The present invention relates to a bone plate, and more particularly it relates to such a dynamic bone plate for use in spine.
Spinal fixation plates can be used for a variety of conditions, including for example, providing added strength and rigidity after fusion of adjacent vertebral bodies for securing vertebrae together where an intervening vertebral body has been removed and replaced. Generally, a spinal fixation plate is applied to the anterior side of affected vertebrae to span at least one affected disc space. For example, a spinal fixation plate may be applied to adjacent vertebral bodies where at least a portion of a disc has been removed and a spinal fusion spacer has been inserted.
Generally, a spinal plate may be attached to the anterior of two or more vertebral bodies for the purpose of immobilizing, stabilizing, and/or aligning those vertebrae. Additionally, such a plate may be used, for example, to supplement the function of an intervertebral spacer or artificial disc, to prevent an intervertebral spacer from being expelled from an intervertebral disc space and/or to act as a support for biocompatible bone graft material that is implanted in the disc space.
Orthopedic fixation devices such as spinal plates may be coupled to bone with fasteners inserted through openings in the plates. The fasteners may or may not be secured to the plate. It is known to secure such fasteners to a bone plate, for example, through the use of threads on the fastener and matching threads on the plate, though other means of securement are available. Such a screw-plate interface may decrease the incidence of loosening of the fixation assembly post-operatively. It is also known that a bushing may preferably be disposed in each plate hole to receive the fastener to permit polyaxial movement so that the fastener may be angulated at a surgeon-selected angle. While polyaxial movement of fasteners through set plate hole locations may increase attachment alternatives of the fasteners themselves, the plate holes remain fixed in relation to each other and to the longitudinal axis of the plate. Consequently, undesirable loads may be imposed on the plate fasteners as vertebral bodies subside after a spacer and/or bone graft material is implanted in the intervertebral disc space of adjacent vertebrae.
Further, screw blocking systems are generally provided in a bone plate to keep the fasteners from backing out of the plate. In the present invention, each opening in the plate preferably has a groove or recess for receiving a split ring, though any other suitable screw locking systems may be used in connection with the present invention.
Split rings may be pre-assembled to the bone plate. A split-ring can be sized to expand upon insertion of a bone screw into an opening in the bone plate. Once the head of the screw has passed through the split ring, the split ring can contract under its natural spring tension. When the ring relaxes to its unexpanded state, it prevents the bone screw from backing out of the plate by the engagement of an undersurface of the split-ring and an upwardly facing surface on the bone screw. U.S. Pat. No. 6,602,255, titled “BONE SCREW RETAINING SYSTEM” and issued on Aug. 5, 2003 and U.S. Pat. No. 6,261,291, titled “Orthopedic Implant Assembly” and issued on Jul. 17, 2001, both disclose devices used for securing bone screws to a bone plate and are incorporated herein by reference in their entirety as if fully set forth herein.
Generally, after implanting the spacer between a pair of vertebrae, there is a compression of the spacer between the adjacent vertebral bodies. This compression ensures a good engagement between the spacer and the endplates, increasing the chances that fusion will occur. Often, particularly in the period immediately following surgery, the spacer may subside slightly into the endplates. In the case of allograft spacers, the space between the vertebral endplates may decrease due to graft resorption.
Where a rigid fixation plate is used to connect vertebral bodies, this subsidence may tend to shift more of the spinal load to the plate than is desirable. Such load shifting can also occur due to inaccuracies in installing the plate to the vertebrae. In extreme circumstances, this load shifting can result in non-fusion or incomplete fusion between the adjacent vertebral bodies.
It is known in the art to provide a spinal plate which may be adjustable along the longitudinal axis between a plurality of positions. These plates may generally be described as incremental locking plates that are not infinitely adjustable. Such plates only allow for a first plate and a second plate to be assembled in a finite number of fixed positions with respect to one another by a surgeon or through natural subsidence after implantation. Moreover, many of the plates cannot be extended once locked in a fixed position, and this restricts flexibility during surgery and in revisions.
Accordingly, there exists a need for a fixation system having plates susceptible to infinite adjustment between a first and second assembled position. Such a system preferably includes plates that may freely subside in a first direction, while preventing movement of the plates in a second direction, as well as having the ability to unlock so that the plates can move in the second direction if desirable or necessary. Such a plate preferably provides the desired support to the vertebrae to be fused, and allows compression of the vertebrae with respect to at least a portion of the plate, thereby limiting the undesirable effects of load shielding by the plate due to graft subsidence caused by settling or normal forces experienced in the spinal column.
A first aspect of the present invention is a dynamic subsidence device. In accordance with one embodiment of the present invention, the dynamic subsidence device comprises a first member, a second member contacting the first member, the first and second members being moveable with respect to one another. Preferably, the device further includes a ramp portion on the first member, an interference portion on the second member, and a bearing member situated between the ramp portion of the first member and the interference portion of the second member. Alternatively, the ramp portion may be adapted to the second member, and the interference portion may be adapted to the first member.
Preferably, the bearing member permits movement of the first member with respect to the second member in a first direction in an infinite number of positions between a first assembled position and a second assembled position. Preferably, the bearing member prevents movement of the first member with respect to the second member in a second direction between the first and second assembled positions.
In accordance with one embodiment of this first aspect of the present invention, the ramp portion of the first member is preferably a curved ramp.
In accordance with another embodiment of this first aspect of the present invention, the first member may further include at least one vertical slot. Preferably, the second member further includes at least two apertures, wherein the first and second member are prevented from disengaging when the vertical slot of the first member is situated between the at least two apertures and a pin is placed through the at least two apertures of the second member and the vertical slot of the first member. Alternatively, the second member may include at least one vertical slot and the first member may include at least two apertures wherein the first and second member are prevented from disengaging when the vertical slot of the second member is situated between the at least two apertures and a pin is placed through the at least two apertures of the first member and the vertical slot of the second member.
The function of the vertical slot in the plate system is to aid in limiting the translation of the first and second members with respect to one another between the first and second assembled position. Further, the function of at least one of the at least two apertures in the plate system is to secure the pin member therein. Preferably, the pin is configured to slidably engage the slot of the first or second member. Preferably, the structure of the slot and pin configuration of the plate system functions to add further security to the slidable engagement of the first and second members with respect to one another.
In accordance with yet another embodiment of this first aspect of the present invention, the first member includes at least one opening for receiving a fastener therein for attaching the first member to a vertebral body of the spine. Preferably, the second member further includes at least one opening for receiving a fastener therein for attaching the second member to a vertebral body of the spine. The openings in the first and second members adapted to receive fasteners therein preferably include a groove or recess for receiving a split ring therein. Preferably, each split ring adapted to an opening is configured to prevent a fastener from backing out of the first and second members by the engagement of an undersurface of the split ring and an upwardly facing surface on the fastener.
In accordance with still yet another embodiment of this first aspect of the present invention, the first member may further include a first prong and a second prong, the first prong having a male portion and a receiving portion, the second prong including the ramp portion. The second member may further include a first prong and a second prong, the first prong having a female portion configured to receive the male portion of the first prong of the first member and a guidance portion configured to engage the receiving portion of the first prong of the first member, the second prong of the second member including the interference portion.
In accordance with still yet another embodiment of this first aspect of the present invention, the bearing member is freely seated between the ramp portion and the interference portion of the lock assembly associated with the first and second plate members when the first and second members are in the first assembled position. Further, the bearing member is preferably freely seated between the ramp portion and the interference portion of the lock assembly when the first member is moving with respect to the second member in a first direction. Alternatively, the bearing member preferably locks between the ramp portion and the interference portion of the lock assembly when the first member is moving with respect to the second member in an opposite second direction thereby impeding the translation of the plates in the second direction. Preferably, as soon as the first and second members are impeded by the lock assembly from translating in the second direction, the bearing member may return to the portion of the ramp portion where it is freely seated between the ramp portion and the interference portion. In this position, the bearing member may rotate freely and the first and second members may subside again while moving in the first direction.
In accordance with still yet another embodiment of this first aspect of the present invention, the lock assembly preferably includes a keyhole configured to allow an instrument to enter a space between the ramp portion and the interference portion and hold the bearing member in place, thus releasing the bearing member locked between the ramp portion and the interference portion. Preferably, the instrument is configured to impart a force on the bearing member sufficient to overcome the frictional forces on the bearing member while locked between the ramp portion and the interference portion. Preferably, the instrument is further configured to move the bearing member back towards the deeper part of the ramp portion where the bearing member may freely rotate.
A second aspect of the present invention is a dynamic subsidence plate for the cervical vertebrae of the spine. In accordance with one embodiment of this second aspect, the dynamic subsidence plate comprises a first member having a protruding end including a ramp portion, a second member having a receiving end configured to slidably receive the protruding end of the first member, the receiving end of the second member including an interference portion, and a bearing member situated between the ramp portion of the first member and the interference portion of the second member.
In accordance with this second aspect of the present invention, the bearing member is preferably configured to allow movement of the first member with respect to the second member in a first direction in an infinite number of positions between a first assembled position and a second assembled position. Preferably, the bearing member is further configured to prevent movement of the first member with respect to the second member in an opposite second direction between the first and second assembled positions.
A third aspect of the present invention is a dynamic subsidence plate for the cervical vertebrae of the spine. In accordance with one embodiment of this third aspect, the dynamic subsidence plate comprises a first member having a first prong and a second prong, the first prong having a male portion and a receiving portion, the second prong having a ramp portion. The plate preferably further comprises a second member for receiving the first member, the second member having a first prong and a second prong, the first prong having a female portion configured to receive the male portion of the first prong of the first member and a guidance portion configured to engage the receiving portion of the first prong of the first member, the second prong of the second member having an interference portion. Preferably, the plate further comprises a bearing member freely seated between the ramp portion of the second prong of the first member and the interference portion of the second prong of the second member when the first member is moving with respect to the second member in a first direction and alternatively locked between the ramp portion of the second prong of the first member and the interference portion of the second prong of the second member when the first member is moving with respect to the second member in an opposite second direction.
An exemplary method of providing dynamic subsidence between a first and second body with the plate device of the present invention includes slidably engaging the first and second plate members together and maintaining the first and second plate members in a first assembled position. The method including fastening the first member to the first body and the second member to the second body and allowing the first and second plate members to subside in a first direction in an infinite number of positions between the first assembled position and a second assembled position, wherein the first body and the second body are closer together when the plate device is in the second assembled position.
Preferably, the plate device further includes a lock assembly having a ramp portion, an interference portion, and a bearing member, wherein the bearing member is located in a deeper portion of the ramp portion when the plate device is in the first assembled position. Preferably, the bearing is lodged between the ramp portion and the interference portion of the lock assembly when the plate is in the second assembled position, the bearing preventing the first and second plate members from subsiding further in the first direction.
The method may further include inserting an instrument between the ramp portion and the interference portion such that the instrument may be used to release the lodged bearing.
A more complete appreciation of the subject matter of the present invention and the various advantages thereof can be realized by reference to the following detailed description in which reference is made to the accompanying drawings in which:
As used herein, when referring to bones or other parts of the body, the term “proximal” means closer to the heart and the term “distal” means more distant from the heart. The term “inferior” means lower or bottom and the term “superior” means upper or top. The term “anterior” means towards the front part of the body or the face and the term “posterior” means towards the back of the body. The term “medial” means toward the midline of the body and the term “lateral” means away from the midline of the body.
Referring to the drawings, wherein like reference numerals refer to like elements, there is shown in
Preferably, lock assembly 16 includes a ramp portion 18 on first member 12, an interference portion 20 on second member 14, and a bearing member 19 situated between ramp portion 18 of first member 12 and interference portion 20 of second member 14. Alternatively, ramp portion 18 may be adapted to second member 14 and interference portion 20 may be adapted to first member 12. Preferably, ramp portion 18 is either an inclined plane or a curved ramp, while it is contemplated ramp portion 18 may be other geometric or non-geometric configurations.
Preferably, lock assembly 16 is configured to allow movement of first member 12 with respect to second member 14 in a first direction in an infinite number of positions between a first assembled position and a second assembled position. Preferably, lock assembly 16 substantially prevents movement of first member 12 with respect to second member 14 in an opposite second direction between the first and second assembled positions.
Preferably, first member 12 includes a mating surface 22 configured to substantially engage a mating surface of second member 14. The sliding engagement of first member 12 and second member 14 in the first direction can no longer occur after surfaces 22, 24 mate.
Preferably, when plate 10 is in the first assembled position, first member 12 and second member 14 are in sliding engagement. Further, bearing member 19 is preferably freely seated between ramp portion 18 and interference portion 20 in the first assembled position. Preferably, a surgeon preoperatively decides the amount of subsidence between first member 12 and second member 14 of plate 10 that is needed for a particular patient.
Depending on the particular patient, plate 10 is generally configured to subside 1 mm to 10 mm. Generally, surface 22 of first member 12 and surface 24 of second member 14 are slidably engaged and distanced approximately 1 mm to 4 mm apart in the first assembled position. A surgeon may decide based on the type of operation performed or the particular patient's anatomy and/or deformity to have surface 22 of first member 12 and surface 24 of second member 14 in the first assembled position at a greater distance than 4 mm. The second assembled position is defined as the position where sliding engagement of first member 12 and second member 14 in the first direction is prevented, generally, after surfaces 24, 26 mate.
In a preferred embodiment, first member 12 may translate freely with respect to second member 14 in a first direction D1 without engaging lock assembly 16. Preferably, lock assembly 16 is configured to allow first member 12 and second member 14 to slide freely with respect to one another in first direction D1. Generally, first direction D1 is a downward direction as surface 22 of first member 12 translates toward second member 14. Movement in the first direction may only occur for first member 12 if second member 14 is in a fixed position. However, because of the anatomical structure and function of the spine, first and second members 12, 14 will generally both translate with respect to one another as subsidence occurs. Therefore, first member 12 and second member 14 both generally define movement in first direction D1 and second direction D2. It is also contemplated that the present invention is applicable to implants other than plates and further, other than plates moving in directly opposite directions.
As shown in
As first member 12 and second member 14 begin to subside, bearing member 19 is preferably static and will rotate in place in the deeper area of the pocket. As shown in
Preferably, bearing member 19 will rotate up ramp portion 18 until the amount of point loading of bearing member 19 with respect to ramp portion 18 and interference portion 20 of members 12, 14 is sufficient enough to stop the movement or translation of members 12, 14 in second direction D2. Preferably, this point loading occurs instantaneously as the movement of members 12, 14 change from first direction D1 to second direction D2.
Preferably, movement of members 12, 14 in second direction D2 is less than 1 mm. Preferably, lock assembly 16 is further configured such that if first member 12 and second member 14 have stopped moving apart in direction D2, and start moving towards each other again in direction D1, bearing member 19 may go back down ramp portion 18, thus releasing lock assembly 16.
The depth and shape of ramp portion 18, interference portion 20, and the size of bearing 22 are all critical features for performance and design intent of dynamic plate 10. If the dimensions of ramp portion 18 and interference portion 20 are constant among several different plates, the distance between the first and second assembled positions of plate 10 may be affected by the size of bearing member 19.
Further, the locking forces imparted by ramp portion 18 and interference portion 20 on bearing member 19 may be affected by the size of bearing member 19. One skilled in the art would easily understand that a larger bearing between similarly sized ramp portions 18 and interference portions 20 of different plates 10 would place a greater force on bearing member 19 as well as limit the distance that the plates may translate in the first and/or second directions between the first and second assembled positions.
As first member 12′ and second member 14′ begin to subside, bearing member 19′ is preferably static and will rotate in place in the deeper area of the pocket. As shown in
Preferably, bearing member 19′ will be forced to rotate up ramp portion 18′, until the amount of point loading of bearing member 19′ with respect to ramp portion 18′ and interference portion 20′ of members 12′, 14′ is sufficient enough to stop the movement or translation of members 12′, 14′ in second direction D2. Preferably, this point loading occurs instantaneously as the movement of members 12′, 14′ change from first direction D1 to second direction D2.
Preferably, movement of members 12′, 14′ in second direction D2 is less than 1 mm. Preferably, lock assembly 16′ is further configured such that if first member 12′ and second member 14′ have stopped moving apart in direction D2, and start moving towards each other again in direction D1, bearing member 19′ may go back down ramp portion 18′, thus releasing lock assembly 16′.
In
In one embodiment, first member 12 further includes at least one vertical slot 26. Preferably, second member 14 further includes at least two apertures 28, wherein first and second member 12, 14 are prevented from disengaging when vertical slot 26 of first member 12 is situated between at least two apertures 28. Further, a pin 17 is preferably placed through at least two apertures 28 of second member 14 and vertical slot 26 of first member 12 as shown for example, in
Alternatively, second member 14 may include at least one vertical slot 26 and first member 12 may include at least two apertures 28 wherein first and second members 12, 14 are prevented from disengaging when vertical slot 26 of second member 14 is situated between at least two apertures 28. In this alternative embodiment, pin 17 is placed through at least two apertures 28 of first member 12 and vertical slot 26 of second member 14.
Preferably, the function of vertical slot 26 is to aid in limiting the translation of first and second members 12, 14 with respect to one another between the first and second assembled positions. Further, apertures 28 in first and second members 12, 14 preferably act to secure pin 17 therein. Preferably, pin 17 is configured to slidably engage the slot of first and second members 12, 14. Further still, the slot 26 and pin 17 configuration preferably acts to add further security to the slidable engagement of first and second members 12, 14.
Preferably, vertical slot 26 includes a top portion 25 and a bottom portion 27. When the first and second members 12, 14 are in the first assembled position, pin 17 is preferably through slot 26 and apertures 28 and is adjacent to bottom portion 27 of slot 26. Alternatively, when the first and second members 12, 14 are in the second assembled position, pin 17 is preferable through slot 26 and apertures 28 and is adjacent to top portion 25 of slot 26.
Openings 38 in plate 10 for receiving bone screws may be seen in plate 10. Typically, spinal plates are secured to adjacent vertebrae by bone screws which pass through openings in the plates. Screw blocking systems are provided to keep the vertebral screws from backing out of the plate. In the present invention, each opening 38 in members 12, 14 preferably has grooves or recesses for receiving a split ring, though any other suitable screw locking systems may be used.
Plate 10 may further include a keyhole 40 associated with either first and/or second members 12, 14. Preferably, keyhole 40 is configured to allow an instrument 42 to enter at least some of the space between ramp portion 18 and interference portion 20 as shown generally in
Preferably, instrument 42 is configured to impart a force on bearing member 19 sufficient to overcome the frictional forces on bearing member 19 while locked between ramp portion 18 and interference portion 20. Preferably, instrument 42 is further configured to move bearing member 19 back towards the deeper part of ramp portion 18 where bearing member 19 may freely rotate as shown in
As shown in
One method of implanting plate 10 includes fastening first and second members 12, 14 in the first assembled position to a respective vertebral body, clip 50 used to maintain members 12, 14 of plate 10 in the first assembled position, and removing clip 50 from the assembly such that first member 12 and second member 14 may translate in a first direction D1. In this exemplary method, plate 10 further includes lock assembly 16 configured to allow first and second members 12, 14 to subside in a first direction in an infinite number of positions between a first assembled position and a second assembled position and alternatively limit the translation of the first member 12 and the second member 14 in an opposite second direction D2.
Behind assembled clip 50 in the first assembled position, bearing member 19 is generally located in the deeper part of ramp portion 18. After clip 50 is removed from between members 12, 14, bearing member 19 is preferably static and will rotate in place in the deeper area of the pocket as surfaces 22, 24 of members 12, 14 slowly come together as natural subsidence occurs. If during subsidence, first member 12 and second member 14 begin to move or translate in second direction D2, bearing member 19 will be forced to rotate up ramp portion 18 due to the friction created between ramp portion 18 and interference portion 20 of members 12, 14.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
The present application is a divisional of U.S. patent application Ser. No. 11/900,914, filed Sep. 13, 2007, the disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3547114 | Haboush | Dec 1970 | A |
4157715 | Westerhoff | Jun 1979 | A |
4957497 | Hoogland et al. | Sep 1990 | A |
5041113 | Biedermann et al. | Aug 1991 | A |
5129903 | Luhr et al. | Jul 1992 | A |
5616142 | Yuan et al. | Apr 1997 | A |
5843082 | Yuan et al. | Dec 1998 | A |
6193720 | Yuan et al. | Feb 2001 | B1 |
6383186 | Michelson | May 2002 | B1 |
6402756 | Ralph et al. | Jun 2002 | B1 |
6503250 | Paul | Jan 2003 | B2 |
6533786 | Needham et al. | Mar 2003 | B1 |
6533787 | Lenke et al. | Mar 2003 | B1 |
6645207 | Dixon et al. | Nov 2003 | B2 |
6666867 | Ralph et al. | Dec 2003 | B2 |
6669700 | Farris et al. | Dec 2003 | B1 |
6679883 | Hawkes et al. | Jan 2004 | B2 |
6689134 | Ralph et al. | Feb 2004 | B2 |
6695846 | Richelsoph et al. | Feb 2004 | B2 |
6837905 | Lieberman | Jan 2005 | B1 |
6872210 | Hearn | Mar 2005 | B2 |
D505205 | Freid | May 2005 | S |
6890335 | Grabowski et al. | May 2005 | B2 |
6932820 | Osman | Aug 2005 | B2 |
6936050 | Michelson | Aug 2005 | B2 |
6964664 | Freid et al. | Nov 2005 | B2 |
6969398 | Stevens et al. | Nov 2005 | B2 |
7008427 | Sevrain | Mar 2006 | B2 |
7214226 | Alleyne | May 2007 | B2 |
20020045898 | Freid et al. | Apr 2002 | A1 |
20020058939 | Wagner et al. | May 2002 | A1 |
20020065517 | Paul | May 2002 | A1 |
20020120273 | Needham et al. | Aug 2002 | A1 |
20020128655 | Michelson | Sep 2002 | A1 |
20020183756 | Michelson | Dec 2002 | A1 |
20020183757 | Michelson | Dec 2002 | A1 |
20020188296 | Michelson | Dec 2002 | A1 |
20030023242 | Harrington | Jan 2003 | A1 |
20030040749 | Grabowski et al. | Feb 2003 | A1 |
20030083658 | Hawkes et al. | May 2003 | A1 |
20030114856 | Nathanson et al. | Jun 2003 | A1 |
20030130661 | Osman | Jul 2003 | A1 |
20030149434 | Paul | Aug 2003 | A1 |
20030187440 | Richelsoph et al. | Oct 2003 | A1 |
20030187509 | Lemole | Oct 2003 | A1 |
20030212399 | Dinh et al. | Nov 2003 | A1 |
20040019353 | Freid et al. | Jan 2004 | A1 |
20040030336 | Khanna | Feb 2004 | A1 |
20040030338 | Paul | Feb 2004 | A1 |
20040068319 | Cordaro | Apr 2004 | A1 |
20040087951 | Khalili | May 2004 | A1 |
20040097934 | Farris et al. | May 2004 | A1 |
20040097935 | Richelsoph et al. | May 2004 | A1 |
20040097950 | Foley et al. | May 2004 | A1 |
20040106924 | Ralph et al. | Jun 2004 | A1 |
20040167521 | De Windt | Aug 2004 | A1 |
20040181226 | Michelson | Sep 2004 | A1 |
20040181229 | Michelson | Sep 2004 | A1 |
20040186476 | Michelson | Sep 2004 | A1 |
20040220571 | Assaker et al. | Nov 2004 | A1 |
20040220572 | Michelson | Nov 2004 | A1 |
20040236335 | Michelson | Nov 2004 | A1 |
20040260306 | Fallin et al. | Dec 2004 | A1 |
20050027297 | Michelson | Feb 2005 | A1 |
20050027298 | Michelson | Feb 2005 | A1 |
20050033298 | Hawkes et al. | Feb 2005 | A1 |
20050043732 | Dalton | Feb 2005 | A1 |
20050049593 | Duong et al. | Mar 2005 | A1 |
20050059971 | Michelson | Mar 2005 | A1 |
20050075633 | Ross | Apr 2005 | A1 |
20050137597 | Butler et al. | Jun 2005 | A1 |
20050149026 | Butler et al. | Jul 2005 | A1 |
20050183756 | Fang | Aug 2005 | A1 |
20050187551 | Orbay et al. | Aug 2005 | A1 |
20050187552 | Michelson | Aug 2005 | A1 |
20050187553 | Grabowski et al. | Aug 2005 | A1 |
20050187554 | Michelson | Aug 2005 | A1 |
20050192576 | Michelson | Sep 2005 | A1 |
20050192577 | Mosca et al. | Sep 2005 | A1 |
20050209593 | Kolb | Sep 2005 | A1 |
20050216009 | Michelson | Sep 2005 | A1 |
20050216010 | Michelson | Sep 2005 | A1 |
20050216011 | Paul | Sep 2005 | A1 |
20050234455 | Binder et al. | Oct 2005 | A1 |
20050240184 | Osman | Oct 2005 | A1 |
20050261689 | Lin | Nov 2005 | A1 |
20050261690 | Binder et al. | Nov 2005 | A1 |
20050277939 | Miller | Dec 2005 | A1 |
20060064097 | Bray | Mar 2006 | A1 |
20060074420 | LeHuec et al. | Apr 2006 | A1 |
20060079900 | Mathieu et al. | Apr 2006 | A1 |
20060100625 | Ralph et al. | May 2006 | A1 |
20060116683 | Barrall et al. | Jun 2006 | A1 |
20060200134 | Freid et al. | Sep 2006 | A1 |
20060235398 | Farris et al. | Oct 2006 | A1 |
20070185489 | Abdou | Aug 2007 | A1 |
20070270964 | Strohkirch et al. | Nov 2007 | A1 |
20080119933 | Aebi et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
73455 | Mar 1983 | EP |
181433 | May 1986 | EP |
347658 | Dec 1989 | EP |
374084 | Jun 1990 | EP |
2634368 | Jan 1990 | FR |
2697428 | May 1994 | FR |
2728454 | Jun 1996 | FR |
2001510703 | Aug 2001 | JP |
2004530482 | Oct 2004 | JP |
2005515823 | Jun 2005 | JP |
03063714 | Aug 2003 | WO |
2006028971 | Mar 2006 | WO |
2006060506 | Jun 2006 | WO |
2006098908 | Sep 2006 | WO |
2006107891 | Oct 2006 | WO |
2007067547 | Jun 2007 | WO |
200904718 | Jan 2009 | WO |
Entry |
---|
Chinese Office Action for Application No. 2013-081148 dated Mar. 19, 2014. |
DGNC 2003, anterior dynamic stabilization of the middle and lower cervical spine, Dr. Apfelbaum, May 27, 2003. |
International Search Report, PCT/US2008/010745, mailed Oct. 8, 2009. |
Spinal Concepts Receives FDA Clearance on its SC-AcuFix Ant-Cer Implant, www.spinalconcepts.com, printed Feb. 13, 2006. |
Swift Dynamic Anterior Cervical Plate System, DePuy Spine, www.depuyspine.com, printed Feb. 8, 2006. |
Vectra, anterior cervical plating system, technique guide, Synthes Spine, 2005. |
Number | Date | Country | |
---|---|---|---|
20130150897 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11900914 | Sep 2007 | US |
Child | 13757226 | US |