Mobile devices, such as smart phones, are increasingly desired to provide a haptic response to users. Linear resonant actuators (LRAs) are frequently utilized to provide this haptic response. However, depending upon the driving frequency for the LRA, the haptic response of an LRA may be too small for use in a mobile device. Further, the desired characteristics of the haptic response from the LRA may be difficult to achieve. Consequently, an improved mechanism for providing a haptic response, particularly in a mobile device, is desired.
Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.
The invention can be implemented in numerous ways, including as a process; an apparatus; a system; a composition of matter; a computer program product embodied on a computer readable storage medium; and/or a processor, such as a processor configured to execute instructions stored on and/or provided by a memory coupled to the processor. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. In general, the order of the steps of disclosed processes may be altered within the scope of the invention. Unless stated otherwise, a component such as a processor or a memory described as being configured to perform a task may be implemented as a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. As used herein, the term ‘processor’ refers to one or more devices, circuits, and/or processing cores configured to process data, such as computer program instructions.
A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.
Mobile devices, such as smart phones, are increasingly desired to provide a haptic response to users. Linear resonant actuators (LRAs) are frequently utilized to provide this haptic response. An LRA utilizes a spring-mass system having a resonant frequency at or near √{square root over (k/m)}, where k is the stiffness (e.g. Hooke's constant) of the spring and m is the mass attached to the spring. In order to drive the spring-mass system, currents and electromagnetic fields are used. In some cases, the mass is magnetic. The mass vibrates in response to a nearby changing current, for example a current driven through a voice coil. Alternatively, a current may be driven through a spring wound around a magnetic core. In such cases, the spring vibrates, which causes the mass to move. If the LRA is driven at or near the resonant frequency, the amplitude of displacement of the mass may be sufficient to provide the desired haptic response. If the LRA is not driven at resonance, the mass may exhibit little movement and a small haptic response may be output. Thus, the haptic response of an LRA may be too small for use in a mobile device.
The LRA is also generally desired to output a particular haptic response profile. For example, the haptic response may be desired to have an amplitude versus time profile similar to a square pulse. Such a response may provide the user with the feel of the click of a button. Because of the frequency response of the LRA, however, the input signal used to achieve the desired haptic response may be complicated. For example, an input current pulse that is a square wave generally does not result in a mass displacement versus time that is also a substantially square wave.
To provide a haptic response, the LRA is calibrated. Calibration typically occurs during manufacture of the mobile or other device incorporating the LRA. During this calibration phase, the appropriate and typically complex input signal for the desired haptic response is determined. This input signal is then subsequently used to drive the LRA. Although calibrating the LRA may initially provide the desired haptic response, the appropriate input signal may drift based on aging of the mobile device, add-ons such as mobile device cases, the characteristics of the user and other attributes. Consequently, an improved mechanism for providing a haptic response is desired.
A mechanism for providing a haptic response is described. In some embodiments, a haptic system including an LRA, a receiver and a transmitter is provided. The haptic system may be incorporated into a mobile device or other device for which a haptic response is desired. The LRA has a characteristic frequency (e.g. a resonant frequency) and provides a vibration in response to an input signal. The receiver senses received vibration from the LRA. In some embodiments, the receiver may be a piezoelectric receiver. In some such embodiments, the piezoelectric receiver may also be operated as a touch sensor. The transmitter provides the input signal to the LRA. The receiver is coupled with the transmitter and provides vibrational feedback based on the received vibration. The input signal provided by the transmitter incorporates the vibrational feedback. In some embodiments, the haptic system includes a current sensor and a voltage sensor. The current sensor is coupled with the transmitter and senses a transmitter output current corresponding to the input signal. The voltage sensor is coupled with the transmitter and senses a transmitter output voltage corresponding to the input signal. Feedback for the transmitter includes the vibrational feedback, the transmitter output voltage and the transmitter output current. In some embodiments, a processor is coupled with the receiver, the current sensor and the voltage sensor. The processor provides for the transmitter a driving signal incorporating the feedback. For example, the processor may provide a difference between a desired haptic response and the received vibrations. The current and voltage sensors may be used to prevent the LRA from being overdriven.
A method for providing a haptic response is also described. The method includes sensing a received vibration from an LRA having a characteristic frequency. The LRA provides a vibration in response to an input signal. Feedback for a transmitter is provided. The feedback includes vibrational feedback based on the received vibration. The received vibration(s) may be sensed using a piezoelectric receiver. The transmitter provides the input signal to the LRA. The input signal incorporates the vibrational feedback. This correction of the input signal using vibrational feedback may be carried out dynamically during use in order to generate an input signal that results in the desired vibrations from the LRA and, therefore, the desired haptic response.
In some embodiments, the method includes detecting a user-generated input and initially providing the input signal in response to the user-generated input. In some embodiments, the method includes sensing a transmitter output current corresponding to the input signal and sensing a transmitter output voltage corresponding to the input signal. Providing the feedback for the transmitter may thus include providing the vibrational feedback, providing the transmitter output voltage and providing the transmitter output current. In some embodiments, a driving signal incorporating the feedback is provided to the transmitter.
In operation, transmitter 110 sends an input signal to LRA 120 to drive LRA 120. LRA 120 responds and provides initial output vibrations. The vibrations from LRA 120 propagate through the device in which haptic system 100 is incorporated. Receiver 130 senses received vibrations from LRA 120. In some embodiments, receiver 130 is a piezoelectric receiver. In some such embodiments, piezoelectric receiver 130 may also be operated (e.g. simultaneously) as a touch sensor. When operated as a touch sensor, piezoelectric receiver 130 may be driven by a signal. However, when used in connection with haptic system 100, receiver 130 may be considered to be used as a microphone. In response to a received vibration, receiver 130 provides vibrational feedback (feedback based on the received vibrations) for transmitter 110. More specifically, amplitude of the response, the envelope of the response and the phase may be sensed using receiver 130 and returned as vibrational feedback. In the embodiment shown, receiver 130 provides the vibrational feedback directly to transmitter 110. In other embodiments, the vibrational feedback is processed before being incorporated into a signal provided to transmitter 110. For example, the response of receiver 130 may be proportional to the received vibrations. The feedback provided to transmitter 110 may be based on a difference between the desired haptic response and the received vibrations. This feedback is incorporated into a (new) input signal provided by transmitter 110 to LRA 120. The new input signal should result in (new) haptic response by LRA 120 that is closer to the desired haptic response. Thus, the haptic response of LRA 120 is adjusted based upon the received vibrations at receiver 130 and the desired haptic response. In some embodiments, these adjustments may be performed algorithmically by a linear adaptive filter or equalizer. Consequently, the desired haptic response may be achieved.
In some embodiments, haptic system 100 is used as part of a streamlined calibration mechanism during or after production. Consequently, each mobile device incorporating a haptic system may be individually calibrated. Further, haptic system 100 may be used in real time during actual usage of the corresponding device. In such an embodiment, haptic system 100 may dynamically adjust output of LRA 120 in real time. In such embodiments, haptic system 100 may account for differences in users, cases, wear, temperature and/or other issues that may otherwise reduce the haptic response from what is desired. Thus, using vibrational feedback, haptic system 100 may improve the haptic response in a mobile device.
Haptic system 300 functions in an analogous manner to haptic system 100. Transmitter 310 sends an input signal to LRA 320 to drive LRA 320. Current sensor 340 and voltage sensor 350 sense the current and voltage for the input signal. LRA 320 responds and provides initial output vibrations. The vibrations from LRA 320 propagate through the device in which haptic system 300 is incorporated. Piezoelectric receiver 330 senses received vibrations from LRA 320. In response to a received vibration, piezoelectric receiver 330 provides vibrational feedback (feedback based on the received vibrations) for transmitter 310. The vibrational feedback may simply be a measure of the received vibrations. Thus, piezoelectric receiver 330 functions in an analogous manner to receiver 130. This vibrational feedback is provided to processor 360 and/or other logic (not shown). Processor 360 may operate on the vibrational feedback, for example calculating a difference between the received vibrations and the desired haptic response, which may be input as shown in
Processor 360 also receives from sensors 340 and 350 current and voltage feedback related to the input signal for LRA 320. Feedback from current sensor 340 and voltage sensor 350 may be used to ensure that LRA 320 is not overdriven. For example, processor 360 may limit or reduce the gain on signals input to transmitter 310. Processor 360 provides a new driving signal to transmitter 310. The new driving signal provided to transmitter 310 may be a combination of the previously provided signal, the vibrational feedback (e.g. a difference between the desired haptic response and the received vibrations from piezoelectric receiver 330), and any changes due to the sensed current and voltage. Transmitter 310 then provides a new input signal to LRA 320.
For example,
Thus, haptic system 300 may be used as part of a streamlined calibration mechanism during production and/or in real time during use of the device in which haptic system 300 is incorporated. Consequently, each mobile device incorporating a haptic system may be individually calibrated. Further, haptic system 300 may dynamically adjust output of LRA 320 in real time. In such embodiments, haptic system 300 may account for differences in users, cases, wear, temperature and/or other issues that may otherwise reduce the haptic response from what is desired. Consequently, the haptic response in the device incorporating haptic system 300 may be improved.
User-generated input may be detected, at 602. For example, at 602 a user pressing a portion of the mobile device may be detected. In response, LRA 320 is driven, at 604. This may include transmitter 310 providing a driving signal to LRA 320. Receiver 330 senses received vibrations and provides vibrational feedback, at 606. Current and/or voltage may optionally be sensed by current sensor 340 and voltage sensor 350, at 608. Feedback incorporating the received vibrations and, optionally, sensed current and voltage is provided, at 610. In some embodiments, this feedback is provided to processor 360. The feedback is used to adjust the driving current, at 612. For example, the magnitude, frequency and/or phase may be adjusted for transmitter 310 may be tuned at 612. Similarly, the magnitude, frequency and/or phase (e.g. relative phase) for transmitters 510 may be adjusted at 612. This process continues during operation to provide the desired haptic response. Thus, the haptic response of a device may be improved.
Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.
This application claims priority to U.S. Provisional Patent Application No. 62/962,848 entitled DYNAMIC FEEDBACK FOR HAPTICS filed Jan. 17, 2020 which is incorporated herein by reference for all purposes. This application is a continuation in part of U.S. patent application Ser. No. 16/101,238 entitled PIEZORESISTIVE SENSOR filed Aug. 10, 2018, which is claims priority to U.S. Provisional Patent Application No. 62/545,391 entitled PIEZORESISTIVE SENSOR filed Aug. 14, 2017, both of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3705993 | Grigorovici | Dec 1972 | A |
3912880 | Powter | Oct 1975 | A |
4488000 | Glenn | Dec 1984 | A |
4529959 | Ito | Jul 1985 | A |
4594695 | Garconnat | Jun 1986 | A |
4966150 | Etienne | Oct 1990 | A |
5008497 | Asher | Apr 1991 | A |
5074152 | Ellner | Dec 1991 | A |
5233873 | Mozgowiec | Aug 1993 | A |
5334805 | Knowles | Aug 1994 | A |
5451723 | Huang | Sep 1995 | A |
5563849 | Hall | Oct 1996 | A |
5573077 | Knowles | Nov 1996 | A |
5591945 | Kent | Jan 1997 | A |
5635643 | Maji | Jun 1997 | A |
5637839 | Yamaguchi | Jun 1997 | A |
5638093 | Takahashi | Jun 1997 | A |
5708460 | Young | Jan 1998 | A |
5739479 | Davis-Cannon | Apr 1998 | A |
5784054 | Armstrong | Jul 1998 | A |
5854450 | Kent | Dec 1998 | A |
5883457 | Rinde | Mar 1999 | A |
5912659 | Rutledge | Jun 1999 | A |
6091406 | Kambara | Jul 2000 | A |
6127629 | Sooriakumar | Oct 2000 | A |
6211772 | Murakami | Apr 2001 | B1 |
6232960 | Goldman | May 2001 | B1 |
6236391 | Kent | May 2001 | B1 |
6254105 | Rinde | Jul 2001 | B1 |
6262946 | Khuri-Yakub | Jul 2001 | B1 |
6307942 | Azima | Oct 2001 | B1 |
6473075 | Gomes | Oct 2002 | B1 |
6492979 | Kent | Dec 2002 | B1 |
6498603 | Wallace | Dec 2002 | B1 |
6507772 | Gomes | Jan 2003 | B1 |
6535147 | Masters | Mar 2003 | B1 |
6567077 | Inoue | May 2003 | B2 |
6630929 | Adler | Oct 2003 | B1 |
6633280 | Matsumoto | Oct 2003 | B1 |
6636201 | Gomes | Oct 2003 | B1 |
6788296 | Ikeda | Sep 2004 | B2 |
6798403 | Kitada | Sep 2004 | B2 |
6856259 | Sharp | Feb 2005 | B1 |
6891527 | Chapman | May 2005 | B1 |
6922642 | Sullivan | Jul 2005 | B2 |
6948371 | Tanaka | Sep 2005 | B2 |
7000474 | Kent | Feb 2006 | B2 |
7006081 | Kent | Feb 2006 | B2 |
7116315 | Sharp | Oct 2006 | B2 |
7119800 | Kent | Oct 2006 | B2 |
7187369 | Kanbara | Mar 2007 | B1 |
7193617 | Kanbara | Mar 2007 | B1 |
7204148 | Tanaka | Apr 2007 | B2 |
7218248 | Kong | May 2007 | B2 |
7274358 | Kent | Sep 2007 | B2 |
RE39881 | Flowers | Oct 2007 | E |
7315336 | North | Jan 2008 | B2 |
7345677 | Ing | Mar 2008 | B2 |
7411581 | Hardie-Bick | Aug 2008 | B2 |
7456825 | Kent | Nov 2008 | B2 |
7511711 | Ing | Mar 2009 | B2 |
7545365 | Kent | Jun 2009 | B2 |
7554246 | Maruyama | Jun 2009 | B2 |
7583255 | Ing | Sep 2009 | B2 |
7649807 | Ing | Jan 2010 | B2 |
7683894 | Kent | Mar 2010 | B2 |
7880721 | Suzuki | Feb 2011 | B2 |
7920133 | Tsumura | Apr 2011 | B2 |
8059107 | Hill et al. | Nov 2011 | B2 |
8085124 | Ing | Dec 2011 | B2 |
8156809 | Tierling | Apr 2012 | B2 |
8194051 | Wu | Jun 2012 | B2 |
8228121 | Benhamouda | Jul 2012 | B2 |
8237676 | Duheille | Aug 2012 | B2 |
8319752 | Hardie-Bick | Nov 2012 | B2 |
8325159 | Kent | Dec 2012 | B2 |
8358277 | Mosby | Jan 2013 | B2 |
8378974 | Aroyan | Feb 2013 | B2 |
8392486 | Ing | Mar 2013 | B2 |
8418083 | Lundy | Apr 2013 | B1 |
8427423 | Tsumura | Apr 2013 | B2 |
8436806 | Almalki | May 2013 | B2 |
8436808 | Chapman | May 2013 | B2 |
8451231 | Choo | May 2013 | B2 |
8493332 | D'Souza | Jul 2013 | B2 |
8519982 | Camp, Jr. | Aug 2013 | B2 |
8576202 | Tanaka | Nov 2013 | B2 |
8619063 | Chaine | Dec 2013 | B2 |
8638318 | Gao | Jan 2014 | B2 |
8648815 | Kent | Feb 2014 | B2 |
8659579 | Nadjar | Feb 2014 | B2 |
8670290 | Aklil | Mar 2014 | B2 |
8681128 | Scharff | Mar 2014 | B2 |
8692809 | D'Souza | Apr 2014 | B2 |
8692810 | Ing | Apr 2014 | B2 |
8692812 | Hecht | Apr 2014 | B2 |
8730213 | D'Souza | May 2014 | B2 |
8749517 | Aklil | Jun 2014 | B2 |
8787599 | Grattan | Jul 2014 | B2 |
8791899 | Usey | Jul 2014 | B1 |
8823685 | Scharff | Sep 2014 | B2 |
8854339 | Kent | Oct 2014 | B2 |
8890852 | Aroyan | Nov 2014 | B2 |
8896429 | Chaine | Nov 2014 | B2 |
8896564 | Scharff | Nov 2014 | B2 |
8917249 | Buuck | Dec 2014 | B1 |
8941624 | Kent | Jan 2015 | B2 |
8946973 | Pelletier | Feb 2015 | B2 |
8994696 | Berget | Mar 2015 | B2 |
9030436 | Ikeda | May 2015 | B2 |
9041662 | Harris | May 2015 | B2 |
9046959 | Schevin | Jun 2015 | B2 |
9046966 | D'Souza | Jun 2015 | B2 |
9058071 | Esteve | Jun 2015 | B2 |
9099971 | Lynn | Aug 2015 | B2 |
9189109 | Sheng | Nov 2015 | B2 |
9250742 | Usey | Feb 2016 | B1 |
9348468 | Altekar | May 2016 | B2 |
9354731 | Pance | May 2016 | B1 |
9477350 | Sheng | Oct 2016 | B2 |
9594450 | Lynn | Mar 2017 | B2 |
9851848 | Pellikka | Dec 2017 | B2 |
9870033 | Browning | Jan 2018 | B1 |
9947186 | Macours | Apr 2018 | B2 |
9983718 | Sheng | May 2018 | B2 |
10209825 | Sheng | Feb 2019 | B2 |
10466836 | Sheng | Nov 2019 | B2 |
10795417 | Bok | Oct 2020 | B2 |
10860132 | Sheng | Dec 2020 | B2 |
11209916 | Zimmermann | Dec 2021 | B1 |
20010050677 | Tosaya | Dec 2001 | A1 |
20020036621 | Liu | Mar 2002 | A1 |
20020047833 | Kitada | Apr 2002 | A1 |
20020185981 | Dietz | Dec 2002 | A1 |
20030161484 | Kanamori | Aug 2003 | A1 |
20030164820 | Kent | Sep 2003 | A1 |
20030189745 | Kikuchi | Oct 2003 | A1 |
20030197691 | Fujiwara | Oct 2003 | A1 |
20030206162 | Roberts | Nov 2003 | A1 |
20040125079 | Kaneko | Jul 2004 | A1 |
20040133366 | Sullivan | Jul 2004 | A1 |
20040160421 | Sullivan | Aug 2004 | A1 |
20040183788 | Kurashima | Sep 2004 | A1 |
20040203594 | Kotzin | Oct 2004 | A1 |
20040239649 | Ludtke | Dec 2004 | A1 |
20040246239 | Knowles | Dec 2004 | A1 |
20050063553 | Ozawa | Mar 2005 | A1 |
20050146511 | Hill | Jul 2005 | A1 |
20050146512 | Hill | Jul 2005 | A1 |
20050174338 | Ing | Aug 2005 | A1 |
20050226455 | Aubauer | Oct 2005 | A1 |
20050229713 | Niblock | Oct 2005 | A1 |
20050248540 | Newton | Nov 2005 | A1 |
20050248547 | Kent | Nov 2005 | A1 |
20060071912 | Hill | Apr 2006 | A1 |
20060109261 | Chou | May 2006 | A1 |
20060114233 | Radivojevic | Jun 2006 | A1 |
20060132315 | Kurtz | Jun 2006 | A1 |
20060139339 | Pechman | Jun 2006 | A1 |
20060139340 | Geaghan | Jun 2006 | A1 |
20060152499 | Roberts | Jul 2006 | A1 |
20060166681 | Lohbihler | Jul 2006 | A1 |
20060197753 | Hotelling | Sep 2006 | A1 |
20060262088 | Baldo | Nov 2006 | A1 |
20060262104 | Sullivan | Nov 2006 | A1 |
20060279548 | Geaghan | Dec 2006 | A1 |
20060284841 | Hong | Dec 2006 | A1 |
20070019825 | Marumoto | Jan 2007 | A1 |
20070109274 | Reynolds | May 2007 | A1 |
20070126716 | Haverly | Jun 2007 | A1 |
20070165009 | Sakurai | Jul 2007 | A1 |
20070171212 | Sakurai | Jul 2007 | A1 |
20070183520 | Kim | Aug 2007 | A1 |
20070211022 | Boillot | Sep 2007 | A1 |
20070214462 | Boillot | Sep 2007 | A1 |
20070229479 | Choo | Oct 2007 | A1 |
20070236450 | Colgate | Oct 2007 | A1 |
20070240913 | Schermerhorn | Oct 2007 | A1 |
20070278896 | Sarkar | Dec 2007 | A1 |
20070279398 | Tsumura | Dec 2007 | A1 |
20080018618 | Hill | Jan 2008 | A1 |
20080030479 | Lowles | Feb 2008 | A1 |
20080062151 | Kent | Mar 2008 | A1 |
20080081671 | Wang | Apr 2008 | A1 |
20080105470 | Van De Ven | May 2008 | A1 |
20080111788 | Rosenberg | May 2008 | A1 |
20080169132 | Ding | Jul 2008 | A1 |
20080174565 | Chang | Jul 2008 | A1 |
20080198145 | Knowles | Aug 2008 | A1 |
20080231612 | Hill | Sep 2008 | A1 |
20080259030 | Holtzman | Oct 2008 | A1 |
20080266266 | Kent | Oct 2008 | A1 |
20080284755 | Hardie-Bick | Nov 2008 | A1 |
20090009488 | D'Souza | Jan 2009 | A1 |
20090103853 | Daniel | Apr 2009 | A1 |
20090116661 | Hetherington | May 2009 | A1 |
20090146533 | Leskinen | Jun 2009 | A1 |
20090160728 | Emrick | Jun 2009 | A1 |
20090167704 | Terlizzi | Jul 2009 | A1 |
20090237372 | Kim | Sep 2009 | A1 |
20090271004 | Zecchin | Oct 2009 | A1 |
20090273583 | Norhammar | Nov 2009 | A1 |
20090309853 | Hildebrandt | Dec 2009 | A1 |
20090315848 | Ku | Dec 2009 | A1 |
20100026667 | Bernstein | Feb 2010 | A1 |
20100027810 | Marton | Feb 2010 | A1 |
20100044121 | Simon | Feb 2010 | A1 |
20100045635 | Soo | Feb 2010 | A1 |
20100049452 | Suginouchi | Feb 2010 | A1 |
20100079264 | Hoellwarth | Apr 2010 | A1 |
20100117933 | Gothard | May 2010 | A1 |
20100117993 | Kent | May 2010 | A1 |
20100123686 | Klinghult | May 2010 | A1 |
20100126273 | Lim | May 2010 | A1 |
20100127967 | Graumann | May 2010 | A1 |
20100141408 | Doy | Jun 2010 | A1 |
20100156818 | Burrough | Jun 2010 | A1 |
20100165215 | Shim | Jul 2010 | A1 |
20100185989 | Shiplacoff | Jul 2010 | A1 |
20100188356 | Vu | Jul 2010 | A1 |
20100245265 | Sato | Sep 2010 | A1 |
20100269040 | Lee | Oct 2010 | A1 |
20100277431 | Klinghult | Nov 2010 | A1 |
20100283759 | Iso | Nov 2010 | A1 |
20100309139 | Ng | Dec 2010 | A1 |
20100311337 | Riviere | Dec 2010 | A1 |
20100315373 | Steinhauser | Dec 2010 | A1 |
20100321312 | Han | Dec 2010 | A1 |
20100321325 | Springer | Dec 2010 | A1 |
20100321337 | Liao | Dec 2010 | A1 |
20110001707 | Faubert | Jan 2011 | A1 |
20110001708 | Sleeman | Jan 2011 | A1 |
20110012717 | Pance | Jan 2011 | A1 |
20110013785 | Kim | Jan 2011 | A1 |
20110018695 | Bells | Jan 2011 | A1 |
20110025649 | Sheikhzadeh Nadjar | Feb 2011 | A1 |
20110042152 | Wu | Feb 2011 | A1 |
20110057903 | Yamano | Mar 2011 | A1 |
20110063228 | St Pierre | Mar 2011 | A1 |
20110080350 | Almalki | Apr 2011 | A1 |
20110084912 | Almalki | Apr 2011 | A1 |
20110084937 | Chang | Apr 2011 | A1 |
20110141052 | Bernstein | Jun 2011 | A1 |
20110155479 | Oda | Jun 2011 | A1 |
20110156967 | Oh | Jun 2011 | A1 |
20110167391 | Momeyer | Jul 2011 | A1 |
20110175813 | Sarwar | Jul 2011 | A1 |
20110182443 | Gant | Jul 2011 | A1 |
20110191680 | Chae | Aug 2011 | A1 |
20110199342 | Vartanian | Aug 2011 | A1 |
20110213223 | Kruglick | Sep 2011 | A1 |
20110222225 | Kessler | Sep 2011 | A1 |
20110222372 | O'Donovan | Sep 2011 | A1 |
20110225549 | Kim | Sep 2011 | A1 |
20110234545 | Tanaka | Sep 2011 | A1 |
20110248978 | Koyama | Oct 2011 | A1 |
20110260988 | Colgate | Oct 2011 | A1 |
20110260990 | Yassir | Oct 2011 | A1 |
20110279382 | Pertuit | Nov 2011 | A1 |
20110298670 | Jung | Dec 2011 | A1 |
20110300845 | Lee | Dec 2011 | A1 |
20110304577 | Brown | Dec 2011 | A1 |
20110316784 | Bisutti | Dec 2011 | A1 |
20110316790 | Ollila | Dec 2011 | A1 |
20120001875 | Li | Jan 2012 | A1 |
20120002820 | Leichter | Jan 2012 | A1 |
20120007837 | Kent | Jan 2012 | A1 |
20120026114 | Lee | Feb 2012 | A1 |
20120030628 | Lee | Feb 2012 | A1 |
20120032928 | Alberth | Feb 2012 | A1 |
20120050230 | Harris | Mar 2012 | A1 |
20120062564 | Miyashita | Mar 2012 | A1 |
20120068939 | Pemberton-Pigott | Mar 2012 | A1 |
20120068970 | Pemberton-Pigott | Mar 2012 | A1 |
20120081337 | Camp, Jr. | Apr 2012 | A1 |
20120088548 | Yun | Apr 2012 | A1 |
20120092964 | Badiey | Apr 2012 | A1 |
20120104901 | Jiang | May 2012 | A1 |
20120120031 | Thuillier | May 2012 | A1 |
20120126962 | Ujii | May 2012 | A1 |
20120127088 | Pance | May 2012 | A1 |
20120140954 | Ranta | Jun 2012 | A1 |
20120144293 | Kim | Jun 2012 | A1 |
20120149437 | Zurek | Jun 2012 | A1 |
20120188194 | Sulem | Jul 2012 | A1 |
20120188889 | Sambhwani | Jul 2012 | A1 |
20120194466 | Posamentier | Aug 2012 | A1 |
20120194483 | Deluca | Aug 2012 | A1 |
20120200517 | Nikolovski | Aug 2012 | A1 |
20120206154 | Pant | Aug 2012 | A1 |
20120229407 | Harris | Sep 2012 | A1 |
20120232834 | Roche | Sep 2012 | A1 |
20120235866 | Kim | Sep 2012 | A1 |
20120242603 | Engelhardt | Sep 2012 | A1 |
20120270605 | Garrone | Oct 2012 | A1 |
20120272089 | Hatfield | Oct 2012 | A1 |
20120278490 | Sennett | Nov 2012 | A1 |
20120280944 | St Pierre | Nov 2012 | A1 |
20120282944 | Zhao | Nov 2012 | A1 |
20120300956 | Horii | Nov 2012 | A1 |
20120306823 | Pance | Dec 2012 | A1 |
20130011144 | Amiri Farahani | Jan 2013 | A1 |
20130050133 | Brakensiek | Feb 2013 | A1 |
20130050154 | Guy | Feb 2013 | A1 |
20130057491 | Chu | Mar 2013 | A1 |
20130059532 | Mahanfar | Mar 2013 | A1 |
20130082970 | Frey | Apr 2013 | A1 |
20130127755 | Lynn | May 2013 | A1 |
20130141364 | Lynn | Jun 2013 | A1 |
20130141365 | Lynn | Jun 2013 | A1 |
20130147768 | Aroyan | Jun 2013 | A1 |
20130194208 | Miyanaka | Aug 2013 | A1 |
20130222274 | Mori | Aug 2013 | A1 |
20130234995 | Son | Sep 2013 | A1 |
20130249831 | Harris | Sep 2013 | A1 |
20140022189 | Sheng | Jan 2014 | A1 |
20140028576 | Shahparnia | Jan 2014 | A1 |
20140078070 | Armstrong-Muntner | Mar 2014 | A1 |
20140078086 | Bledsoe | Mar 2014 | A1 |
20140078109 | Armstrong-Muntner | Mar 2014 | A1 |
20140078112 | Sheng | Mar 2014 | A1 |
20140185834 | Frömel | Jul 2014 | A1 |
20140247230 | Sheng | Sep 2014 | A1 |
20140247250 | Sheng | Sep 2014 | A1 |
20140317722 | Tartz | Oct 2014 | A1 |
20140355376 | Schneider | Dec 2014 | A1 |
20140362055 | Altekar | Dec 2014 | A1 |
20140368464 | Singnurkar | Dec 2014 | A1 |
20150002415 | Lee | Jan 2015 | A1 |
20150002452 | Klinghult | Jan 2015 | A1 |
20150009185 | Shi | Jan 2015 | A1 |
20150091859 | Rosenberg | Apr 2015 | A1 |
20150109239 | Mao | Apr 2015 | A1 |
20150199035 | Chang | Jul 2015 | A1 |
20150253895 | Kim | Sep 2015 | A1 |
20150268785 | Lynn | Sep 2015 | A1 |
20150277617 | Gwin | Oct 2015 | A1 |
20150346850 | Vandermeijden | Dec 2015 | A1 |
20150366504 | Connor | Dec 2015 | A1 |
20160012348 | Johnson | Jan 2016 | A1 |
20160048266 | Smith | Feb 2016 | A1 |
20160062517 | Meyer | Mar 2016 | A1 |
20160070404 | Kerr | Mar 2016 | A1 |
20160091308 | Oliaei | Mar 2016 | A1 |
20160139717 | Filiz | May 2016 | A1 |
20160162044 | Ciou | Jun 2016 | A1 |
20160179249 | Ballan | Jun 2016 | A1 |
20160209944 | Shim | Jul 2016 | A1 |
20160216842 | Mölne | Jul 2016 | A1 |
20160246396 | Dickinson | Aug 2016 | A1 |
20160259465 | Agarwal | Sep 2016 | A1 |
20160282312 | Cable | Sep 2016 | A1 |
20160282965 | Jensen | Sep 2016 | A1 |
20160306481 | Filiz | Oct 2016 | A1 |
20160349913 | Lynn | Dec 2016 | A1 |
20160349922 | Choi | Dec 2016 | A1 |
20170010697 | Jiang | Jan 2017 | A1 |
20170020402 | Rogers | Jan 2017 | A1 |
20170024055 | Schwarz | Jan 2017 | A1 |
20170083164 | Sheng | Mar 2017 | A1 |
20170098115 | Wickboldt | Apr 2017 | A1 |
20170315618 | Ullrich | Nov 2017 | A1 |
20170322644 | Sahar | Nov 2017 | A1 |
20180032211 | King | Feb 2018 | A1 |
20180054176 | Kim | Feb 2018 | A1 |
20180067612 | Smith | Mar 2018 | A1 |
20180074638 | Chiang | Mar 2018 | A1 |
20180129333 | Zheng | May 2018 | A1 |
20180136770 | Kwong | May 2018 | A1 |
20180143669 | Bok | May 2018 | A1 |
20180158289 | Vasilev | Jun 2018 | A1 |
20180204426 | Nagisetty | Jul 2018 | A1 |
20180263563 | Mcmillen | Sep 2018 | A1 |
20180276519 | Benkley, III | Sep 2018 | A1 |
20180316296 | Hajati | Nov 2018 | A1 |
20180321748 | Rao | Nov 2018 | A1 |
20180348014 | Astley | Dec 2018 | A1 |
20190004622 | O'Brien | Jan 2019 | A1 |
20190042058 | Jing | Feb 2019 | A1 |
20190073064 | Sheng | Mar 2019 | A1 |
20190094993 | Kim | Mar 2019 | A1 |
20190102031 | Shutzberg | Apr 2019 | A1 |
20190212846 | Nathan | Jul 2019 | A1 |
20190383676 | Foughi | Dec 2019 | A1 |
20200042040 | Browning | Feb 2020 | A1 |
20200278747 | Ligtenberg | Sep 2020 | A1 |
20200310561 | Connellan | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
1914585 | Feb 2007 | CN |
101133385 | Feb 2008 | CN |
101373415 | Feb 2009 | CN |
101568898 | Oct 2009 | CN |
101669088 | Mar 2010 | CN |
101978344 | Feb 2011 | CN |
103890701 | Jun 2014 | CN |
104169848 | Nov 2014 | CN |
103677339 | Jul 2017 | CN |
2315101 | Apr 2011 | EP |
2541386 | Jan 2013 | EP |
2315101 | Jan 2014 | EP |
3174208 | May 2017 | EP |
2948787 | Feb 2011 | FR |
07160355 | Jun 1995 | JP |
2005092527 | Apr 2005 | JP |
5723499 | May 2015 | JP |
20040017272 | Feb 2004 | KR |
20070005580 | Jan 2007 | KR |
20080005990 | Jan 2008 | KR |
20110001839 | Jan 2011 | KR |
03005292 | Jan 2003 | WO |
2006131022 | Dec 2006 | WO |
2006115947 | Jun 2007 | WO |
2009028680 | Mar 2009 | WO |
2011010037 | Jan 2011 | WO |
2011024434 | Mar 2011 | WO |
2011048433 | Apr 2011 | WO |
2011051722 | May 2011 | WO |
2012010912 | Jan 2012 | WO |
2013135252 | Sep 2013 | WO |
2014066621 | Jun 2014 | WO |
2014209757 | Dec 2014 | WO |
2015027017 | Feb 2015 | WO |
2015127167 | Aug 2015 | WO |
2019094440 | May 2019 | WO |
Entry |
---|
Liu et al., ‘Acoustic Wave Approach for Multi-Touch Tactile Sensing’, Micro-NanoMechatronics and Human Science, 2009. MHS 2009. International Symposium, Nov. 9-11, 2009. |
Mir et al: “Built-in-self-test techniques for MEMS”, Microelectronics Journal, Mackintosh Publications Ltd. Luton, GB, vol. 37, No. 12, Dec. 1, 2006 (Dec. 1, 2006), pp. 1591-1597, XP028078995, ISSN: 0026-2692, DOI: 10.1016/J.MEJO.2006.04.016 [retrieved on Dec. 1, 2006]. |
T Benedict et al. ‘The joint estimation of signal and noise from the sum envelope.’ IEEE Transactions on Information Theory 13.3, pp. 447-454. Jul. 1, 1967. |
Number | Date | Country | |
---|---|---|---|
20210225138 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62962848 | Jan 2020 | US | |
62545391 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16101238 | Aug 2018 | US |
Child | 17146139 | US |