The present application is the U.S. national stage application of International Application PCT/NO2003/000121, filed Apr. 14, 2003, which international application was published on Oct. 21, 2004 as International Publication WO 2004/090278.
This invention regards a dynamic damping device for use in a drill string, designed especially for use when drilling for hydrocarbons in sedimentary rocks.
Known dynamic dampers are extensively used to dampen oscillations that arise in mechanical constructions subjected to variable loads. In a drill string having a length of several thousand metres, oscillations can arise as a result of variations in the torque along the drill string.
Variations in torque may be due to different frictional conditions along the string and drilling through formations of different hardness, causing the moment on the drill bit to vary. Such uncontrollable variations in torque will in turn generate oscillations that exert great forces and vibrations on the drill string, in particular when the oscillations resonate with the natural oscillations of the drill string.
The use of more modern and more powerful rotary machines over the last years has resulted in the drill string now being subjected to considerably greater strain, with a consequent increase in the risk of damage caused by uncontrolled oscillations and vibrations.
A particular problem arises when the drill bit hits a formation that is difficult to penetrate, and jams. The drill string is turned by torque from the drilling machine on the surface, and the string builds up energy which is released when the drill suddenly breaks loose. All the stored energy is released through uncontrolled rotation, and the lower part of the drill string may reach extreme rotational speeds that can cause damage to the drilling equipment. Today's controlled drilling systems include a lot of electromechanical equipment that is especially susceptible to damage when subjected to this type of strain.
In relation to prior art, the object of the invention is to provide a solution that reduces the risk of the drill bit getting jammed, and of accumulated energy stored as torque in the drill string being released in the form of uncontrolled rotation.
This is achieved in accordance with the invention, by a dynamic damper being installed in the drill string, above the measuring equipment used for directional control. This damper consists of an inner cylindrical string section with threads that connect this to the upper section of the drill string, which in turn is connected to the rotary machine on the surface. An outer cylindrical string section is supported concentrically on the inner string section and connected to a lower section of the drill string towards the drill bit, through a threaded connection. The outer and inner string sections are engaged through a spiral trapezoidal threaded connection, so that relative rotation between the string sections will cause a relative axial movement between the two parts. A spring is disposed between the outer and inner string sections and pre-tensioned, so that axial movement between the outer and inner string sections occurs only when axial force and moment or a combination of these exceed a predetermined value. Externally of the outer string section there is provided a cylindrical jacket connected to the inner string section through a threaded connection, such that the jacket protects the outer and inner string sections while at the same time constituting a limitation for the axial movement between the outer and inner string sections.
Between the outer and inner string sections there are two volumes filled with oil and interconnected in a manner such that axial movement will cause forced displacement of liquid from one volume to the next through narrow passages. This has an intended dynamic damping effect on the movement.
When the present invention is installed in a drill string, torque caused by incipient locking of the drill bit will effect relative rotation between the outer and inner string sections when the moment exceeds a selected spring tension. This will result in an axial movement that lifts and loosens the drill bit from the bottom. When the drill bit comes loose, the moment is reduced and the spring will again push the drill bit towards the bottom of the borehole, thus generating torque resistance that prevents the accumulated torque in the drill string from “spinning” out of control.
The invention will now be explained in greater detail in connection with the description of an embodiment and with reference to the enclosed drawings, in which:
In the drawings, reference number 1 denotes a known drill string where the dynamic damper has been installed and is referred to by reference number 2. The instrumentation section for directional control 3 is installed in an extension of the damper, towards the drill bit, while the extension of part 3 holds stabilizers nibs 4 and drill bit 5.
The torque and the axial force transferred to the damper are indicated by reference numbers 8 and 7. The end piece 6 attached to the drill string with a threaded connection transfers the forces to an inner string section 12.
The inner and outer string sections are engaged through helical threads 10, such that relative rotation of these parts will entail relative axial movement between the parts. A torsional spring 9 stops against the end piece 6 on the inner string section 12 and against the outer string section 11. The spring forces the outer string section 11 to stop against the shoulder 22 of outer jacket 21. Thus the outer string section 11 will be pre-tensioned between the spring 9 and the shoulder 22 in a manner such that the torque 8 combined with axial force 7 must exceed a given value before relative torsion between the outer and inner string sections will occur, causing the intended axial movement between these sections.
The cavity formed between the two string sections and the jacket 21 is filled with oil that is kept in place with respect to the surroundings by means of seals 13 and 14. Volume 17 and volume 16 around the spring 9 are interconnected through narrow bores 18, so as to bring about an intended damping effect on the axial movement.
A central bore 19 for drill mud passes through the inner and outer string sections.
In order to log the performance of the damper, a sensor 20 is provided to register and record data on oil pressure and spring force from the spring 9. These data can then be read when the drill string is retrieved, and will give information about the performance of the damper.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/NO03/00121 | 4/14/2003 | WO | 00 | 9/12/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/090278 | 10/21/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3871193 | Young | Mar 1975 | A |
3963228 | Karle | Jun 1976 | A |
4133516 | Jurgens | Jan 1979 | A |
4276947 | Hebel | Jul 1981 | A |
4323128 | Young | Apr 1982 | A |
4394884 | Skipper | Jul 1983 | A |
4434863 | Garrett | Mar 1984 | A |
4439167 | Bishop et al. | Mar 1984 | A |
4443206 | Teng | Apr 1984 | A |
4466496 | Jones | Aug 1984 | A |
4779852 | Wassell | Oct 1988 | A |
4901806 | Forrest | Feb 1990 | A |
5323852 | Cornette et al. | Jun 1994 | A |
6308940 | Anderson | Oct 2001 | B1 |
20010045300 | Fincher et al. | Nov 2001 | A1 |
20040129457 | McNeilly | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
0 065 601 | Dec 1982 | EP |
2339223 | Oct 2001 | GB |
WO 9840600 | Sep 1998 | WO |
WO 9840600 | Sep 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20060185905 A1 | Aug 2006 | US |