describes the process of DCB for a single client device 22. In practice, it is likely that DCB will be performed in serial fashion for each client device 22 engaged in MIMO communication via the system 200. It is therefore evident that the amount of time required to perform DCB on a plurality of client devices 22 is dependent upon, at least, the number of client devices 22 and the number of nodes (NumNodes) at which a signal strength must be measured. As a result, the degree of periodicity of DCB may be bounded, in part, by factors including, but not limited to, the number of client devices 22 and the number of nodes (NumNodes) at which a signal strength must be measured.


As noted above, a “cloud” refers to a set comprising all remote units 14 each associated with one another in such a way that each may be counted when determining NumNodes for the purposes of performing DCB. In the exemplary embodiments described above with reference to FIGS. 9 and 11, the cloud is defined by the specific nodes physically connected to the service unit 26. Specifically, all nodes physically connected to a single service unit are deemed to be in the same cloud. In other exemplary embodiments, clouds may be defined logically, such as when based upon geographic proximity. In such instances, when nodes are regularly distributed across, for example, floors of a building, nodes which reside on adjacent floors but which are otherwise aligned vertically may be included in the same cloud. In another exemplary embodiment, for any given first node, all other nodes belonging to the same cloud as the first node may be defined as being within the line of sight from the first node where line of sight distance d can be found from the following equation:








P
TX

+

20






log
10



c

4





π






fd
0




+

10





n






log
10




d
0

d



=

P
noise






where PTX is the transmitter antenna power in dBm, Pnoise is the thermal noise power (equals −92 dBm for the bandwidth of 16.6 GHz), c is the speed of light, f is the operation radio frequency (e.g. 2.4 or 5.2 GHz), n is the path loss exponent determined experimentally and d0 is a reference distance outside of the Fraunhofer region of the antenna. Typically, d0=1 m is assumed.


Regardless of the manner in which one or more clouds are defined, each cloud and a unique identifier of each remote unit included in the cloud must be determined and recorded. In an exemplary embodiment, a configuration is performed during which information regarding each cloud and a unique identifier of each remote unit included in the cloud is stored, for example, in memory unit 42 and available to CPU 40.


As used herein, it is intended that terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more bare optical fibers, loose-tube optical fibers, tight-buffered optical fibers, ribbonized optical fibers, bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® Multimode fiber commercially available from Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163.


Bend resistant multimode optical fibers may comprise a graded-index core region and a cladding region surrounding and directly adjacent to the core region, the cladding region comprising a depressed-index annular portion comprising a depressed relative refractive index relative to another portion of the cladding. The depressed-index annular portion of the cladding is preferably spaced apart from the core. Preferably, the refractive index profile of the core has a parabolic or substantially curved shape. The depressed-index annular portion may, for example, comprise a) glass comprising a plurality of voids, or b) glass doped with one or more downdopants such as fluorine, boron, individually or mixtures thereof. The depressed-index annular portion may have a refractive index delta less than about −0.2% and a width of at least about 1 micron, said depressed-index annular portion being spaced from said core by at least about 0.5 microns.


In some embodiments that comprise a cladding with voids, the voids in some preferred embodiments are non-periodically located within the depressed-index annular portion. By “non-periodically located” we mean that when one takes a cross section (such as a cross section perpendicular to the longitudinal axis) of the optical fiber, the non-periodically disposed voids are randomly or non-periodically distributed across a portion of the fiber (e.g. within the depressed-index annular region). Similar cross sections taken at different points along the length of the fiber will reveal different randomly distributed cross-sectional hole patterns, i.e., various cross sections will have different hole patterns, wherein the distributions of voids and sizes of voids do not exactly match for each such cross section. That is, the voids are non-periodic, i.e., they are not periodically disposed within the fiber structure. These voids are stretched (elongated) along the length (i.e. generally parallel to the longitudinal axis) of the optical fiber, but do not extend the entire length of the entire fiber for typical lengths of transmission fiber. It is believed that the voids extend along the length of the fiber a distance less than about 20 meters, more preferably less than about 10 meters, even more preferably less than about 5 meters, and in some embodiments less than 1 meter.


The multimode optical fiber disclosed herein exhibits very low bend induced attenuation, in particular very low macrobending induced attenuation. In some embodiments, high bandwidth is provided by low maximum relative refractive index in the core, and low bend losses are also provided. Consequently, the multimode optical fiber may comprise a graded index glass core; and an inner cladding surrounding and in contact with the core, and a second cladding comprising a depressed-index annular portion surrounding the inner cladding, said depressed-index annular portion having a refractive index delta less than about −0.2% and a width of at least 1 micron, wherein the width of said inner cladding is at least about 0.5 microns and the fiber further exhibits a 1 turn, 10 mm diameter mandrel wrap attenuation increase of less than or equal to about 0.4 dB/turn at 850 nm, a numerical aperture of greater than 0.14, more preferably greater than 0.17, even more preferably greater than 0.18, and most preferably greater than 0.185, and an overfilled bandwidth greater than 1.5 GHz-km at 850 nm.


50 micron diameter core multimode fibers can be made which provide (a) an overfilled (OFL) bandwidth of greater than 1.5 GHz-km, more preferably greater than 2.0 GHz-km, even more preferably greater than 3.0 GHz-km, and most preferably greater than 4.0 GHz-km at an 850 nm wavelength. These high bandwidths can be achieved while still maintaining a 1 turn, 10 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength of less than 0.5 dB, more preferably less than 0.3 dB, even more preferably less than 0.2 dB, and most preferably less than 0.15 dB. These high bandwidths can also be achieved while also maintaining a 1 turn, 20 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength of less than 0.2 dB, more preferably less than 0.1 dB, and most preferably less than 0.05 dB, and a 1 turn, 15 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength, of less than 0.2 dB, preferably less than 0.1 dB, and more preferably less than 0.05 dB. Such fibers are further capable of providing a numerical aperture (NA) greater than 0.17, more preferably greater than 0.18, and most preferably greater than 0.185. Such fibers are further simultaneously capable of exhibiting an OFL bandwidth at 1300 nm which is greater than about 500 MHz-km, more preferably greater than about 600 MHz-km, even more preferably greater than about 700 MHz-km. Such fibers are further simultaneously capable of exhibiting minimum calculated effective modal bandwidth (Min EMBc) bandwidth of greater than about 1.5 MHz-km, more preferably greater than about 1.8 MHz-km and most preferably greater than about 2.0 MHz-km at 850 nm.


Preferably, the multimode optical fiber disclosed herein exhibits a spectral attenuation of less than 3 dB/km at 850 nm, preferably less than 2.5 dB/km at 850 nm, even more preferably less than 2.4 dB/km at 850 nm and still more preferably less than 2.3 dB/km at 850 nm. Preferably, the multimode optical fiber disclosed herein exhibits a spectral attenuation of less than 1.0 dB/km at 1300 nm, preferably less than 0.8 dB/km at 1300 nm, even more preferably less than 0.6 dB/km at 1300 nm.


In some embodiments, the numerical aperture (“NA”) of the optical fiber is preferably less than 0.23 and greater than 0.17, more preferably greater than 0.18, and most preferably less than 0.215 and greater than 0.185.


In some embodiments, the core extends radially outwardly from the centerline to a radius R1, wherein 10≦R1≦40 microns, more preferably 20≦R1≦40 microns. In some embodiments, 22≦R1≦34 microns. In some preferred embodiments, the outer radius of the core is between about 22 to 28 microns. In some other preferred embodiments, the outer radius of the core is between about 28 to 34 microns.


In some embodiments, the core has a maximum relative refractive index, less than or equal to 1.2% and greater than 0.5%, more preferably greater than 0.8%. In other embodiments, the core has a maximum relative refractive index, less than or equal to 1.1% and greater than 0.9%.


In some embodiments, the optical fiber exhibits a 1 turn, 10 mm diameter mandrel attenuation increase of no more than 1.0 dB, preferably no more than 0.6 dB, more preferably no more than 0.4 dB, even more preferably no more than 0.2 dB, and still more preferably no more than 0.1 dB, at all wavelengths between 800 and 1400 nm.



FIG. 12 shows a schematic representation of the refractive index profile of a cross-section of the glass portion of an embodiment of a multimode optical fiber 500 comprising a glass core 420 and a glass cladding 400, the cladding comprising an inner annular portion 430, a depressed-index annular portion 450, and an outer annular portion 460. FIG. 13 is a schematic representation (not to scale) of a cross-sectional view of the optical waveguide fiber of FIG. 12. The core 420 has outer radius R1 and maximum refractive index delta Δ1MAX. The inner annular portion 430 has width W2 and outer radius R2. Depressed-index annular portion 450 has minimum refractive index delta percent Δ3MIN, width W3 and outer radius R3. The depressed-index annular portion 450 is shown offset, or spaced away, from the core 420 by the inner annular portion 430. The annular portion 450 surrounds and contacts the inner annular portion 430. The outer annular portion 460 surrounds and contacts the annular portion 450. The clad layer 400 is surrounded by at least one coating 510, which may in some embodiments comprise a low modulus primary coating and a high modulus secondary coating.


The inner annular portion 430 has a refractive index profile Δ2(r) with a maximum relative refractive index Δ2MAX, and a minimum relative refractive index Δ2MIN, where in some embodiments Δ2MAX=Δ2MIN. The depressed-index annular portion 450 has a refractive index profile Δ3(r) with a minimum relative refractive index Δ3MIN. The outer annular portion 460 has a refractive index profile Δ4(r) with a maximum relative refractive index Δ4MAX, and a minimum relative refractive index Δ4MIN, where in some embodiments Δ4MAX=Δ4MIN. Preferably, Δ1MAX>Δ2MAX>Δ3MIN. In some embodiments, the inner annular portion 430 has a substantially constant refractive index profile, as shown in FIG. 12 with a constant Δ2(r); in some of these embodiments, Δ2(r)=0%. In some embodiments, the outer annular portion 460 has a substantially constant refractive index profile, as shown in FIG. 12 with a constant Δ4(r); in some of these embodiments, Δ4(r)=0%. The core 420 has an entirely positive refractive index profile, where Δ1(r)>0%. R1 is defined as the radius at which the refractive index delta of the core first reaches value of 0.05%, going radially outwardly from the centerline. Preferably, the core 420 contains substantially no fluorine, and more preferably the core 420 contains no fluorine. In some embodiments, the inner annular portion 430 preferably has a relative refractive index profile Δ2(r) having a maximum absolute magnitude less than 0.05%, and Δ2MAX<0.05% and Δ2MIN>−0.05%, and the depressed-index annular portion 450 begins where the relative refractive index of the cladding first reaches a value of less than −0.05%, going radially outwardly from the centerline. In some embodiments, the outer annular portion 460 has a relative refractive index profile Δ4(r) having a maximum absolute magnitude less than 0.05%, and Δ4MAX<0.05% and Δ4MIN>−0.05%, and the depressed-index annular portion 450 ends where the relative refractive index of the cladding first reaches a value of greater than −0.05%, going radially outwardly from the radius where Δ3MIN is found.


Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which the invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. These modifications include, but are not limited to, extension to MIMO configurations extending beyond 2×2 MIMO or 4×4 MIMO to, for example, 2×3 MIMO, 4×6 MIMO, 8×8 MIMO and the like. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims
  • 1. A method of operating a wireless communication system, comprising: (a) determining a first plurality of remote units in a cloud bonded to a communication session;(b) measuring at least one of a received signal strength and a data rate from each of the first plurality of remote units;(c) measuring at least one of a received signal strength and an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session; and(d) dynamically bonding one of the second plurality of remote units to the communication session if the at least one of the measured received signal strength and the estimated data rate of the one of the second plurality of remote units is greater than the at least one of the measured received signal strength and the data rate of one of the first plurality of remote units.
  • 2. The method of claim 1, further comprising unbonding the one of the first plurality of remote units from the communication session.
  • 3. The method of claim 1, wherein the first plurality of remote units in the cloud are within a line of sight of each other.
  • 4. The method of claim 3, wherein the second plurality of remote units in the cloud are within the line of sight.
  • 5. The method of claim 1, wherein the communication session is comprised of a Multiple Input/Multiple Output (MIMO) session.
  • 6. The method of claim 1, wherein dynamically bonding the one of the second plurality of remote units to the communication session is repeated for each of the second plurality of remote units.
  • 7. The method of claim 2, wherein dynamically bonding the one of the second plurality of remote units and unbonding the one of the first plurality of remote units from the communication session are repeated.
  • 8. A controller comprising: a head-end unit communicatively coupled to and configured to conduct a communication session with a first plurality of remote units and a second plurality of remote units;where the head-end unit is configured to: (a) determine the first plurality of remote units in a cloud bonded to a communication session;(b) measure at least one of a received signal strength and a data rate from each of the first plurality of remote units;(c) measure at least one of a received signal strength and an estimated data rate from each of the second plurality of remote units in the cloud not bonded to the communication session; and(d) dynamically bond one of the second plurality of remote units to the communication session if at least one of the measured received signal strength and the estimated data rate of the one of the second plurality of remote units is greater than the at least one of the measured received signal strength and the data rate of one of the first plurality of remote units.
  • 9. The controller of claim 8, wherein the head-end unit is further configured to unbond the one of the first plurality of remote units from the communication session.
  • 10. The controller of claim 8, wherein the communication session is comprised of a Multiple Input/Multiple Output (MIMO) session.
  • 11. The controller of claim 8, wherein the head-end unit is further configured to repeat dynamically bonding the one of the second plurality of remote units to the communication session for each of the second plurality of remote units.
  • 12. The controller of claim 9, wherein the head-end unit is further configured to repeat dynamically bonding the one of the second plurality of remote units to the communication session and unbonding the one of the first plurality of remote units to the communication session.
  • 13. A system, comprising: a plurality of remote units; anda head-end unit communicatively coupled to and configured to conduct a communication session with a first plurality of remote units and a second plurality of remote units comprising a controller for directing a signal to the plurality of remote units,wherein the head-end unit is configured to: (a) determine the first plurality of remote units in a cloud bonded to the communication session;(b) measure at least one of a received signal strength and a data rate from each of the first plurality of remote units;(c) measure at least one of a received signal strength and an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session; and(d) dynamically bond one of the second plurality of remote units to the communication session if at least one of the measured received signal strength and the estimated data rate of the one of the second plurality of remote units is greater than at least one of the measured received signal strength and the data rate of one of the first plurality of remote units.
  • 14. The system of claim 13, wherein the head-end unit is further configured to unbond the one of the first plurality of remote units from the communication session.
  • 15. The system of claim 13, wherein the first plurality of remote units is coupled to a service unit.
  • 16. The system of claim 15, wherein the second plurality of remote units is coupled to the service unit.
  • 17. The system of claim 13, wherein the first plurality of remote units in the cloud are within line of sight of each other.
  • 18. The system of claim 17, wherein the second plurality of remote units in the cloud are within the line of sight.
  • 19. The system of claim 13, wherein the communication session is comprised of a Multiple Input/Multiple Output (MIMO) session.
  • 20. The system of claim 14, wherein the head-end unit is configured to repeat dynamically bonding the one of the second plurality of remote units to the communication session for each of the second plurality of remote units.
  • 21. The system of claim 15, wherein the head-end unit is configured to repeat dynamically bonding the one of the second plurality of remote units to the communication session and unbonding the one of the first plurality of remote units from the communication session.
PRIORITY APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/592,502, filed Aug. 23, 2012, which is a continuation of U.S. application Ser. No. 12/705,779, filed on Feb. 15, 2010, the contents of which are relied upon and both incorporated herein by reference in their entireties, and the benefit of priority under 35 U.S.C. §120 is hereby claimed.

US Referenced Citations (891)
Number Name Date Kind
4365865 Stiles Dec 1982 A
4449246 Seiler et al. May 1984 A
4573212 Lipsky Feb 1986 A
4665560 Lange May 1987 A
4867527 Dotti et al. Sep 1989 A
4889977 Haydon Dec 1989 A
4896939 O'Brien Jan 1990 A
4916460 Powell Apr 1990 A
4939852 Brenner Jul 1990 A
4972346 Kawano et al. Nov 1990 A
5039195 Jenkins et al. Aug 1991 A
5042086 Cole et al. Aug 1991 A
5056109 Gilhousen et al. Oct 1991 A
5059927 Cohen Oct 1991 A
5125060 Edmundson Jun 1992 A
5187803 Sohner et al. Feb 1993 A
5189718 Barrett et al. Feb 1993 A
5189719 Coleman et al. Feb 1993 A
5206655 Caille et al. Apr 1993 A
5208812 Dudek et al. May 1993 A
5210812 Nilsson et al. May 1993 A
5260957 Hakimi Nov 1993 A
5263108 Kurokawa et al. Nov 1993 A
5267122 Glover et al. Nov 1993 A
5268971 Nilsson et al. Dec 1993 A
5278690 Vella-Coleiro Jan 1994 A
5278989 Burke et al. Jan 1994 A
5280472 Gilhousen et al. Jan 1994 A
5297225 Snow et al. Mar 1994 A
5299947 Barnard Apr 1994 A
5301056 O'Neill Apr 1994 A
5325223 Bears Jun 1994 A
5339058 Lique Aug 1994 A
5339184 Tang Aug 1994 A
5343320 Anderson Aug 1994 A
5377035 Wang et al. Dec 1994 A
5379455 Koschek Jan 1995 A
5381459 Lappington Jan 1995 A
5396224 Dukes et al. Mar 1995 A
5400391 Emura et al. Mar 1995 A
5420863 Taketsugu et al. May 1995 A
5424864 Emura Jun 1995 A
5444564 Newberg Aug 1995 A
5457557 Zarem et al. Oct 1995 A
5459727 Vannucci Oct 1995 A
5469523 Blew et al. Nov 1995 A
5519830 Opoczynski May 1996 A
5543000 Lique Aug 1996 A
5546443 Raith Aug 1996 A
5557698 Gareis et al. Sep 1996 A
5574815 Kneeland Nov 1996 A
5598288 Collar Jan 1997 A
5606725 Hart Feb 1997 A
5615034 Hori Mar 1997 A
5627879 Russell et al. May 1997 A
5640678 Ishikawa et al. Jun 1997 A
5642405 Fischer et al. Jun 1997 A
5644622 Russell et al. Jul 1997 A
5648961 Ebihara Jul 1997 A
5651081 Blew et al. Jul 1997 A
5657374 Russell et al. Aug 1997 A
5668562 Cutrer et al. Sep 1997 A
5677974 Elms et al. Oct 1997 A
5682256 Motley et al. Oct 1997 A
5694232 Parsay et al. Dec 1997 A
5703602 Casebolt Dec 1997 A
5708681 Malkemes et al. Jan 1998 A
5726984 Kubler et al. Mar 1998 A
5765099 Georges et al. Jun 1998 A
5774789 van der Kaay et al. Jun 1998 A
5790536 Mahany et al. Aug 1998 A
5790606 Dent Aug 1998 A
5793772 Burke et al. Aug 1998 A
5802173 Hamilton-Piercy et al. Sep 1998 A
5802473 Rutledge et al. Sep 1998 A
5805975 Green, Sr. et al. Sep 1998 A
5805983 Naidu et al. Sep 1998 A
5809395 Hamilton-Piercy et al. Sep 1998 A
5809422 Raleigh et al. Sep 1998 A
5809431 Bustamante et al. Sep 1998 A
5812296 Tarusawa et al. Sep 1998 A
5818619 Medved et al. Oct 1998 A
5818883 Smith et al. Oct 1998 A
5821510 Cohen et al. Oct 1998 A
5825651 Gupta et al. Oct 1998 A
5838474 Stilling Nov 1998 A
5839052 Dean et al. Nov 1998 A
5852651 Fischer et al. Dec 1998 A
5854986 Dorren et al. Dec 1998 A
5859719 Dentai Jan 1999 A
5862460 Rich Jan 1999 A
5867485 Chambers et al. Feb 1999 A
5867763 Dean et al. Feb 1999 A
5875211 Cooper Feb 1999 A
5881200 Burt Mar 1999 A
5883882 Schwartz Mar 1999 A
5896568 Tseng et al. Apr 1999 A
5903834 Wallstedt et al. May 1999 A
5910776 Black Jun 1999 A
5913003 Arroyo et al. Jun 1999 A
5917636 Wake et al. Jun 1999 A
5930682 Schwartz et al. Jul 1999 A
5936754 Ariyavisitakul et al. Aug 1999 A
5943372 Gans et al. Aug 1999 A
5946622 Bojeryd Aug 1999 A
5949564 Wake Sep 1999 A
5953670 Newson Sep 1999 A
5959531 Gallagher, III et al. Sep 1999 A
5960344 Mahany Sep 1999 A
5969837 Farber et al. Oct 1999 A
5983070 Georges et al. Nov 1999 A
5987303 Dutta et al. Nov 1999 A
6005884 Cook et al. Dec 1999 A
6006069 Langston et al. Dec 1999 A
6006105 Rostoker et al. Dec 1999 A
6011980 Nagano et al. Jan 2000 A
6014546 Georges et al. Jan 2000 A
6016426 Bodell Jan 2000 A
6023625 Myers, Jr. Feb 2000 A
6037898 Parish et al. Mar 2000 A
6061161 Yang et al. May 2000 A
6069721 Oh et al. May 2000 A
6088381 Myers, Jr. Jul 2000 A
6112086 Wala Aug 2000 A
6118767 Shen et al. Sep 2000 A
6122529 Sabat, Jr. et al. Sep 2000 A
6127917 Tuttle Oct 2000 A
6128470 Naidu et al. Oct 2000 A
6128477 Freed Oct 2000 A
6148041 Dent Nov 2000 A
6150921 Werb et al. Nov 2000 A
6157810 Georges et al. Dec 2000 A
6192216 Sabat, Jr. et al. Feb 2001 B1
6194968 Winslow Feb 2001 B1
6212397 Langston et al. Apr 2001 B1
6222503 Gietema Apr 2001 B1
6223201 Reznak Apr 2001 B1
6232870 Garber et al. May 2001 B1
6236789 Fitz May 2001 B1
6236863 Waldroup et al. May 2001 B1
6240274 Izadpanah May 2001 B1
6246500 Ackerman Jun 2001 B1
6268946 Larkin et al. Jul 2001 B1
6275990 Dapper et al. Aug 2001 B1
6279158 Geile et al. Aug 2001 B1
6286163 Trimble Sep 2001 B1
6292673 Maeda et al. Sep 2001 B1
6295451 Mimura Sep 2001 B1
6301240 Slabinski et al. Oct 2001 B1
6307869 Pawelski Oct 2001 B1
6314163 Acampora Nov 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6323980 Bloom Nov 2001 B1
6324391 Bodell Nov 2001 B1
6330241 Fort Dec 2001 B1
6330244 Swartz et al. Dec 2001 B1
6334219 Hill et al. Dec 2001 B1
6336021 Nukada Jan 2002 B1
6336042 Dawson et al. Jan 2002 B1
6337754 Imajo Jan 2002 B1
6340932 Rodgers et al. Jan 2002 B1
6353406 Lanzl et al. Mar 2002 B1
6353600 Schwartz et al. Mar 2002 B1
6359714 Imajo Mar 2002 B1
6370203 Boesch et al. Apr 2002 B1
6374078 Williams et al. Apr 2002 B1
6374124 Slabinski Apr 2002 B1
6389010 Kubler et al. May 2002 B1
6400318 Kasami et al. Jun 2002 B1
6400418 Wakabayashi Jun 2002 B1
6404775 Leslie et al. Jun 2002 B1
6405018 Reudink et al. Jun 2002 B1
6405058 Bobier Jun 2002 B2
6405308 Gupta et al. Jun 2002 B1
6414624 Endo et al. Jul 2002 B2
6415132 Sabat, Jr. Jul 2002 B1
6421327 Lundby et al. Jul 2002 B1
6438301 Johnson et al. Aug 2002 B1
6438371 Fujise et al. Aug 2002 B1
6448558 Greene Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6459519 Sasai et al. Oct 2002 B1
6459989 Kirkpatrick et al. Oct 2002 B1
6477154 Cheong et al. Nov 2002 B1
6480702 Sabat, Jr. Nov 2002 B1
6486907 Farber et al. Nov 2002 B1
6496290 Lee Dec 2002 B1
6501965 Lucidarme Dec 2002 B1
6504636 Seto et al. Jan 2003 B1
6504831 Greenwood et al. Jan 2003 B1
6512478 Chien Jan 2003 B1
6519395 Bevan et al. Feb 2003 B1
6519449 Zhang et al. Feb 2003 B1
6525855 Westbrook et al. Feb 2003 B1
6535330 Lelic et al. Mar 2003 B1
6535720 Kintis et al. Mar 2003 B1
6556551 Schwartz Apr 2003 B1
6577794 Currie et al. Jun 2003 B1
6577801 Broderick et al. Jun 2003 B2
6580402 Navarro et al. Jun 2003 B2
6580905 Naidu et al. Jun 2003 B1
6580918 Leickel et al. Jun 2003 B1
6583763 Judd Jun 2003 B2
6587514 Wright et al. Jul 2003 B1
6594496 Schwartz Jul 2003 B2
6597325 Judd et al. Jul 2003 B2
6598009 Yang Jul 2003 B2
6606430 Bartur et al. Aug 2003 B2
6615074 Mickle et al. Sep 2003 B2
6628732 Takaki Sep 2003 B1
6634811 Gertel et al. Oct 2003 B1
6636747 Harada et al. Oct 2003 B2
6640103 Inman et al. Oct 2003 B1
6643437 Park Nov 2003 B1
6652158 Bartur et al. Nov 2003 B2
6654590 Boros et al. Nov 2003 B2
6654616 Pope, Jr. et al. Nov 2003 B1
6657535 Magbie et al. Dec 2003 B1
6658269 Golemon et al. Dec 2003 B1
6665308 Rakib et al. Dec 2003 B1
6670930 Navarro Dec 2003 B2
6674966 Koonen Jan 2004 B1
6675294 Gupta et al. Jan 2004 B1
6678509 Skarman et al. Jan 2004 B2
6687437 Starnes et al. Feb 2004 B1
6690328 Judd Feb 2004 B2
6697603 Lovinggood et al. Feb 2004 B1
6701137 Judd et al. Mar 2004 B1
6704298 Matsumiya et al. Mar 2004 B1
6704545 Wala Mar 2004 B1
6710366 Lee et al. Mar 2004 B1
6714800 Johnson et al. Mar 2004 B2
6731880 Westbrook et al. May 2004 B2
6745013 Porter et al. Jun 2004 B1
6758913 Tunney et al. Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6771862 Karnik et al. Aug 2004 B2
6771933 Eng et al. Aug 2004 B1
6784802 Stanescu Aug 2004 B1
6785558 Stratford et al. Aug 2004 B1
6788666 Linebarger et al. Sep 2004 B1
6801767 Schwartz et al. Oct 2004 B1
6807374 Imajo et al. Oct 2004 B1
6812824 Goldinger et al. Nov 2004 B1
6812905 Thomas et al. Nov 2004 B2
6823174 Masenten et al. Nov 2004 B1
6826163 Mani et al. Nov 2004 B2
6826164 Mani et al. Nov 2004 B2
6826337 Linnell Nov 2004 B2
6836660 Wala Dec 2004 B1
6836673 Trott Dec 2004 B1
6842433 West et al. Jan 2005 B2
6842459 Binder Jan 2005 B1
6847856 Bohannon Jan 2005 B1
6850510 Kubler Feb 2005 B2
6865390 Goss et al. Mar 2005 B2
6873823 Hasarchi Mar 2005 B2
6876056 Tilmans et al. Apr 2005 B2
6879290 Toutain et al. Apr 2005 B1
6882311 Walker et al. Apr 2005 B2
6883710 Chung Apr 2005 B2
6885344 Mohamadi Apr 2005 B2
6885846 Panasik et al. Apr 2005 B1
6889060 Fernando et al. May 2005 B2
6901061 Joo et al. May 2005 B1
6909399 Zegelin et al. Jun 2005 B1
6915058 Pons Jul 2005 B2
6915529 Suematsu et al. Jul 2005 B1
6919858 Rofougaran Jul 2005 B2
6920330 Caronni et al. Jul 2005 B2
6924997 Chen et al. Aug 2005 B2
6930987 Fukuda et al. Aug 2005 B1
6931183 Panak et al. Aug 2005 B2
6931659 Kinemura Aug 2005 B1
6931813 Collie Aug 2005 B2
6933849 Sawyer Aug 2005 B2
6934511 Lovinggood et al. Aug 2005 B1
6934541 Miyatani Aug 2005 B2
6941112 Hasegawa Sep 2005 B2
6946989 Vavik Sep 2005 B2
6961312 Kubler et al. Nov 2005 B2
6963289 Aljadeff et al. Nov 2005 B2
6963552 Sabat, Jr. et al. Nov 2005 B2
6965718 Koertel Nov 2005 B2
6967347 Estes et al. Nov 2005 B2
6968107 Belardi et al. Nov 2005 B2
6970652 Zhang et al. Nov 2005 B2
6973243 Koyasu et al. Dec 2005 B2
6974262 Rickenbach Dec 2005 B1
6977502 Hertz Dec 2005 B1
7002511 Ammar et al. Feb 2006 B1
7006465 Toshimitsu et al. Feb 2006 B2
7013087 Suzuki et al. Mar 2006 B2
7015826 Chan et al. Mar 2006 B1
7020473 Splett Mar 2006 B2
7020488 Bleile et al. Mar 2006 B1
7024166 Wallace Apr 2006 B2
7035512 Van Bijsterveld Apr 2006 B2
7035671 Solum Apr 2006 B2
7039399 Fischer May 2006 B2
7043271 Seto et al. May 2006 B1
7047028 Cagenius et al. May 2006 B2
7050017 King et al. May 2006 B2
7053838 Judd May 2006 B2
7054513 Herz et al. May 2006 B2
7069577 Geile et al. Jun 2006 B2
7072586 Aburakawa et al. Jul 2006 B2
7082320 Kattukaran et al. Jul 2006 B2
7084769 Bauer et al. Aug 2006 B2
7093985 Lord et al. Aug 2006 B2
7103119 Matsuoka et al. Sep 2006 B2
7103377 Bauman et al. Sep 2006 B2
7106252 Smith Sep 2006 B2
7106931 Sutehall et al. Sep 2006 B2
7110795 Doi Sep 2006 B2
7114859 Tuohimaa et al. Oct 2006 B1
7127175 Mani et al. Oct 2006 B2
7127176 Sasaki Oct 2006 B2
7142503 Grant et al. Nov 2006 B1
7142535 Kubler et al. Nov 2006 B2
7142619 Sommer et al. Nov 2006 B2
7146506 Hannah et al. Dec 2006 B1
7160032 Nagashima et al. Jan 2007 B2
7171244 Bauman Jan 2007 B2
7184728 Solum Feb 2007 B2
7190748 Kim et al. Mar 2007 B2
7194023 Norrell et al. Mar 2007 B2
7199443 Elsharawy Apr 2007 B2
7200305 Dion et al. Apr 2007 B2
7200391 Chung et al. Apr 2007 B2
7228072 Mickelsson et al. Jun 2007 B2
7263293 Ommodt et al. Aug 2007 B2
7269311 Kim et al. Sep 2007 B2
7280011 Bayar et al. Oct 2007 B2
7286843 Scheck Oct 2007 B2
7286854 Ferrato et al. Oct 2007 B2
7295119 Rappaport et al. Nov 2007 B2
7310430 Mallya et al. Dec 2007 B1
7313415 Wake et al. Dec 2007 B2
7315735 Graham Jan 2008 B2
7324730 Varkey et al. Jan 2008 B2
7343164 Kallstenius Mar 2008 B2
7348843 Qiu et al. Mar 2008 B1
7349633 Lee et al. Mar 2008 B2
7359408 Kim Apr 2008 B2
7359674 Markki et al. Apr 2008 B2
7366150 Lee et al. Apr 2008 B2
7366151 Kubler et al. Apr 2008 B2
7369526 Lechleider et al. May 2008 B2
7379669 Kim May 2008 B2
7388892 Nishiyama Jun 2008 B2
7392025 Rooyen et al. Jun 2008 B2
7392029 Pronkine Jun 2008 B2
7394883 Funakubo et al. Jul 2008 B2
7403156 Coppi et al. Jul 2008 B2
7409159 Izadpanah Aug 2008 B2
7412224 Kotola et al. Aug 2008 B2
7424228 Williams et al. Sep 2008 B1
7442679 Stolte et al. Oct 2008 B2
7444051 Tatat et al. Oct 2008 B2
7450853 Kim et al. Nov 2008 B2
7450854 Lee et al. Nov 2008 B2
7451365 Wang et al. Nov 2008 B2
7454222 Huang et al. Nov 2008 B2
7460507 Kubler et al. Dec 2008 B2
7460829 Utsumi et al. Dec 2008 B2
7460831 Hasarchi Dec 2008 B2
7466925 Iannelli Dec 2008 B2
7469105 Wake et al. Dec 2008 B2
7477597 Segel Jan 2009 B2
7483504 Shapira et al. Jan 2009 B2
7483711 Burchfiel Jan 2009 B2
7495560 Easton et al. Feb 2009 B2
7496070 Vesuna Feb 2009 B2
7496384 Seto et al. Feb 2009 B2
7505747 Solum Mar 2009 B2
7512419 Solum Mar 2009 B2
7522552 Fein et al. Apr 2009 B2
7539509 Bauman et al. May 2009 B2
7542452 Penumetsa Jun 2009 B2
7546138 Bauman Jun 2009 B2
7548138 Kamgaing Jun 2009 B2
7548695 Wake Jun 2009 B2
7551641 Pirzada et al. Jun 2009 B2
7557758 Rofougaran Jul 2009 B2
7565080 Mickelsson et al. Jul 2009 B2
7580384 Kubler et al. Aug 2009 B2
7586861 Kubler et al. Sep 2009 B2
7590354 Sauer et al. Sep 2009 B2
7593704 Pinel et al. Sep 2009 B2
7599420 Forenza et al. Oct 2009 B2
7599672 Shoji et al. Oct 2009 B2
7610046 Wala Oct 2009 B2
7630690 Kaewell, Jr. et al. Dec 2009 B2
7633934 Kubler et al. Dec 2009 B2
7639982 Wala Dec 2009 B2
7646743 Kubler et al. Jan 2010 B2
7646777 Hicks, III et al. Jan 2010 B2
7653397 Pernu et al. Jan 2010 B2
7668565 Ylänen et al. Feb 2010 B2
7672591 Soto et al. Mar 2010 B2
7675936 Mizutani et al. Mar 2010 B2
7688811 Kubler et al. Mar 2010 B2
7693486 Kasslin et al. Apr 2010 B2
7697467 Kubler et al. Apr 2010 B2
7697574 Suematsu et al. Apr 2010 B2
7715375 Kubler et al. May 2010 B2
7720510 Pescod et al. May 2010 B2
7751374 Donovan Jul 2010 B2
7751838 Ramesh et al. Jul 2010 B2
7760703 Kubler et al. Jul 2010 B2
7761093 Sabat, Jr. et al. Jul 2010 B2
7768951 Kubler et al. Aug 2010 B2
7773573 Chung et al. Aug 2010 B2
7778603 Palin et al. Aug 2010 B2
7787823 George et al. Aug 2010 B2
7787854 Conyers et al. Aug 2010 B2
7805073 Sabat, Jr. et al. Sep 2010 B2
7809012 Ruuska et al. Oct 2010 B2
7812766 Leblanc et al. Oct 2010 B2
7812775 Babakhani et al. Oct 2010 B2
7817958 Scheinert et al. Oct 2010 B2
7817969 Castaneda et al. Oct 2010 B2
7835328 Stephens et al. Nov 2010 B2
7844273 Scheinert Nov 2010 B2
7848316 Kubler et al. Dec 2010 B2
7848731 Dianda et al. Dec 2010 B1
7848770 Scheinert Dec 2010 B2
7853234 Afsahi Dec 2010 B2
7870321 Rofougaran Jan 2011 B2
7880677 Rofougaran et al. Feb 2011 B2
7881755 Mishra et al. Feb 2011 B1
7894423 Kubler et al. Feb 2011 B2
7899007 Kubler et al. Mar 2011 B2
7907972 Walton et al. Mar 2011 B2
7912043 Kubler et al. Mar 2011 B2
7912506 Lovberg et al. Mar 2011 B2
7916706 Kubler et al. Mar 2011 B2
7917177 Bauman Mar 2011 B2
7920553 Kubler et al. Apr 2011 B2
7920858 Sabat, Jr. et al. Apr 2011 B2
7924783 Mahany et al. Apr 2011 B1
7929940 Dianda et al. Apr 2011 B1
7936713 Kubler et al. May 2011 B2
7948897 Stuart et al. May 2011 B2
7949364 Kasslin et al. May 2011 B2
7957777 Vu et al. Jun 2011 B1
7962111 Solum Jun 2011 B2
7969009 Chandrasekaran Jun 2011 B2
7969911 Mahany et al. Jun 2011 B2
7990925 Tinnakornsrisuphap et al. Aug 2011 B2
7996020 Chhabra Aug 2011 B1
8018907 Kubler et al. Sep 2011 B2
8023886 Rofougaran Sep 2011 B2
8027656 Rofougaran et al. Sep 2011 B2
8036308 Rofougaran Oct 2011 B2
8073329 Gao et al. Dec 2011 B2
8082353 Huber et al. Dec 2011 B2
8086192 Rofougaran et al. Dec 2011 B2
8107464 Schmidt et al. Jan 2012 B2
8107815 Akasaka et al. Jan 2012 B2
8135102 Wiwel et al. Mar 2012 B2
8174428 Wegener May 2012 B2
8213401 Fischer et al. Jul 2012 B2
8223795 Cox Jul 2012 B2
8228849 Trachewsky Jul 2012 B2
8238463 Arslan Aug 2012 B1
8270387 Cannon et al. Sep 2012 B2
8274929 Schmidt et al. Sep 2012 B2
8279800 Schmidt et al. Oct 2012 B2
8280250 Brodsky et al. Oct 2012 B2
8280259 George et al. Oct 2012 B2
8290483 Sabat, Jr. et al. Oct 2012 B2
8306563 Zavadsky et al. Nov 2012 B2
8346091 Kummetz et al. Jan 2013 B2
8346278 Wala et al. Jan 2013 B2
8351792 Zheng Jan 2013 B2
8374508 Soto et al. Feb 2013 B2
8391256 Beach Mar 2013 B2
8422883 Yeh et al. Apr 2013 B2
8422884 Mao Apr 2013 B2
8428510 Stratford et al. Apr 2013 B2
8452178 Gao et al. May 2013 B2
8462683 Uyehara et al. Jun 2013 B2
8467823 Seki et al. Jun 2013 B2
8472579 Uyehara et al. Jun 2013 B2
8488966 Zheng Jul 2013 B2
8509215 Stuart Aug 2013 B2
8509850 Zavadsky et al. Aug 2013 B2
8526970 Wala et al. Sep 2013 B2
8532242 Fischer et al. Sep 2013 B2
8548526 Schmidt et al. Oct 2013 B2
8583100 Koziy et al. Nov 2013 B2
8626245 Zavadsky et al. Jan 2014 B2
8634766 Hobbs et al. Jan 2014 B2
8639121 George et al. Jan 2014 B2
8649684 Casterline et al. Feb 2014 B2
8676214 Fischer et al. Mar 2014 B2
8681917 McAllister et al. Mar 2014 B2
8693342 Uyehara et al. Apr 2014 B2
8694034 Notargiacomo Apr 2014 B2
8699982 Singh Apr 2014 B2
8737300 Stapleton et al. May 2014 B2
8737454 Wala et al. May 2014 B2
8743718 Grenier et al. Jun 2014 B2
8743756 Uyehara et al. Jun 2014 B2
8792933 Chen Jul 2014 B2
8837659 Uyehara et al. Sep 2014 B2
8837940 Smith et al. Sep 2014 B2
8873585 Oren et al. Oct 2014 B2
8908607 Kummetz et al. Dec 2014 B2
8929288 Stewart et al. Jan 2015 B2
8948816 Fischer et al. Feb 2015 B2
8958789 Bauman et al. Feb 2015 B2
8976067 Fischer Mar 2015 B2
9001811 Wala et al. Apr 2015 B2
9107086 Leimeister et al. Aug 2015 B2
9112547 Scheinert et al. Aug 2015 B2
20010036163 Sabat, Jr. et al. Nov 2001 A1
20010036199 Terry Nov 2001 A1
20020003645 Kim Jan 2002 A1
20020009070 Lindsay et al. Jan 2002 A1
20020012336 Hughes et al. Jan 2002 A1
20020012495 Sasai et al. Jan 2002 A1
20020016827 McCabe et al. Feb 2002 A1
20020045518 Dalebout et al. Apr 2002 A1
20020045519 Watterson et al. Apr 2002 A1
20020048071 Suzuki et al. Apr 2002 A1
20020051434 Ozluturk et al. May 2002 A1
20020075906 Cole et al. Jun 2002 A1
20020092347 Niekerk et al. Jul 2002 A1
20020097564 Struhsaker et al. Jul 2002 A1
20020103012 Kim et al. Aug 2002 A1
20020111149 Shoki Aug 2002 A1
20020111192 Thomas et al. Aug 2002 A1
20020114038 Arnon et al. Aug 2002 A1
20020123365 Thorson et al. Sep 2002 A1
20020126967 Panak et al. Sep 2002 A1
20020128009 Boch et al. Sep 2002 A1
20020130778 Nicholson Sep 2002 A1
20020139064 Norwood Oct 2002 A1
20020181668 Masoian et al. Dec 2002 A1
20020190845 Moore Dec 2002 A1
20020197984 Monin et al. Dec 2002 A1
20030002604 Fifield et al. Jan 2003 A1
20030007214 Aburakawa et al. Jan 2003 A1
20030016418 Westbrook et al. Jan 2003 A1
20030045284 Copley et al. Mar 2003 A1
20030069922 Arunachalam Apr 2003 A1
20030078074 Sesay et al. Apr 2003 A1
20030112826 Ashwood Smith et al. Jun 2003 A1
20030126294 Thorsteinson et al. Jul 2003 A1
20030141962 Barink Jul 2003 A1
20030161637 Yamamoto et al. Aug 2003 A1
20030165287 Krill et al. Sep 2003 A1
20030174099 Bauer et al. Sep 2003 A1
20030209601 Chung Nov 2003 A1
20040001719 Sasaki Jan 2004 A1
20040008114 Sawyer Jan 2004 A1
20040017785 Zelst Jan 2004 A1
20040037565 Young et al. Feb 2004 A1
20040041714 Forster Mar 2004 A1
20040043764 Bigham et al. Mar 2004 A1
20040047313 Rumpf et al. Mar 2004 A1
20040078151 Aljadeff et al. Apr 2004 A1
20040095907 Agee et al. May 2004 A1
20040100930 Shapira et al. May 2004 A1
20040105435 Morioka Jun 2004 A1
20040106435 Bauman et al. Jun 2004 A1
20040126068 Van Bijsterveld Jul 2004 A1
20040126107 Jay et al. Jul 2004 A1
20040139477 Russell et al. Jul 2004 A1
20040146020 Kubler et al. Jul 2004 A1
20040149736 Clothier Aug 2004 A1
20040151164 Kubler et al. Aug 2004 A1
20040151503 Kashima et al. Aug 2004 A1
20040157623 Splett Aug 2004 A1
20040160912 Kubler et al. Aug 2004 A1
20040160913 Kubler et al. Aug 2004 A1
20040162084 Wang Aug 2004 A1
20040162115 Smith et al. Aug 2004 A1
20040162116 Han et al. Aug 2004 A1
20040165573 Kubler et al. Aug 2004 A1
20040175173 Deas Sep 2004 A1
20040196404 Loheit et al. Oct 2004 A1
20040202257 Mehta et al. Oct 2004 A1
20040203703 Fischer Oct 2004 A1
20040203704 Ommodt et al. Oct 2004 A1
20040203846 Caronni et al. Oct 2004 A1
20040204109 Hoppenstein Oct 2004 A1
20040208526 Mibu Oct 2004 A1
20040208643 Roberts et al. Oct 2004 A1
20040215723 Chadha Oct 2004 A1
20040218873 Nagashima et al. Nov 2004 A1
20040233877 Lee et al. Nov 2004 A1
20040240884 Gumaste et al. Dec 2004 A1
20040258105 Spathas et al. Dec 2004 A1
20040267971 Seshadri Dec 2004 A1
20050052287 Whitesmith et al. Mar 2005 A1
20050058451 Ross Mar 2005 A1
20050058455 Aronson et al. Mar 2005 A1
20050068179 Roesner Mar 2005 A1
20050076982 Metcalf et al. Apr 2005 A1
20050078006 Hutchins Apr 2005 A1
20050093679 Zai et al. May 2005 A1
20050099343 Asrani et al. May 2005 A1
20050116821 Wilsey et al. Jun 2005 A1
20050123232 Piede et al. Jun 2005 A1
20050141545 Fein et al. Jun 2005 A1
20050143077 Charbonneau Jun 2005 A1
20050147067 Mani et al. Jul 2005 A1
20050147071 Karaoguz et al. Jul 2005 A1
20050148306 Hiddink Jul 2005 A1
20050159108 Fletcher Jul 2005 A1
20050174236 Brookner Aug 2005 A1
20050176458 Shklarsky et al. Aug 2005 A1
20050201323 Mani et al. Sep 2005 A1
20050201761 Bartur et al. Sep 2005 A1
20050219050 Martin Oct 2005 A1
20050224585 Durrant et al. Oct 2005 A1
20050226625 Wake et al. Oct 2005 A1
20050232636 Durrant et al. Oct 2005 A1
20050242188 Vesuna Nov 2005 A1
20050252971 Howarth et al. Nov 2005 A1
20050266797 Utsumi et al. Dec 2005 A1
20050266854 Niiho et al. Dec 2005 A1
20050269930 Shimizu et al. Dec 2005 A1
20050271396 Iannelli Dec 2005 A1
20050272439 Picciriello et al. Dec 2005 A1
20060002326 Vesuna Jan 2006 A1
20060014548 Bolin Jan 2006 A1
20060017633 Pronkine Jan 2006 A1
20060028352 McNamara et al. Feb 2006 A1
20060045054 Utsumi et al. Mar 2006 A1
20060045524 Lee et al. Mar 2006 A1
20060045525 Lee et al. Mar 2006 A1
20060053324 Giat et al. Mar 2006 A1
20060056327 Coersmeier Mar 2006 A1
20060062579 Kim et al. Mar 2006 A1
20060083512 Wake Apr 2006 A1
20060083520 Healey et al. Apr 2006 A1
20060094470 Wake et al. May 2006 A1
20060104643 Lee et al. May 2006 A1
20060159388 Kawase et al. Jul 2006 A1
20060172775 Conyers et al. Aug 2006 A1
20060182446 Kim et al. Aug 2006 A1
20060182449 Iannelli et al. Aug 2006 A1
20060189354 Lee et al. Aug 2006 A1
20060209745 MacMullan et al. Sep 2006 A1
20060223439 Pinel et al. Oct 2006 A1
20060233506 Noonan et al. Oct 2006 A1
20060239630 Hase et al. Oct 2006 A1
20060268738 Goerke et al. Nov 2006 A1
20060274704 Desai et al. Dec 2006 A1
20070008939 Fischer Jan 2007 A1
20070009266 Bothwell Jan 2007 A1
20070050451 Caspi et al. Mar 2007 A1
20070054682 Fanning et al. Mar 2007 A1
20070058978 Lee et al. Mar 2007 A1
20070060045 Prautzsch Mar 2007 A1
20070060055 Desai et al. Mar 2007 A1
20070071128 Meir et al. Mar 2007 A1
20070076649 Lin et al. Apr 2007 A1
20070093273 Cai Apr 2007 A1
20070149250 Crozzoli et al. Jun 2007 A1
20070166042 Seeds et al. Jul 2007 A1
20070173288 Skarby et al. Jul 2007 A1
20070174889 Kim et al. Jul 2007 A1
20070224954 Gopi Sep 2007 A1
20070230328 Saitou Oct 2007 A1
20070243899 Hermel Oct 2007 A1
20070248358 Sauer Oct 2007 A1
20070253714 Seeds et al. Nov 2007 A1
20070257796 Easton Nov 2007 A1
20070264009 Sabat, Jr. et al. Nov 2007 A1
20070264011 Sone et al. Nov 2007 A1
20070268846 Proctor et al. Nov 2007 A1
20070274279 Wood et al. Nov 2007 A1
20070286599 Sauer et al. Dec 2007 A1
20070292143 Yu et al. Dec 2007 A1
20070297005 Montierth et al. Dec 2007 A1
20080002652 Gupta et al. Jan 2008 A1
20080007453 Vassilakis et al. Jan 2008 A1
20080013909 Kostet et al. Jan 2008 A1
20080013956 Ware et al. Jan 2008 A1
20080013957 Akers et al. Jan 2008 A1
20080014948 Scheinert Jan 2008 A1
20080014992 Pescod et al. Jan 2008 A1
20080026765 Charbonneau Jan 2008 A1
20080031628 Dragas et al. Feb 2008 A1
20080043714 Pernu Feb 2008 A1
20080056167 Kim et al. Mar 2008 A1
20080058018 Scheinert Mar 2008 A1
20080063397 Hu et al. Mar 2008 A1
20080070502 George et al. Mar 2008 A1
20080080863 Sauer et al. Apr 2008 A1
20080098203 Master et al. Apr 2008 A1
20080118014 Reunamaki et al. May 2008 A1
20080119198 Hettstedt May 2008 A1
20080124086 Matthews May 2008 A1
20080124087 Hartmann et al. May 2008 A1
20080129634 Pera et al. Jun 2008 A1
20080134194 Liu Jun 2008 A1
20080145061 Lee et al. Jun 2008 A1
20080150514 Codreanu et al. Jun 2008 A1
20080159744 Soto et al. Jul 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080191682 Cook Aug 2008 A1
20080194226 Rivas et al. Aug 2008 A1
20080207253 Jaakkola et al. Aug 2008 A1
20080212969 Fasshauer et al. Sep 2008 A1
20080219670 Kim et al. Sep 2008 A1
20080232305 Oren et al. Sep 2008 A1
20080232799 Kim Sep 2008 A1
20080247716 Thomas Oct 2008 A1
20080253280 Tang et al. Oct 2008 A1
20080253351 Pernu et al. Oct 2008 A1
20080253773 Zheng Oct 2008 A1
20080260388 Kim et al. Oct 2008 A1
20080260389 Zheng Oct 2008 A1
20080261656 Bella et al. Oct 2008 A1
20080268766 Narkmon et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080273844 Kewitsch Nov 2008 A1
20080279137 Pernu et al. Nov 2008 A1
20080280569 Hazani et al. Nov 2008 A1
20080291830 Pernu et al. Nov 2008 A1
20080292322 Daghighian et al. Nov 2008 A1
20080298813 Song et al. Dec 2008 A1
20080304831 Miller, II Dec 2008 A1
20080310464 Schneider Dec 2008 A1
20080310848 Yasuda et al. Dec 2008 A1
20080311876 Leenaerts et al. Dec 2008 A1
20080311944 Hansen et al. Dec 2008 A1
20090022304 Kubler et al. Jan 2009 A1
20090028087 Nguyen et al. Jan 2009 A1
20090028317 Ling et al. Jan 2009 A1
20090041413 Hurley Feb 2009 A1
20090047023 Pescod et al. Feb 2009 A1
20090059903 Kubler et al. Mar 2009 A1
20090061796 Arkko et al. Mar 2009 A1
20090061939 Andersson et al. Mar 2009 A1
20090073916 Zhang et al. Mar 2009 A1
20090081985 Rofougaran et al. Mar 2009 A1
20090087179 Underwood et al. Apr 2009 A1
20090088071 Rofougaran Apr 2009 A1
20090088072 Rofougaran et al. Apr 2009 A1
20090135078 Lindmark et al. May 2009 A1
20090141780 Cruz-Albrecht et al. Jun 2009 A1
20090149221 Liu et al. Jun 2009 A1
20090154621 Shapira et al. Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090180407 Sabat et al. Jul 2009 A1
20090180426 Sabat et al. Jul 2009 A1
20090218407 Rofougaran Sep 2009 A1
20090218657 Rofougaran Sep 2009 A1
20090237317 Rofougaran Sep 2009 A1
20090245084 Moffatt et al. Oct 2009 A1
20090245153 Li et al. Oct 2009 A1
20090245221 Piipponen Oct 2009 A1
20090247109 Rofougaran Oct 2009 A1
20090252136 Mahany et al. Oct 2009 A1
20090252139 Ludovico et al. Oct 2009 A1
20090252204 Shatara et al. Oct 2009 A1
20090252205 Rheinfelder et al. Oct 2009 A1
20090258652 Lambert et al. Oct 2009 A1
20090278596 Rofougaran et al. Nov 2009 A1
20090279593 Rofougaran et al. Nov 2009 A1
20090285147 Subasic et al. Nov 2009 A1
20090316608 Singh et al. Dec 2009 A1
20090319909 Hsueh et al. Dec 2009 A1
20100002626 Schmidt et al. Jan 2010 A1
20100002661 Schmidt et al. Jan 2010 A1
20100002662 Schmidt et al. Jan 2010 A1
20100014494 Schmidt et al. Jan 2010 A1
20100014868 McGlynn et al. Jan 2010 A1
20100027443 LoGalbo et al. Feb 2010 A1
20100056200 Tolonen Mar 2010 A1
20100080154 Noh et al. Apr 2010 A1
20100080182 Kubler et al. Apr 2010 A1
20100091475 Toms et al. Apr 2010 A1
20100118864 Kubler et al. May 2010 A1
20100127937 Chandrasekaran et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100142598 Murray et al. Jun 2010 A1
20100142955 Yu et al. Jun 2010 A1
20100144285 Behzad et al. Jun 2010 A1
20100148373 Chandrasekaran Jun 2010 A1
20100150556 Soto et al. Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100158525 Walter Jun 2010 A1
20100159859 Rofougaran Jun 2010 A1
20100188998 Pernu et al. Jul 2010 A1
20100189439 Novak et al. Jul 2010 A1
20100190509 Davis Jul 2010 A1
20100202326 Rofougaran et al. Aug 2010 A1
20100208656 Oh Aug 2010 A1
20100225413 Rofougaran et al. Sep 2010 A1
20100225520 Mohamadi et al. Sep 2010 A1
20100225556 Rofougaran et al. Sep 2010 A1
20100225557 Rofougaran et al. Sep 2010 A1
20100232323 Kubler et al. Sep 2010 A1
20100246558 Harel Sep 2010 A1
20100255774 Kenington Oct 2010 A1
20100258949 Henderson et al. Oct 2010 A1
20100260063 Kubler et al. Oct 2010 A1
20100261501 Behzad et al. Oct 2010 A1
20100266287 Adhikari et al. Oct 2010 A1
20100278530 Kummetz et al. Nov 2010 A1
20100284323 Tang et al. Nov 2010 A1
20100290355 Roy et al. Nov 2010 A1
20100309049 Reunamäki et al. Dec 2010 A1
20100309752 Lee et al. Dec 2010 A1
20100311472 Rofougaran et al. Dec 2010 A1
20100311480 Raines et al. Dec 2010 A1
20100329161 Ylanen et al. Dec 2010 A1
20100329166 Mahany et al. Dec 2010 A1
20100329680 Presi et al. Dec 2010 A1
20110002687 Sabat, Jr. et al. Jan 2011 A1
20110007724 Mahany et al. Jan 2011 A1
20110007733 Kubler et al. Jan 2011 A1
20110008042 Stewart Jan 2011 A1
20110019999 George et al. Jan 2011 A1
20110021146 Pernu Jan 2011 A1
20110021224 Koskinen et al. Jan 2011 A1
20110026932 Yeh et al. Feb 2011 A1
20110045767 Rofougaran et al. Feb 2011 A1
20110055875 Zussman Mar 2011 A1
20110065450 Kazmi Mar 2011 A1
20110066774 Rofougaran Mar 2011 A1
20110069668 Chion et al. Mar 2011 A1
20110071734 Van Wiemeersch et al. Mar 2011 A1
20110086614 Brisebois et al. Apr 2011 A1
20110116393 Hong et al. May 2011 A1
20110116572 Lee et al. May 2011 A1
20110116794 George et al. May 2011 A1
20110122912 Benjamin et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110158298 Djadi et al. Jun 2011 A1
20110182230 Ohm et al. Jul 2011 A1
20110194475 Kim et al. Aug 2011 A1
20110200325 Kobyakov Aug 2011 A1
20110200328 In De Betou Aug 2011 A1
20110201368 Faccin et al. Aug 2011 A1
20110204504 Henderson et al. Aug 2011 A1
20110206383 Chien et al. Aug 2011 A1
20110211439 Manpuria et al. Sep 2011 A1
20110215901 Van Wiemeersch et al. Sep 2011 A1
20110222415 Ramamurthi et al. Sep 2011 A1
20110222434 Chen Sep 2011 A1
20110222619 Ramamurthi et al. Sep 2011 A1
20110223958 Chen et al. Sep 2011 A1
20110223960 Chen et al. Sep 2011 A1
20110223961 Chen et al. Sep 2011 A1
20110227795 Lopez et al. Sep 2011 A1
20110243201 Phillips et al. Oct 2011 A1
20110244887 Dupray et al. Oct 2011 A1
20110256878 Zhu et al. Oct 2011 A1
20110268033 Boldi et al. Nov 2011 A1
20110268449 Berlin et al. Nov 2011 A1
20110274021 He et al. Nov 2011 A1
20110281536 Lee et al. Nov 2011 A1
20110312340 Wu et al. Dec 2011 A1
20120069880 Lemson et al. Mar 2012 A1
20120177026 Uyehara et al. Jul 2012 A1
20120257893 Boyd et al. Oct 2012 A1
20120281565 Sauer Nov 2012 A1
20120314797 Kummetz et al. Dec 2012 A1
20120321305 George et al. Dec 2012 A1
20130012195 Sabat, Jr. et al. Jan 2013 A1
20130017863 Kummetz et al. Jan 2013 A1
20130089332 Sauer et al. Apr 2013 A1
20130195467 Schmid et al. Aug 2013 A1
20130210490 Fischer et al. Aug 2013 A1
20140016583 Smith Jan 2014 A1
20140072064 Lemson et al. Mar 2014 A1
20140118464 George et al. May 2014 A1
20140119735 Cune et al. May 2014 A1
20140140225 Wala May 2014 A1
20140146797 Zavadsky et al. May 2014 A1
20140146905 Zavadsky et al. May 2014 A1
20140146906 Zavadsky et al. May 2014 A1
20140219140 Uyehara et al. Aug 2014 A1
20140269859 Hanson et al. Sep 2014 A1
20140314061 Trajkovic et al. Oct 2014 A1
20150037041 Cune et al. Feb 2015 A1
20150098351 Zavadsky et al. Apr 2015 A1
20150098372 Zavadsky et al. Apr 2015 A1
20150098419 Zavadsky et al. Apr 2015 A1
Foreign Referenced Citations (154)
Number Date Country
645192 Oct 1992 AU
731180 Mar 1998 AU
2065090 Feb 1998 CA
2242707 Jan 1999 CA
1207841 Feb 1999 CN
101043276 Sep 2007 CN
101389148 Mar 2009 CN
101547447 Sep 2009 CN
20104862 Aug 2001 DE
10249414 May 2004 DE
0477952 Apr 1992 EP
0477952 Apr 1992 EP
0461583 Mar 1997 EP
851618 Jul 1998 EP
0687400 Nov 1998 EP
0899976 Mar 1999 EP
0993124 Apr 2000 EP
0994582 Apr 2000 EP
1037411 Sep 2000 EP
1089586 Apr 2001 EP
1179895 Feb 2002 EP
1267447 Dec 2002 EP
1347584 Sep 2003 EP
1363352 Nov 2003 EP
1391897 Feb 2004 EP
1443687 Aug 2004 EP
1455550 Sep 2004 EP
1501206 Jan 2005 EP
1503451 Feb 2005 EP
1530316 May 2005 EP
1511203 Mar 2006 EP
1267447 Aug 2006 EP
1693974 Aug 2006 EP
1742388 Jan 2007 EP
1227605 Jan 2008 EP
1916806 Apr 2008 EP
1954019 Aug 2008 EP
1968250 Sep 2008 EP
1056226 Apr 2009 EP
1357683 May 2009 EP
2276298 Jan 2011 EP
1570626 Nov 2013 EP
2319439 May 1998 GB
2323252 Sep 1998 GB
2370170 Jun 2002 GB
2399963 Sep 2004 GB
2428149 Jan 2007 GB
H4189036 Jul 1992 JP
05260018 Oct 1993 JP
09083450 Mar 1997 JP
09162810 Jun 1997 JP
09200840 Jul 1997 JP
11068675 Mar 1999 JP
2000152300 May 2000 JP
2000341744 Dec 2000 JP
2002264617 Sep 2002 JP
2002353813 Dec 2002 JP
2003148653 May 2003 JP
2003172827 Jun 2003 JP
2004172734 Jun 2004 JP
2004222297 Aug 2004 JP
2004245963 Sep 2004 JP
2004247090 Sep 2004 JP
2004264901 Sep 2004 JP
2004265624 Sep 2004 JP
2004317737 Nov 2004 JP
2004349184 Dec 2004 JP
2005018175 Jan 2005 JP
2005087135 Apr 2005 JP
2005134125 May 2005 JP
2007228603 Sep 2007 JP
2008172597 Jul 2008 JP
20010055088 Jul 2001 KR
20110087949 Aug 2011 KR
9603823 Feb 1996 WO
9748197 Dec 1997 WO
9810600 Mar 1998 WO
0042721 Jul 2000 WO
0072475 Nov 2000 WO
0178434 Oct 2001 WO
0184760 Nov 2001 WO
0209363 Jan 2002 WO
0221183 Mar 2002 WO
0230141 Apr 2002 WO
02102102 Dec 2002 WO
03024027 Mar 2003 WO
03098175 Nov 2003 WO
2004030154 Apr 2004 WO
2004034098 Apr 2004 WO
2004047472 Jun 2004 WO
2004056019 Jul 2004 WO
2004059934 Jul 2004 WO
2004086795 Oct 2004 WO
2004093471 Oct 2004 WO
2005062505 Jul 2005 WO
2005069203 Jul 2005 WO
2005073897 Aug 2005 WO
2005079386 Sep 2005 WO
2005101701 Oct 2005 WO
2005111959 Nov 2005 WO
2006011778 Feb 2006 WO
2006018592 Feb 2006 WO
2006019392 Feb 2006 WO
2006039941 Apr 2006 WO
2006046088 May 2006 WO
2006051262 May 2006 WO
2006060754 Jun 2006 WO
WO2006077569 Jul 2006 WO
2006094441 Sep 2006 WO
2006105185 Oct 2006 WO
2006133609 Dec 2006 WO
2006136811 Dec 2006 WO
2007048427 May 2007 WO
2007075579 Jul 2007 WO
2007077451 Jul 2007 WO
2007088561 Aug 2007 WO
2007091026 Aug 2007 WO
2007133507 Nov 2007 WO
2008008249 Jan 2008 WO
2008027213 Mar 2008 WO
2008033298 Mar 2008 WO
2008039830 Apr 2008 WO
2008116014 Sep 2008 WO
2009100395 Aug 2009 WO
2009100396 Aug 2009 WO
2009100397 Aug 2009 WO
2009100398 Aug 2009 WO
2009132824 Nov 2009 WO
2010087919 Aug 2010 WO
2010090999 Aug 2010 WO
2010132739 Nov 2010 WO
2011023592 Mar 2011 WO
2011043172 Apr 2011 WO
2011059705 May 2011 WO
2011100095 Aug 2011 WO
2011112373 Sep 2011 WO
2011139939 Nov 2011 WO
2011139942 Nov 2011 WO
2011160117 Dec 2011 WO
2012024345 Feb 2012 WO
2012054553 Apr 2012 WO
2012148938 Nov 2012 WO
2012148940 Nov 2012 WO
2012170865 Dec 2012 WO
2013009835 Jan 2013 WO
2013122915 Aug 2013 WO
2014070236 May 2014 WO
2014082070 May 2014 WO
2014082072 May 2014 WO
2014082075 May 2014 WO
2014144314 Sep 2014 WO
2015054162 Apr 2015 WO
2015054164 Apr 2015 WO
2015054165 Apr 2015 WO
Non-Patent Literature Citations (105)
Entry
Examination Report for European patent application 10702806.0 mailed Sep. 12, 2013, 11 pages.
Non-final Office Action for U.S. Appl. No. 13/194,429 mailed Mar. 1, 2013, 22 pages.
Notice of Allowance for U.S. Appl. No. 13/194,429 mailed Jul. 9, 2013, 9 pages.
Author Unknown, “VCSEL Chaotic Synchronization and Modulation Characteristics,” Master's Thesis, Southwest Jiatong University, Professor Pan Wei, Apr. 2006, 8 pages (machine translation).
Chowdhury et al., “Multi-service Multi-carrier Broadband MIMO Distributed Antenna Systems for In-building Optical Wireless Access,” Presented at the 2010 Conference on Optical Fiber Communication and National Fiber Optic Engineers Conference, Mar. 21-25, 2010, San Diego, California, IEEE, pp. 1-3.
Examiner's Answer to the Appeal Brief for U.S. Appl. No. 12/712,758 mailed Jul. 7, 2014, 12 pages.
Notice of Allowance for U.S. Appl. No. 13/592,502 mailed May 9, 2014, 9 pages.
International Search Report for PCT/US2011/034733 mailed Aug. 1, 2011, 5 pages.
International Preliminary Report on Patentability for PCT/US2011/034733 mailed Nov. 6, 2012, 7 pages.
Translation of the First Office Action for Chinese Patent Application No. 201180008168.1, mailed Jun. 5, 2014, 9 pages.
Notification of First Office Action for Chinese Patent Application No. 201010557770.8, mailed Jul. 3, 2014, 14 pages.
Non-final Office Action for U.S. Appl. No. 12/618,613 mailed Dec. 29, 2011, 10 pages.
Non-final Office Action for U.S. Appl. No. 12/618,613 mailed Jul. 5, 2012, 9 pages.
Translation of the First Office Action for Chinese Patent Application No. 201080055264.7, mailed Jun. 5, 2014, 6 pages.
Extended European Search Report for European patent application 12777604.5 mailed Oct. 1, 2014, 7 pages.
Extended European Search Report for European patent application 12776915.6 mailed Oct. 13, 2014, 7 pages.
Biton et al., “Challenge: CeTV and Ca-Fi—Cellular and Wi-Fi over CATV,” Proceedings of the Eleventh Annual International Conference on Mobile Computing and Networking, Aug. 28-Sep. 2, 2005, Cologne, Germany, Association for Computing Machinery, 8 pages.
Seto et al., “Optical Subcarrier Multiplexing Transmission for Base Station With Adaptive Array Antenna,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 10, Oct. 2001, pp. 2036-2041.
Notice of Reexamination for Chinese patent application 20078002293.6 mailed Nov. 28, 2014, 22 pages.
Non-final Office Action for U.S. Appl. No. 13/688,448 mailed Dec. 29, 2014, 16 pages.
Non-final Office Action for U.S. Appl. No. 14/063,245 mailed Jan. 26, 2015, 22 pages.
Examination Report for European patent application 10702806.0 mailed Nov. 14, 2014, 7 pages.
Attygalle et al., “Extending Optical Transmission Distance in Fiber Wireless Links Using Passive Filtering in Conjunction with Optimized Modulation,” Journal of Lightwave Technology, vol. 24, No. 4, Apr. 2006, 7 pages.
Bo Zhang et al., “Reconfigurable Multifunctional Operation Using Optical Injection-Locked Vertical-Cavity Surface-Emitting Lasers,” Journal of Lightwave Technology, vol. 27, No. 15, Aug. 2009, 6 pages.
Chang-Hasnain, et al., “Ultrahigh-speed laser modulation by injection locking,” Chapter 6, Optical Fiber Telecommunication V A: Components and Subsystems, Elsevier Inc., 2008, 20 pages.
Cheng Zhang et al., “60 GHz Millimeter-wave Generation by Two-mode Injection-locked Fabry-Perot Laser Using Second-Order Sideband Injection in Radio-over-Fiber System,” Conference on Lasers and Electro-Optics and Quantum Electronics, Optical Society of America, May 2008, 2 pages.
Chrostowski, “Optical Injection Locking of Vertical Cavity Surface Emitting Lasers,” Fall 2003, PhD dissertation University of California at Berkely, 122 pages.
Dang et al., “Radio-over-Fiber based architecture for seamless wireless indoor communication in the 60GHz band,” Computer Communications, Elsevier B.V., Amsterdam, NL, vol. 30, Sep. 8, 2007, pp. 3598-3613.
Hyuk-Kee Sung et al., “Optical Single Sideband Modulation Using Strong Optical Injection-Locked Semiconductor Lasers,” IEEE Photonics Technology Letters, vol. 19, No. 13, Jul. 1, 2007, 4 pages.
Lim et al., “Analysis of Optical Carrier-to-Sideband Ratio for Improving Transmission Performance in Fiber-Radio Links,” IEEE Transactions of Microwave Theory and Techniques, vol. 54, No. 5, May 2006, 7 pages.
Lu H H et al., “Improvement of radio-on-multimode fiber systems based on light injection and optoelectronic feedback techniques,” Optics Communications, vol. 266, No. 2, Elsevier B.V., Oct. 15, 2006, 4 pages.
Pleros et al., “A 60 GHz Radio-Over-Fiber Network Architecture for Seamless Communication With High Mobility,” Journal of Lightwave Technology, vol. 27, No. 12, IEEE, Jun. 15, 2009, pp. 1957-1967.
Reza et al., “Degree-of-Polarization-Based PMD Monitoring for Subcarrier-Multiplexed Signals Via Equalized Carrier/Sideband Filtering,” Journal of Lightwave Technology, vol. 22, No. 4, IEEE, Apr. 2004, 8 pages.
Zhao, “Optical Injection Locking on Vertical-Cavity Surface-Emitting Lasers (VCSELs): Physics and Applications,” Fall 2008, PhD dissertation University of California at Berkeley, pp. 1-209.
Advisory Action for U.S. Appl. No. 12/712,758 mailed Sep. 16, 2013, 3 pages.
Final Office Action for U.S. Appl. No. 12/712,758 mailed May 24, 2013, 17 pages.
Non-final Office Action for U.S. Appl. No. 12/712,758 mailed Jan. 10, 2012, 14 pages.
Examination Report for European patent application 07835803.3 mailed Aug. 13, 2013, 6 pages.
Extended European Search Report for patent application 10014262.9 mailed Mar. 14, 2011, 6 pages.
International Search Report and Written Opinion for PCT/US2012/034853 mailed Aug. 6, 2012, 12 pages.
International Search Report and Written Opinion for PCT/US2012/034855 mailed Jul. 26, 2012, 10 pages.
Written Opinion of the International Searching Authority for European patent application 11701916.6 mailed Sep. 21, 2012, 10 pages.
International Search Report for PCT/US2011/021799 mailed Apr. 6, 2011, 4 pages.
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3.
Bakaul, M., et al., “Efficient Multiplexing Scheme for Wavelength-Interleaved DWDM Millimeter-Wave Fiber-Radio Systems,” IEEE Photonics Technology Letters, Dec. 2005, vol. 17, No. 12, pp. 2718-2720.
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT—2000,” 1999, 10 pages.
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3.
Cooper, A.J., “Fiber/Radio for the Provision of Cordless/Mobile Telephony Services in the Access Network,” Electronics Letters, 1990, pp. 2054-2056, vol. 26.
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5.
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2.
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2.
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8.
Gibson, B.C., et al., “Evanescent Field Analysis of Air-Silica Microstructure Waveguides,” The 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 1-7803-7104-4/01, Nov. 12-13, 2001, vol. 2, pp. 709-710.
Huang, C., et al., “A WLAN-Used Helical Antenna Fully Integrated with the PCMCIA Carrier,” IEEE Transactions on Antennas and Propagation, Dec. 2005, vol. 53, No. 12, pp. 4164-4168.
Kojucharow, K., et al., “Millimeter-Wave Signal Properties Resulting from Electrooptical Upconversion,” IEEE Transaction on Microwave Theory and Techniques, Oct. 2001, vol. 49, No. 10, pp. 1977-1985.
Monro, T.M., et al., “Holey Fibers with Random Cladding Distributions,” Optics Letters, Feb. 15, 2000, vol. 25, No. 4, pp. 206-208.
Moreira, J.D., et al., “Diversity Techniques for OFDM Based WLAN Systems,” The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Sep. 15-18, 2002, vol. 3, pp. 1008-1011.
Niiho, T., et al., “Multi-Channel Wireless LAN Distributed Antenna System Based on Radio-Over-Fiber Techniques,” The 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Nov. 2004, vol. 1, pp. 57-58.
Author Unknown, “ITU-T G.652, Telecommunication Standardization Sector of ITU, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Single-Mode Optical Fiber and Cable,” ITU-T Recommendation G.652, International Telecommunication Union, Jun. 2005, 22 pages.
Author Unknown, “ITU-T G.657, Telecommunication Standardization Sector of ITU, Dec. 2006, Series G: Transmission Systems and Media, Digital Systems and Networks, Transmission Media and Optical Systems Characteristics—Optical Fibre Cables, Characteristics of a Bending Loss Insensitive Single Mode Optical Fibre and Cable for the Access Network,” ITU-T Recommendation G.657, International Telecommunication Union, 20 pages.
Author Unknown, RFID Technology Overview, 11 pages.
Opatic, D., “Radio over Fiber Technology for Wireless Access,” Ericsson, Oct. 17, 2009, 6 pages.
Paulraj, A.J., et al., “An Overview of MIMO Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, Feb. 2004, vol. 92, No. 2, 34 pages.
Pickrell, G.R., et al., “Novel Techniques for the Fabrication of Holey Optical Fibers,” Proceedings of SPIE, Oct. 28-Nov. 2, 2001, vol. 4578, 2001, pp. 271-282.
Roh, W., et al., “MIMO Channel Capacity for the Distributed Antenna Systems,” Proceedings of the 56th IEEE Vehicular Technology Conference, Sep. 2002, vol. 2, pp. 706-709.
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design.
Seto, I., et al., “Antenna-Selective Transmit Diversity Technique for OFDM-Based WLANs with Dual-Band Printed Antennas,” 2005 IEEE Wireless Communications and Networking Conference, Mar. 13-17, 2005, vol. 1, pp. 51-56.
Shen, C., et al., “Comparison of Channel Capacity for MIMO-DAS versus MIMO-CAS,” The 9th Asia-Pacific Conference on Communications, Sep. 21-24, 2003, vol. 1, pp. 113-118.
Wake, D. et al., “Passive Picocell: A New Concept n Wireless Network Infrastructure,” Electronics Letters, Feb. 27, 1997, vol. 33, No. 5, pp. 404-406.
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages.
Winters, J., et al., “The Impact of Antenna Diversity on the Capacity of Wireless Communications Systems,” IEEE Transcations on Communications, vol. 42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 1740-1751.
Yu et al., “A Novel Scheme to Generate Single-Sideband Millimeter-Wave Signals by Using Low-Frequency Local Oscillator Signal,” IEEE Photonics Technology Letters, vol. 20, No. 7, Apr. 1, 2008, pp. 478-480.
Second Office Action for Chinese patent application 20078002293.6 mailed Aug. 30, 2012, 10 pages.
International Search Report for PCT/US2010/022847 mailed Jul. 12, 2010, 3 pages.
International Search Report for PCT/US2010/022857 mailed Jun. 18, 2010, 3 pages.
Decision on Appeal for U.S. Appl. No. 11/451,237 mailed Mar. 19, 2013, 7 pages.
Decision on Rejection for Chinese patent application 200780022093.6 mailed Feb. 5, 2013, 9 pages.
International Search Report and Written Opinion for International patent application PCT/US2007/013802 mailed May 8, 2008, 12 pages.
Decision on Appeal for U.S. Appl. No. 11/406,976, mailed Nov. 3, 2014, 6 pages.
Notice of Third Office Action for Chinese Patent Application 201010557770.8 mailed Sep. 23, 2015, 15 pages.
Final Office Action for U.S. Appl. No. 14/172,240 mailed Oct. 9, 2015, 23 pages.
Author Unknown, “The I2C-Bus Specification,” Version 2.1, Jan. 2000, Philips Semiconductors, 46 pages.
Toycan, M. et al., “Optical network architecture for UWB range extension beyond a single complex of cells,” Presented at the 33rd European Conference and Exhibition of Optical Communication, Sep. 16-20, 2007, Berlin, Germany, VDE, 2 pages.
Notice of Second Office Action for Chinese Patent Application No. 201010557770.8, mailed Mar. 10, 2015, 13 pages.
Official Communication from the European Patent Office for 10779113.9, mailed Jun. 20, 2012, 2 pages.
International Search Report for PCT/US2007/011034, mailed Apr. 3, 2008, 2 pages.
International Preliminary Report on Patentability for PCT/US2007/011034, mailed Nov. 11, 2008, 8 pages.
International Search Report for PCT/US2010/054234, mailed Feb. 28, 2011, 4 pages.
International Search Report for PCT/US2013/037090, mailed Jul. 22, 2013, 4 pages.
Non-Final Office Action for U.S. Appl. No. 11/430,113, mailed Apr. 10, 2008, 6 pages.
Notice of Allowance for U.S. Appl. No. 11/430,113, mailed Dec. 8, 2008, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/595,099, mailed Jun. 20, 2013, 9 pages.
Notice of Allowance for U.S. Appl. No. 13/915,882, mailed Apr. 10, 2015, 12 pages.
Final Office Action for U.S. Appl. No. 14/063,245, mailed Apr. 16, 2015, 24 pages.
Advisory Action for U.S. Appl. No. 14/063,245, mailed Jun. 8, 2015, 3 pages.
Non-Final Office Action for U.S. Appl. No. 14/146,949, mailed Dec. 3, 2014, 14 pages.
Non-final Office Action for U.S. Appl. No. 14/172,240 mailed Jun. 5, 2015, 14 pages.
Non-Final Office Action for U.S. Appl. No. 14/146,949, mailed Apr. 14, 2015, 16 pages.
Notice of Allowance for U.S. Appl. No. 14/062,289, mailed Jul. 8, 2015, 9 pages.
Non-final Office Action for U.S. Appl. No. 14/063,630 mailed Jul. 10, 2015, 19 pages.
Decision on Rejection for Chinese Patent Application No. 201010557770.8, mailed Jan. 27, 2016, 16 pages.
Non-final Office Action for U.S. Appl. No. 14/063,630, mailed Dec. 14, 2015, 17 pages.
Advisory Action for U.S. Appl. No. 14/172,240 mailed Dec. 30, 2015, 3 pages.
Non-final Office Action for U.S. Appl. No. 14/518,574, mailed Jan. 6, 2016, 16 pages.
Notice of Allowance for U.S. Appl. No. 14/936,007 mailed Feb. 22, 2016, 9 pages.
Related Publications (1)
Number Date Country
20140363155 A1 Dec 2014 US
Continuations (2)
Number Date Country
Parent 13592502 Aug 2012 US
Child 14465565 US
Parent 12705779 Feb 2010 US
Child 13592502 US