Luminance and chrominance information share a portion of the total signal bandwidth in composite video television systems, such as National Television Systems Committee (NTSC) and Phase Alternating Line (PAL). In NTSC, for example, as illustrated in
A composite decoder extracts both luminance spectral information and chrominance spectral information from the composite signal. However, if the screen has moving areas and has high frequency pattern pictures, existing decoders cannot distinguish clearly between luminance and chrominance information. As a result, these decoders generate incorrect chrominance information based upon the luminance spectrum. This misinterpretation of high-frequency luminance information as chrominance information is called “cross color”.
For example,
The current trend in television display device technology is to make screens larger and brighter, which is causing cross color to become more noticeable. Thus, increased efficiency in the reduction of cross color is important.
Existing methods to eliminate cross color includes filtering of chrominance information in the decoding processes. Two dimensional and three dimensional comb filters have been used, which typically have two response characteristics. One response characteristic is for the luminance path and a second response for the chrominance path. However, this technique works well with still pictures but not moving pictures with a high frequency pattern.
Accordingly, there exists a need for a method and system for efficient dynamic cross color elimination. The invention addresses such a need.
The exemplary embodiments provide a method and system for efficient cross color elimination in processing of a component video signal comprising component luminance and chrominance information. Aspects of the exemplary embodiments include using separated luminance and chrominance information for each pixel in a current frame, getting absolute distance values between C=a current frame pixel color, P=a previous frame pixel color, H=a high frequency color of the previous frame, and O=a center of a color space; comparing each absolute distance value with a predetermined threshold, wherein if any of the absolute distance values exceed the predetermined threshold, then the pixel is a cross color pixel; and for each cross color pixel, replacing a current frame pixel color with a high frequency average pixel color.
By processing component signals after the composite signal decoding stage, the method and system according to the invention can be used in NTSC, PAL, and any other television system. The method and system according to the invention is relevant to liquid crystal display (LCD) televisions, CRT televisions, and plasma display televisions. It is also possible to use HDTV, new and existing digital TV broadcast systems, and digital component signal broadcast TV systems with the invention. The invention is also applicable to any color differential space, not just YUV, such as YCbCr (Rec. 601), YCbCr (Rec. 709), YIQ, YDbDr, YPbPr, or any other color differential spaces.
The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
The method and system according to the invention significantly reduces cross color artifacts from component video signals by detecting rapid changes of chrominance signals over several frames in the time domain. In one embodiment, cross color pixels are detected by comparing a threshold value with a difference between a current frame chrominance and at least one previous frame chrominance. The color data of the cross color pixels are replaced by the same location pixel color in the previous frame or by a high frequency average color. In a further embodiment, the luminance component is also recovered by calculating the difference of input and output chrominance values for delta chrominance, converting the delta chrominance to delta luminance, and adding the delta luminance to the output luminance from a component video source.
Performed in parallel to the DCCE steps 403-406, the number of high frequency pixels in the current frame is counted (step 407). If the high frequency pixel number exceeds a predetermined threshold, TH2, (step 408), then the DCCE 302 is switched to an “on” state (step 409). The high frequency average color for the pixels in the current frame are then determined (step 410), and stored in the register of DCCE module 302 to be used in next processing of the previous frame.
Performed in parallel to the DCCE steps 603-608, the number of high frequency pixels in the current frame is counted (step 609). If the high frequency pixel number exceeds a predetermined threshold, TH5 (step 610), then the DCCE 502 is switched to an “on” state (step 611). The high frequency average colors for the pixels in the current frame is obtained (step 612), and stored in the register of DCCE module 502, to be used in next processing of the previous frame.
where ωt=subcarrier frequency from the burst phase, and
ΔY=ΔU*sin ωt+ΔV*cos ωt.
The recovered Y (Y′) is then calculated (step 803) using the equation Y′=Y+ΔY. The signal with the corrected chrominance information and the recovered luminance information is then output to the next stage, such as a noise reduction and de-interlacing stage 705.
If ABS (P1−C)>Lim1C, then CNT1C=CNT1C+1
If ABS (P2−C)>Lim2C then CNT2C=CNT2C+1
If ABS (P1−P2)>Lim12 then CNT12=CNT12+1
If ABS (P1−H)>Lim1H then CNT1H=CNT1H+1
If ABS (P1−O)>Lim1S then CNT1S=CNT1S+1
When a current picture is processed, the comparator 910 compares each frame of the picture with the stored dictionary tables 911 (step 1002). If a frame matches any of the tables, then cross color is statistically likely and cross color detection is enabled (step 1004). The various threshold values, TH1 through TH5, are adjusted accordingly (step 1005).
A method and system for efficient cross color elimination have been disclosed. Cross color artifacts are significantly reduces cross color artifacts from component video signals by detecting rapid changes of chrominance signals over several frames in the time domain. In one embodiment, cross color pixels are detected by comparing a threshold value with a difference between a current frame chrominance and at least one previous frame chrominance. The color data of the cross color pixels are replaced by the same location pixel color in the previous frame or by a high frequency average color. In a further embodiment, the luminance component is also recovered by calculating the difference of input and output chrominance value for delta chrominance, converting the delta chrominance to delta luminance, and adding the delta luminance to the output luminance from a component video source. The component video source can be the output of a composite video decoder, pre-recoded component video signals, or pre-decoded video signals.
By processing component signals after the composite signal decoding stage, the method and system according to the invention can be used in NTSC, PAL, and any other television system. The method and system according to the invention is relevant to liquid crystal display (LCD) televisions, CRT televisions, and plasma display televisions. It is also possible to use HDTV, new and existing digital TV broadcast systems, and digital component signal broadcast TV systems with the invention. The invention is also applicable to any color differential space, not just YUV, such as YCbCr (Rec. 601), YCbCr (Rec. 709), YIQ, YDbDr, YPbPr, or any other color differential spaces.
Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims.