The invention is directed to a damping element having a generally cylindrical flexible element with dynamically changing damping characteristics.
Damping elements that can be used, for example, as a connecting element between two adjacent pedicle screws within a fixing device for the spinal column are known. Such known damping elements comprise essentially two axially external longitudinal connecting elements and a part provided between them, that is made from a material having a greater elastic deformability than the external connecting elements. A disadvantage of this known damping element is that the spring characteristics of the middle, elastic part is determined by the geometry and the choice of material.
The object of the invention is to produce a damping element with progressive spring characteristics, the progression of which can be selected.
In particular:
The damping element has a flexible spring element and a clamping sleeve inserted into the spring element. The dimension X between an internal wall of the flexible element and the front end of a clamping sleeve is preferably between 0-2 mm. By virtue of this, the spring travel of the spring element can be set with the spring characteristics of f1. As soon as the spring element is axially compressed by the dimension X, the front end of the clamping sleeve, introduced into the hollow space of the spring element, abuts against the face of the hollow space, so that during a further axial compression of the spring element the end wall in the hollow space of the spring element will be deformed and thus a greater spring characteristics f2 will prevail.
The flexible element is made preferably from an elastomer, whereas the clamping sleeve is manufactured preferably from a metallic material, particularly from titanium.
In another embodiment, the front end of the clamping sleeve has a convex construction. Spring characteristics f2 can be influenced by the shape of the convex face on the front end of the clamping sleeve, so that, for example, by virtue of a flat convex face a stronger progression of the spring characteristics f2 can be achieved than would be the case with a convex face having a greater curvature.
In yet another embodiment, the connecting parts are joined with the spring element rotatably and axially form-locked. For this purpose the connecting parts preferably have tabs on their faces, directed towards the spring element, and the tabs could be cast into the ends of the spring element.
In a further embodiment, the connecting part comprises externally a rod that is coaxial with the longitudinal axis, by virtue of which the damping element can be joined, for example, with a bone anchoring element.
In yet another further embodiment, the second connecting part is constructed as a bushing with a central bore that is coaxial with the longitudinal axis, while the clamping sleeve can pass through the central bore, at least partially. The locking of a rod-shaped longitudinal support in the clamping sleeve is carried out preferably by wedging an internal taper provided in the central bore of the bushing into a complementary external taper on the clamping sleeve. For the purpose of accepting a rod-shaped longitudinal support of an osteosynthetic stabilizing device, the clamping sleeve has a coaxial blind hole open at the rear end.
In another embodiment, the radial elastic deformability of the clamping sleeve is achieved by at least one slot radially penetrating the wall of the clamping sleeve. The compression of the clamping sleeve is carried out by a thread provided on the bushing, over which a locking means, preferably constructed as a nut, can be screwed.
The detailed description will be better understood in conjunction with the accompanying drawings, in which like reference characters represent like elements as follows:
The hollow body-shaped connecting part 5 is constructed as a hollow cylindrical bushing 21 and has an outside diameter corresponding to that of the elastic middle part 2. The longitudinal connecting part 4 comprises axially externally a cylindrical rod 12 and a flange 11 bordering the elastic middle part 2, the outside diameter of the flange corresponding approximately to that of the elastic middle part 2. The hollow body-shaped connecting part 5 has a first face 7 which is directed towards the elastic middle part 2 and is perpendicular to the longitudinal axis 3. Similarly to that, the flange 11 has a second face 6 which is directed towards the elastic middle part 2 and is perpendicular to the longitudinal axis 3.
The faces 6, 7 on the connecting parts 4, 5, directed towards the elastic middle part 2, are provided with tabs 8, which are arranged circumferentially on a circle concentrically with the longitudinal axis 3. The tabs 8 are cast during the manufacture of the longitudinal support 1 into the external ends 9, 10 of the elastic middle part 2, so that an axial and rotational form-locking is produced between the elastic middle part 2 and the axially external connecting parts 4, 5.
The elastic middle part 2 is in this case cylindrical and comprises a flexible spring element 20 that is coaxial with the longitudinal axis 1 with an equally coaxial hollow space 13 and a clamping sleeve 15 coaxially arranged in the hollow space 13. The hollow space 13 is axially open towards the hollow body-shaped connecting part 5 and enclosed towards the longitudinal connecting part 4 with an end wall 14 that is perpendicular to the longitudinal axis 3.
The clamping sleeve 15 can be axially introduced into the central bore 16 in the hollow body-shaped connecting part 5 as well as the hollow space 13. In the embodiment illustrated here the clamping sleeve 15 has at its front end a convex face 18 directed towards the end wall 14 of the hollow space 13, the convex face being in the non-deformed state of the elastic middle part 2 at an axial distance of X from the end wall 14 of the hollow space 13 (
The hollow cylindrical connecting part 5 is made in this case from two parts and comprises a bushing 21 that on its external end 23 has a thread 22. The bushing 21 has a central bore 16 that is coaxial with the longitudinal axis 3, while the central bore 16 expands into an internal taper 25 towards the external end 23 of the bushing 21. The diameter of the central bore 16 is so dimensioned, that the clamping sleeve 15 can be introduced into the central bore 16. On its rear end 24 the clamping sleeve 15 has an external taper 26, that can be wedged into the internal taper 25 in the central bore 16 of the bushing 21. The clamping sleeve 15 has a coaxial blind hole 19 that is open at the rear end 24, into which a rod-shaped longitudinal support (not illustrated) can be introduced from the rear end 24. Furthermore, the rear end 24 of the clamping sleeve 15 has at least one slot 27 that radially penetrates the wall of the inner spring element 15, so that when the external taper 26 is pressed into the internal taper 25 the rear end 24 of the clamping sleeve 15 is radially compressed and a rod-shaped longitudinal support, introduced into the blind hole 19, can be secured. The axial displacement of the clamping sleeve 15 relative to the spring element 20 is carried out by locking or fastening means 40, which is constructed in this case as a nut 28 that can be screwed onto the bushing 21 via the thread 22. The nut 28 has a coaxial bore 29 with an inside thread 30 and an axially external constriction 31. When the nut 28 is screwed on the external end 23 of the bushing 21 via the thread 22, the rear end 24 of the clamping sleeve 15 will abut against the shoulder 32 formed by the constriction 31, so that during further tightening of the nut 28 the clamping sleeve 15 is radially compressed.
This is a continuation of International Patent Application No. PCT/CH2003/00649, filed Sep. 29, 2003, the entire contents of which are incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
5011497 | Persson et al. | Apr 1991 | A |
5375823 | Navas | Dec 1994 | A |
5540688 | Navas | Jul 1996 | A |
5562737 | Graf | Oct 1996 | A |
5645599 | Samani | Jul 1997 | A |
6241730 | Alby | Jun 2001 | B1 |
6267764 | Elberg | Jul 2001 | B1 |
6293949 | Justis et al. | Sep 2001 | B1 |
6440169 | Elberg et al. | Aug 2002 | B1 |
6554831 | Rivard et al. | Apr 2003 | B1 |
6761719 | Justis et al. | Jul 2004 | B2 |
20040049189 | Le Couedic et al. | Mar 2004 | A1 |
20040049190 | Biedermann et al. | Mar 2004 | A1 |
20040267260 | Mack et al. | Dec 2004 | A1 |
20050049708 | Atkinson et al. | Mar 2005 | A1 |
20050065516 | Jahng | Mar 2005 | A1 |
20050165396 | Fortin et al. | Jul 2005 | A1 |
20050171539 | Braun et al. | Aug 2005 | A1 |
20050171543 | Timm et al. | Aug 2005 | A1 |
20050177156 | Timm et al. | Aug 2005 | A1 |
20050177157 | Jahng | Aug 2005 | A1 |
20050182409 | Callahan et al. | Aug 2005 | A1 |
20050203513 | Jahng et al. | Sep 2005 | A1 |
20050261685 | Fortin et al. | Nov 2005 | A1 |
20050288670 | Panjabi et al. | Dec 2005 | A1 |
20050288672 | Ferree | Dec 2005 | A1 |
20060149238 | Sherman et al. | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
88 2 01056 | Aug 1988 | CN |
2 774 581 | Aug 1999 | FR |
2 812 186 | Feb 2002 | FR |
2 827 498 | Jan 2003 | FR |
WO 0207622 | Jan 2002 | WO |
WO 2006037384 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060264940 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CH03/00649 | Sep 2003 | US |
Child | 11393485 | US |