The present invention relates to sigma-delta converters, including those adapted for use in audio applications.
Idle-channel tones exist in sigma-delta converters. In audio applications, the idle-channel tones can cause unpleasant noise detectable by the human ear. Dithering is the most popular method to reduce the idle-channel tones. One effective dithering method is to add a noise-shaped random series, called dither, in such a way that the dither transfer function is the same as the quantization noise transfer function. A sigma-delta modulator having generalized conventional dither is shown at 10 in
From literature and simulations, the dithering amplitude must be big enough to remove the idle-channel tones. For example, an 1-bit quantizer, δ/Δ>0.5, where δ is the peak-to-peak range of the dither, and Δ is the quantizer interval. When a fixed-amplitude of dither is applied all the time, the dithering is referred as static dithering. When adding a static dither to a modulator, the noise and distortion characteristics for large input signals are adversely affected. Noise floor of the sigma-delta modulator 10 may increase by several decibels. With static dither, when the input signal is approaching full scale, sigma-delta modulators have reduced dynamic range or dynamic range penalty. To avoid this effect, a dynamic dither that decreases its power when input level increases is preferred.
The present invention achieves technical advantages as a sigma-delta converter having dynamic dithering that reduces or removes idle-channel tones and increases linearity of the converter. The dither is differentiated in multiple orders before being applied to the quantizer of the converter. The differentiation order and the amplitude of the dither are determined dynamically based on the input signal amplitude in order to obtain the most effectiveness of dithering. The dynamic dither can be used in both analog-to-digital and digital-to-analog converters.
Although a dynamic dither with uniformly distributed pseudorandom numbers is good enough for many applications, the present invention achieves technical advantages by providing more randomness of the pseudorandom numbers obtained by differentiating the uniformly distributed pseudorandom numbers. At the same time, this differentiation performs a noise shaping function (high-pass) to the dither, thus reducing the dither's noise power in signal-band. Thus, the differentiated dither generates an even better signal to noise ratio when the modulator is idle or with very small input amplitudes. The differentiation order of the dither can also be dynamically adjusted in order to get optimal signal-to-noise performance.
Referring to
Based on the input level of the digital input signal at input 36, the peak detector 34 sends a signal to a variable gain amplifier 40 to responsively set the dither signal d(n) amplitude as a function thereof. Advantageously, variable gain amplifier 40 also sends a signal 42 to a multiplexer 44 to responsively choose and establish a differentiation order. Every differentiator 46 has a transfer function of (1−z−1)*0.5, which makes its output have the same peak-to-peak range as its input. Differentiator—1's output connects to the input of the Differentiator—2, the output of Differentiator—2 connects to the input of the next Differentiator, and so on. All of the different outputs of differentiators 46 are connected to the multiplexer 44. The multiplexer's output d′(n) is added into the output of the filter 48, as shown. If the converter 30 is a DAC, then output d′(n) is a digital value. If the converter 30 is an ADC, then output d′(n) is an analog signal. The quantizer Q generates the converter output at 50, which output 50 is fed back to the converter input to form a negative-feedback loop. An unlimited number of differentiators may be used in theory, but for minimal cost of silicon, a limited number of differentiators or differentiation order is chosen as desired. The number of the differentiation order, and the variable gain, are optimized given the order of the sigma-delta converter and the quantizer architecture.
To simulate the dynamic dithering shown in
Referring now to Table 2 below there is shown a dynamic differentiation order and gain based on input amplitude according to one embodiment of the present invention.
Since higher SNDR can be obtained at low input levels when the differentiation order is set high, the differentiation order can be always set to high as in Table 3.
The differentiation order can also be adjusted gradually from high to low as in Table 4.
Though the invention has been described with respect to a specific preferred embodiment, many variations and modifications will become apparent to those skilled in the art upon reading the present application. It is therefore the intention that the appended claims be interpreted as broadly as possible in view of the prior art to include all such variations and modifications.
Number | Name | Date | Kind |
---|---|---|---|
5144308 | Norsworthy | Sep 1992 | A |
5905453 | Kase | May 1999 | A |
6175321 | Frannhagen et al. | Jan 2001 | B1 |
6268814 | Kolsrud | Jul 2001 | B1 |
6326911 | Gomez et al. | Dec 2001 | B1 |
6351229 | Wang | Feb 2002 | B1 |
6426714 | Ruha et al. | Jul 2002 | B1 |
6738002 | Ercan et al. | May 2004 | B2 |
20020145550 | Korkala | Oct 2002 | A1 |
20030112163 | Ercan et al. | Jun 2003 | A1 |
20050062626 | Miller | Mar 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060170576 A1 | Aug 2006 | US |