This application is related to U.S. provisional application No. 60/351,935 filed Jan. 24, 2002, and PCT application PCT/US2002/04769 filed Feb. 14, 2002, incorporated herein by reference in their entirety.
1. Field of the Invention
The field of the invention is radio frequency communications.
2. Description of the Background
Transmission of data via radio signals is an effective means of communication to a variety of devices located within range of the signal. An advertiser or other provider of the data (including content) may pre-select a radio frequency carrier type (e.g. FM sub-carrier, AM sub-carrier, Cellular etc. . . . ), a broadcasting station (e.g. KIIS FM), and/or a frequency over which the data will be broadcast (e.g. 102.7 MHz 57 kHz RBDS) based on the geographic location of the target audience. The particular frequency may be chosen because of its popularity with the target audience, its spectrum availability, the type or device that will receive the signals, and importantly because its signals will cover (i.e. reach) the targeted audience.
Covering the target audience is deemed essential, and since many applications of radio frequency (RF) communication target an audience existing within a relatively small geographic area, often coverage is not a problem. For example, it is common to broadcast music or news over a pre-selected frequency to all areas of an office building. Pre-selection of the frequency and pre-tuning of the receivers to that frequency is a relatively easy process. Another example of an RF communication within a relatively small area is a radio controlled car that is set to receive signals broadcast over a pre-selected frequency. Yet another example is taught by U.S. Pat. No. 6,298,218 to Lowe et al. (October 2001). The '218 patent targets audiences within a few feet of the transmitting device. This is exemplified by an athletic club environment in which a user device receives different broadcasts on different frequencies depending on his proximity to specific pieces of gym equipment having transmitters. Thus, those applications that target audiences over a relatively small area typically work well with pre-selection of the frequency and the station. Coverage becomes an issue and complications arise, however, when the target audience is spread over an area that encompasses more than one frequency, station, and/or band. These complications are due in part to the necessity to pre-select many, perhaps hundreds or thousands, of frequencies and stations in order to cover the entire target audience. Thus, pre-selection of frequencies becomes extremely burdensome when a wide spread audience has been targeted.
The need to employ several stations simultaneously is addressed by U.S. Pat. No. 4,517,562 to Martinez (May 1985), however the '562 patent still does not solve or even recognize problems related to the difficulty of scheduling and coordinating communications over a wide spread area. These problems are exacerbated by competition for available RF spectrum and perhaps the distance between a data provider and a data recipient.
There is a need for systems and methods which facilitate use of radio signals to communicate to devices that may be spread over a relatively large area.
The present invention includes systems and methods of developing and delivering visual/audio radio frequency campaigns. A managing node receives broadcast specific information and broadcast non-specific information, and the managing node matches at least one item of broadcast non-specific information with an item of broadcast specific information as part of the development of a visual/audio campaign that is delivered to a remote device preferably via a sub-carrier frequency.
Another aspect includes a system for developing and delivering a visual/audio campaign to a device having a radio wave receiver in which a managing node is programmed to: receive broadcast specific information from a plurality of radio stations; automatically develop the visual/audio campaign as a function of the broadcast specific information and broadcast non-specific information; and deliver the visual/audio campaign to the device using radio waves having a sub-carrier frequency.
A further aspect includes a system comprising a remote device having a display area that is within line of sight of an information user that requests a visual/audio campaign from the remote device. A plurality of radio stations are responsive to a request for broadcast specific information, and a managing node is responsive to a request for visual/audio information, the response based on either or both of the broadcast specific information and broadcast non-specific information. The visual/audio campaign is broadcast to the remote device via a sub-carrier frequency.
It should be appreciated that the inventive subject matter is especially useful for providing a visual campaign to a car stereo system.
Various objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings in which like numerals represent like components.
Referring first to
In
As defined herein, a visual/audio campaign is comprised of information (i.e. data) that can either be optically (visually) sensed by the human eye or audibly sensed by the human ear. A visual/audio campaign may include graphics, audio, text, symbols, pictures, and images that are stored electronically, and therefore visual/audio information may be temporarily not susceptible to being optically or audibly sensed. Thus, data traveling by radio waves may be part of a visual/audio campaign even though the data may not be viewable or audibly discernable in its present state. A visual/audio campaign typically comprises content data and schedule related data such as delivery times, broadcast frequencies, RF transmitter locations. Additionally, a visual/audio campaign may be formatted to comply with known technologies such as RDS (radio data service), RBDS (radio broadcast data service), and DARC (Data Radio Channel), and thus a visual campaign may include the data associated to the following fields: Program Identification (PD; Program Service (PS) name; Automatic Frequency Switch (AF) list; Traffic Programme (TP) identification; Traffic Announcement (TA) signal; Program Type Name (PTYN); Radio Text (RT); Traffic Message Channel (TMC); and Programme Type (PTY). While a visual/audio campaign may include at least one item of broadcast specific information and/or broadcast non-specific information, it should be pointed out that this is not a requirement. Thus, the subject of visual/audio campaign may be an advertisement that does not comprise any broadcast specific information.
Radio stations 210 are generally entities that transmit information to common radios and other devices by radio waves (e.g. KIIS FM, KBIG, WNEW and so on). It should be appreciated, however, that the concept of a radio station should not be limited except to the extent that a station can send broadcast specific information 215 to a managing node 220.
Broadcast specific information 215 is information related to a broadcast of radio wave information. For example, broadcast specific information includes a play list (e.g. names or content of songs and associated times and dates that the songs will be played), program information (e.g. a names or content of programs, segments, or spots and associated times and dates of broadcast), available spectrum (e.g. available frequency for delivery of a visual campaign), advertisement times slots, content of advertisements, physical location of radio station transmitter, and the coverage area of a radio station broadcast. Preferably broadcast specific information 215 is sent to a managing node 220 via the Internet, but other paths and modes of transportation may be appropriate including non-electronic modes such as US mail.
Broadcast non-specific information 230-280 is defined in the negative as information received by the managing node that is not broadcast specific information. Broadcast nonspecific information advantageously enters a system as a result of a communication between a source (not shown) and a managing node 220, and this communication is likely an asynchronous communication of digital data over the Internet. It is contemplated that much of the broadcast non-specific information will come from news services such as AP and UPI, however the source of broadcast non-specific information is not a limitation to the overall inventive concept.
A managing node 220 generally consists of a plurality of servers that are preferably Web-based i.e., coupled to the Internet) and centralized, but may even be distributed. Servers, including RAID drives, may be geographically distributed and mirrored.
Whether a device classifies as a managing node 220 generally depends upon functionality. Among the functions of a managing node 220 are scheduling delivery of visual campaigns, selecting frequencies, selecting RF transmitters, encoding data to comply with appropriate protocols and technologies, targeting devices (e.g. by serial number, lot number, location, demographic information; psychographic information, meta data parameter), confirmation and audit (including 3rd party audit) of actual RF delivery through a feedback loop, providing detailed reporting, dynamically pricing based on availability or other criteria (e.g. Auctions); interfacing applications for 3rd party software integration, and maintaining a subscriber (source) and consumer (remote device user) web interface. A managing node 220 is also responsible for partnering with market leaders (e.g. in the sale of electronics and broadcast of RF signals) and receiving, maintaining and matching broadcast specific and broadcast non-specific information from radio stations. Since scheduling of broadcasts and selecting of frequencies are functions of a managing node 220, a device scheduling broadcasts or selecting frequencies is by definition a managing node regardless of other factors such as location. For example, a device that selects a frequency at a regional broadcast station is a managing node 220.
RF transmitters 290 are preferably operated by the radio stations 210 that have transmitted broadcast specific information 215 to the managing node 220. In other less preferred embodiments, RF transmitters may be independent from radio stations and may be employed simply to transmit and optionally encode visual campaigns. A visual/audio campaign may be encoded for radio broadcast by the managing node 220 or some other entity including the RF transmitters. It is contemplated that such transmitters are those capable of broadcasting radio signals within AM, FM, TV (NTSC, DTV in N. America, PAL and DVB in some other countries), Cellular/PCS, and Satellite bands, and it is anticipated that both primary and sub-carrier channels will be utilized to transmit data.
A preferred device 295 is a car stereo that is RDBS, RDS, and/or DARC enabled. The device may also be enabled with other appropriate technology that allows receipt of a visual/audio campaign broadcast over radio waves. In addition to a car stereo, the following is a non-inclusive list of contemplated devices: mobile telematics device, PDA, cell phone, GPS device, mass transit displays, mall displays (e.g. kiosks), airport displays, entertainment venue displays, sporting event displays, street furniture (e.g. benches at a bus stop), video games, TVs, and mobile audio devices (e.g. a walkman, an MP3 player, and so on).
With respect to a device 295, it is generally contemplated that a display (not shown) will be coupled to the device 295. An example of a display is an LCD on the front of a radio. The size of the display is not to be construed as a limitation herein, however, a preferred display is only about a half inch high by 2 inches long. As such, information that is displayed on the display (i.e. the visual/audio campaign) may be scrolled or paged over the display area. It is further contemplated that a visual/audio campaign may be used to feed a GPS or other supplemental system. Consider a visual/audio campaign that includes traffic information. The traffic information may optionally be used to feed a GPS system that will consider the traffic information and plan a detour. An expansion on this concept includes transportation department information related to road closures.
In a preferred class of embodiments, a user has the option to store visual/audio campaigns and or portions of the campaigns. The option to store may be actuated by pressing a button on the steering wheel or by other appropriate means such as a voice command of “store”. This capability is especially useful for a driver of an automobile that wants to retain campaign information.
A device 295 may have a button or some other means of enable/disabling receipt of a visual/audio campaign. Additionally, a visual/audio campaign may be the subject of a subscription requiring advance payment, and as such an access parameter (not shown) may be used to control whether a device 295 receives a broadcast communication. In embodiments that utilize an access parameter, a user may submit a request to set the access parameter, which generally resides on a remote device. Such a request is typically submitted to a managing node 220. Thus, a broadcast communication may include a unique identifier (e.g. serial number, VIN) of a remote device 295, and the remote device 295 may receive the communication as a function of a value of the access parameter. While this example targets a single remote device, no requirement should be inferred that access parameters operate with only a single remote device, and in fact communications may target multiple serial numbers or lot numbers.
Another aspect includes broadcasts that may be overlapped to increase the probability of a successful communication. For example, a single device may be within range of more than one RF transmitter 295, and therefore, each transmitter within range may issue a “duplicate” transmission. This may be especially helpful should a transmitter 295 go down or have problems with interference.
Information confirming an RF communication may be tracked by a confirmation server 298 and may include an acknowledgement of receipt, a date and time received, as well as other useful information in response to the device's receipt of RF data. Failure of a communication may indicate that a remote device is inoperable or no longer within the geographical range of an RF transmitter.
In another example, a driver in his car has enabled RBDS on his in-dash stereo. Radio stations, responding to requests for broadcast specific information send such information to a managing node. In this example, radio station A may send the following broadcast specific information “stock report 10:30 am”, and radio station B may send the following broadcast specific information “stock report 11:25 am”. Using the broadcast specific information, the managing node may match broadcast non-specific information of “Microsoft up 6 points.” The managing node may then develop a visual/audio campaign in which the message “Microsoft up 6” is displayed at 10:30 am for devices tuned to station A, and at 11:25 am for devices tuned to station B. Transmission of the visual/audio campaign may utilize a sub-carrier frequency and will preferably occur while information is being broadcast on the primary frequency.
Thus, specific embodiments and applications of dynamic creation, selection, and scheduling of radio frequency communications have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced.
Number | Name | Date | Kind |
---|---|---|---|
4517562 | Martinez | May 1985 | A |
4665514 | Ching et al. | May 1987 | A |
4723285 | LeRoy et al. | Feb 1988 | A |
4841357 | Gillies | Jun 1989 | A |
4864620 | Bialick | Sep 1989 | A |
5096195 | Gimmon | Mar 1992 | A |
5129036 | Dean et al. | Jul 1992 | A |
5260778 | Kauffman et al. | Nov 1993 | A |
5303326 | Dean et al. | Apr 1994 | A |
5440351 | Ichino | Aug 1995 | A |
5515098 | Carles | May 1996 | A |
5557541 | Schulhof et al. | Sep 1996 | A |
5576755 | Davis et al. | Nov 1996 | A |
5697844 | Von Kohorn | Dec 1997 | A |
5715018 | Fasciano et al. | Feb 1998 | A |
5724521 | Dedrick | Mar 1998 | A |
5738583 | Comas et al. | Apr 1998 | A |
5948061 | Merriman et al. | Sep 1999 | A |
5999808 | LaDue | Dec 1999 | A |
6011973 | Valentine et al. | Jan 2000 | A |
6104815 | Alcorn et al. | Aug 2000 | A |
6167382 | Sparks et al. | Dec 2000 | A |
6198906 | Boetje et al. | Mar 2001 | B1 |
6212392 | Fitch et al. | Apr 2001 | B1 |
6256508 | Nakagawa et al. | Jul 2001 | B1 |
6260047 | Fox et al. | Jul 2001 | B1 |
6282548 | Burner et al. | Aug 2001 | B1 |
6286005 | Cannon | Sep 2001 | B1 |
6298218 | Lowe et al. | Oct 2001 | B1 |
6311214 | Rhoads | Oct 2001 | B1 |
6317784 | Mackintosh et al. | Nov 2001 | B1 |
6338043 | Miller | Jan 2002 | B1 |
6374177 | Lee et al. | Apr 2002 | B1 |
6388712 | Shinohara et al. | May 2002 | B1 |
6401075 | Mason et al. | Jun 2002 | B1 |
6411992 | Srinivasan et al. | Jun 2002 | B1 |
6416414 | Stadelmann | Jul 2002 | B1 |
6470180 | Kotzin et al. | Oct 2002 | B1 |
6502076 | Smith | Dec 2002 | B1 |
6508710 | Paravia et al. | Jan 2003 | B1 |
6509867 | McGibney | Jan 2003 | B1 |
6527638 | Walker et al. | Mar 2003 | B1 |
6527641 | Sinclair et al. | Mar 2003 | B1 |
6606745 | Maggio | Aug 2003 | B2 |
6628928 | Crosby et al. | Sep 2003 | B1 |
6628939 | Paulsen | Sep 2003 | B2 |
6650892 | Thiriet | Nov 2003 | B1 |
6674995 | Meyers et al. | Jan 2004 | B1 |
6678501 | Valeski | Jan 2004 | B1 |
6701355 | Brandt et al. | Mar 2004 | B1 |
6711474 | Treyz et al. | Mar 2004 | B1 |
6725022 | Clayton et al. | Apr 2004 | B1 |
6735435 | Newell et al. | May 2004 | B2 |
6747760 | Geddes et al. | Jun 2004 | B2 |
6767284 | Koza | Jul 2004 | B1 |
6778820 | Tendler | Aug 2004 | B2 |
6820055 | Saindon et al. | Nov 2004 | B2 |
6820277 | Eldering et al. | Nov 2004 | B1 |
6829475 | Lee et al. | Dec 2004 | B1 |
6850839 | McGibney | Feb 2005 | B1 |
6895238 | Newell et al. | May 2005 | B2 |
6915107 | Lusk | Jul 2005 | B1 |
6941324 | Plastina et al. | Sep 2005 | B2 |
6952559 | Bates et al. | Oct 2005 | B2 |
6957041 | Christensen et al. | Oct 2005 | B2 |
6961549 | Mori | Nov 2005 | B2 |
6963910 | Belknap et al. | Nov 2005 | B1 |
6975835 | Lake et al. | Dec 2005 | B1 |
6985882 | Del Sesto | Jan 2006 | B1 |
7036136 | Worthy | Apr 2006 | B1 |
7039930 | Goodman et al. | May 2006 | B1 |
7054592 | Tatsumi et al. | May 2006 | B2 |
7069582 | Philyaw et al. | Jun 2006 | B2 |
7085732 | Gould | Aug 2006 | B2 |
7158753 | Kagan et al. | Jan 2007 | B2 |
7167454 | Caldwell et al. | Jan 2007 | B2 |
7349663 | Joseph | Mar 2008 | B1 |
20010003099 | Von Kohorn | Jun 2001 | A1 |
20010018858 | Dwek | Sep 2001 | A1 |
20010037304 | Paiz | Nov 2001 | A1 |
20010048748 | Van Ryzin | Dec 2001 | A1 |
20010051559 | Cohen et al. | Dec 2001 | A1 |
20020023020 | Kenyon et al. | Feb 2002 | A1 |
20020038455 | Srinivasan et al. | Mar 2002 | A1 |
20020049037 | Christensen et al. | Apr 2002 | A1 |
20020056118 | Hunter et al. | May 2002 | A1 |
20020059646 | Kim | May 2002 | A1 |
20020069404 | Copeman et al. | Jun 2002 | A1 |
20020092019 | Marcus | Jul 2002 | A1 |
20020099600 | Merriman et al. | Jul 2002 | A1 |
20020122052 | Reich et al. | Sep 2002 | A1 |
20020133820 | Arai et al. | Sep 2002 | A1 |
20020168967 | Clapper | Nov 2002 | A1 |
20020178058 | Ritchie et al. | Nov 2002 | A1 |
20020194215 | Cantrell et al. | Dec 2002 | A1 |
20030003990 | Von Kohorn | Jan 2003 | A1 |
20030009452 | O'Rourke et al. | Jan 2003 | A1 |
20030023489 | McGuire et al. | Jan 2003 | A1 |
20030045273 | Pyhalammi et al. | Mar 2003 | A1 |
20030069032 | Jarvi et al. | Apr 2003 | A1 |
20030070167 | Holtz et al. | Apr 2003 | A1 |
20030093530 | Syed | May 2003 | A1 |
20030105809 | Yoshii et al. | Jun 2003 | A1 |
20030119528 | Pew et al. | Jun 2003 | A1 |
20030126616 | Dewa | Jul 2003 | A1 |
20030139190 | Steelberg et al. | Jul 2003 | A1 |
20030229559 | Panttaja et al. | Dec 2003 | A1 |
20040024633 | Whymark | Feb 2004 | A1 |
20040028388 | Kataoka et al. | Feb 2004 | A1 |
20040038723 | Schneier et al. | Feb 2004 | A1 |
20040064524 | Van Steenbergen et al. | Apr 2004 | A1 |
20040087326 | Dunko et al. | May 2004 | A1 |
20040093394 | Weber et al. | May 2004 | A1 |
20040103026 | White | May 2004 | A1 |
20040117826 | Karaoguz et al. | Jun 2004 | A1 |
20040127199 | Kagan et al. | Jul 2004 | A1 |
20040198217 | Lee et al. | Oct 2004 | A1 |
20040215515 | Perry | Oct 2004 | A1 |
20040236864 | Stevenson et al. | Nov 2004 | A1 |
20040244042 | Billmaier | Dec 2004 | A1 |
20050015800 | Holcomb | Jan 2005 | A1 |
20050020238 | Eastman et al. | Jan 2005 | A1 |
20050021396 | Pearch et al. | Jan 2005 | A1 |
20050039206 | Opdycke et al. | Feb 2005 | A1 |
20050043020 | Lipsanen et al. | Feb 2005 | A1 |
20050065806 | Harik | Mar 2005 | A1 |
20050065844 | Raj et al. | Mar 2005 | A1 |
20050090279 | Witkowski et al. | Apr 2005 | A9 |
20050105725 | Lee | May 2005 | A1 |
20050137958 | Huber et al. | Jun 2005 | A1 |
20050198317 | Byers | Sep 2005 | A1 |
20050227678 | Agrawal et al. | Oct 2005 | A1 |
20050239402 | Gioscia et al. | Oct 2005 | A1 |
20050267817 | Barton et al. | Dec 2005 | A1 |
20050278769 | Steelberg et al. | Dec 2005 | A1 |
20060133407 | Kuisma | Jun 2006 | A1 |
20060143236 | Wu | Jun 2006 | A1 |
20060146765 | Van de Sluis et al. | Jul 2006 | A1 |
20060176374 | Oklejas | Aug 2006 | A1 |
20060195863 | Whymark | Aug 2006 | A1 |
20060212901 | Steelberg et al. | Sep 2006 | A1 |
20060218401 | Jun | Sep 2006 | A1 |
20060248209 | Chiu et al. | Nov 2006 | A1 |
20060268667 | Jellison, Jr. et al. | Nov 2006 | A1 |
20060282533 | Steelberg et al. | Dec 2006 | A1 |
20060294571 | Moore et al. | Dec 2006 | A1 |
20070022459 | Gaebel et al. | Jan 2007 | A1 |
20070027958 | Haslam | Feb 2007 | A1 |
20070078712 | Ott et al. | Apr 2007 | A1 |
20070078714 | Ott et al. | Apr 2007 | A1 |
20070094042 | Ramer et al. | Apr 2007 | A1 |
20070157261 | Steelberg et al. | Jul 2007 | A1 |
20070250856 | Leavens et al. | Oct 2007 | A1 |
20070259318 | Harrison | Nov 2007 | A1 |
20080021710 | Ho | Jan 2008 | A1 |
20080077264 | Irvin et al. | Mar 2008 | A1 |
20080208378 | Booth et al. | Aug 2008 | A1 |
20080249982 | Lakowske | Oct 2008 | A1 |
20080253307 | Irvin | Oct 2008 | A1 |
20080254741 | Irvin | Oct 2008 | A1 |
20080255686 | Irvin et al. | Oct 2008 | A1 |
20080256080 | Irvin et al. | Oct 2008 | A1 |
20080256109 | Irvin et al. | Oct 2008 | A1 |
20090019374 | Logan et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
1285079 | Feb 2001 | CN |
1 032 148 | Aug 2000 | EP |
03-184486 | Aug 1991 | JP |
05-284162 | Oct 1993 | JP |
07-505028 | Jun 1995 | JP |
09-018430 | Jan 1997 | JP |
2000-244427 | Sep 2000 | JP |
2002-368704 | Dec 2002 | JP |
10-1997-0019597 | Apr 1997 | KR |
10-201-0112410 | Dec 2001 | KR |
WO 9315466 | Aug 1993 | WO |
WO 9721183 | Jun 1997 | WO |
WO 9933076 | Jul 1999 | WO |
WO 9949663 | Sep 1999 | WO |
WO 0135667 | May 2001 | WO |
WO 0201869 | Jan 2002 | WO |
WO 0225467 | Mar 2002 | WO |
WO 0227425 | Apr 2002 | WO |
WO 0227425 | May 2003 | WO |
WO 2004017163 | Feb 2004 | WO |
WO 2004017163 | Nov 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060019642 A1 | Jan 2006 | US |