This invention relates generally to securement devices and, more particularly, to a flexible rod or device along a portion thereof that is capable of flexibly securing vertebrae together.
The lumbar spine absorbs a remarkable amount of stress and motion during normal activity. For the majority of the population, the healing response of the body is able to stay ahead of the cumulative effects of injury, wear, and aging, and yet still maintain stability with reasonable function. In some cases, however, the trauma or stress exceeds the ability of the body to heal, leading to local breakdown and excessive wear, and frequently also leads to local instability. Accordingly, degenerative change with age superimposed on baseline anatomy in the lumbar spine lead to problems including instability, pain and neurologic compromise in some patients. In some cases, the local anatomy may not provide the same protection to the motion segment, thereby aggravating this breakdown. Although rehabilitation, conditioning, the limitation of stress, and time to recover are effective treatments for most patients, there is a significant failure rate with persistent pain, disability and potential neurologic deficit.
Referring now to
The intervertebral joint is a complex structure comprising an intervertebral disk anteriorly, and paired zygapophyseal joints posteriorly. The disk functions as an elastic support and connection between the vertebra, and allows for flexion and extension of the spine, as well as limited rotation and translation. The zygapophyseal joints and associated anatomy allow for significant flexion and extension while providing constraints in translation and rotation.
The primary bending motion in the lumbar spine is flexion and extension in an anterior/posterior plane. This occurs in the range approximating 10-15 degrees of flexion and extension. In a young or normal lumbar spine, this motion occurs about an axis in the mid to posterior portion of the disk. This is associated with a distraction or subluxation of the facet joints or posterior elements of 10-15 mm. This occurs not about a pure axis, but about a neutral zone, or a centroid of rotation associated with the lumbar disk. The normal elasticity of the disk, joints and ligaments, and the degree of play or freedom associated with these joints, as well as the nature of the loads applied to the spine contribute to the size of this region of rotation. In some cases, the recurrent loads and motion on the disk and associated trauma to disk and motion segment exceed the natural rate of healing or repair of the body. In this situation, there is breakdown in the motion segment associated with loss of the normal axis of rotation. As increasing subluxation occurs with segmental motion, there is a dramatic shift in the axis of rotation with displacement occurring within the disk space or frequently to some point outside of the disk. Therefore, in the situation of a failing motion segment, there is breakdown in the centroid of rotation with associated translation of the vertebral segments. This translation is allowed by both breakdown occurring in the disk and instability associated with both wear and degeneration of the zygapophyseal joints. The underlying anatomy of the motion segment and joints allows for significantly greater stress on the disc and contributes to degeneration both in the disk and joints.
Traditionally, surgical treatment has been directed at treating neural compromise, or if the pain, instability, or risk of instability is considered sufficient, a segmental fusion has been considered. More recently, stabilization procedures have been tried over the past several years including artificial disks and ligaments and elastomeric constructs to protect the spine. Arthroplasty techniques to maximize function and reduce the dynamic effects on adjacent segments are a more recent approach with less follow-up as to long-term results. A challenge in designing such a system is constraining motion in a normal physiologic range.
Current spinal fixation systems offer several drawbacks. Rigid fusion constructs do not allow relative movement between the vertebrae that are fused using a construct comprising a pedicle screw, connector mechanism, and rigid rod. Furthermore, rigid implants are known to create significant amounts of stress on the components of the construct, including the pedicle screws and the rod, as well as the bone structure itself. These stresses may even cause the rigid rod to break. In addition, the stresses transferred to the pedicle screws may cause the screws to loosen or even dislodge from the vertebrae, thereby causing additional bone damage.
Spinal fusion surgery is a method of fusing at least two mobile segments of the spine to knit them together as one unit and eliminate motion between the segments. A dynamic fixation device is a quasi-flexible, semi-rigid fixation construct that allows some measure of motion between the vertebrae attached to the dynamic fixation device. Dynamic fixation of the lumbar spine provides means of protecting lumbar structures and allows for healing without proceeding to a lumbar arthrodesis. The constraints on such a system are in some ways different than for a rigid or near rigid construct, such as that used for fusion.
At the present time, pedicle fixation is an accepted method of fixing to the spine. In the situation of a lumbar fusion, a relatively rigid construct is appropriate to stabilize the spine and allow healing of the bony structures. In the situation of providing protection to the lumbar structures, a flexible system is appropriate to limit but not stop the motion of lumbar elements. The flexible elements in such a system need to accomplish several objectives. The primary objective is to allow physiologic motion of the spine, while protecting against excessive or non-physiologic movement. A secondary consideration is to protect the pedicle fixation from undue stress that could loosen the fixation at its bony interface.
Artificial disks may replace a failing disk and approximate a normal centroid or axis of rotation; however, placement of such a device is technically demanding and replaces the normal disk with a mechanical replacement with uncertain long-term results. The artificial disk will be subject to wear without the healing potential of the body to heal itself.
It is also desirable with some patients to have a spinal implant system that allows the vertebral column to settle naturally under the weight of the human body. Human bone heals more readily under some pressure. In a rigid spinal implant system, the patient's spinal column may be unnaturally held apart by the structure of the implant. It is possible that this stretching of the vertebrae, in relation to one another, results in delayed or incomplete healing of the bone.
Posterior devices placed with pedicle fixation may provide some stabilization, however, the natural motion of such devices does not necessarily act to mimic normal physiology. In a healthy lumbar spine the axis of rotation or neutral area for motion is situated near the inferior posterior third of the lumbar disk. A desirable artificial system would closely approximate physiologic motion. However, to date, posterior systems have failed to address these concerns.
Several existing patents disclose fusion devices having at least some partial ability to flex. For example, U.S. Pat. No. 5,415,661 discloses a device that includes a curvilinear rod. The curvilinear shape is designed to provide a specified amount of flexibility, such that the implant supposedly restores normal biomechanical function to the vertebrae of the spine receiving the implant. However, the '661 patent does not disclose a device having structure other than a curvilinear shape that has a radius of curvature of between 0 to 180 degrees. In addition, the '661 patent does not disclose the concept of providing an anteriorly projected pivot point that models the natural articulation of the subject vertebrae by using a structure that provides a virtual rotation zone substantially identical to the rotation zone provided by the patient's vertebrae. In addition, as seen in FIG. 3 of the '661 patent, the device disclosed in the '661 patent utilizes a body 4 having a central section 10 having an anteriorly oriented position relative to its ends 6a, 6b.
U.S. Pat. No. 6,293,949 also discloses a flexible spinal stabilization device that includes a longitudinal portion that includes a series of shapes that have an accordion appearance. The device disclosed in the '949 patent is intended for use along the cervical vertebrae, and it is intended to be installed along the anterior side of the vertebrae.
U.S. Pat. No. 6,440,169 discloses a device that attaches to the spinous processes of two vertebrae and has a leaf spring that allows the device to compress and then recover spontaneously after the stress has ceased. However, the '169 patent does not address a construct that includes an anteriorly projected pivot point that allows the vertebrae to articulate when the spine undergoes flexion.
In view of the above, there is a long felt but unsolved need for a method and system that avoids the above-mentioned deficiencies of the prior art and that provides an effective system that is relatively simple to employ and requires minimal displacement or removal of bodily tissue.
The present invention provides a device that can be implanted and that provides for a specified amount of forward bending motion, thereby allowing anterior sagittal rotation between the vertebrae that receive the implant. Reference is hereby made for the incorporation of the conventional descriptive terms of motion and other content presented in Clinical Anatomy of the Lumbar Spine and Sacrum by Nikolai Bogduk, third edition, published by Churchill Livingstone, 1999. Although anterior sagittal rotation or flexion between vertebrae is normal, significant anterior sagittal translation or sliding motion between vertebrae is not. Thus, by allowing some amount of rotational motion while protecting against translation, the patient's condition or injury can be protected, thus promoting the healing process, while subsequently providing some ability to rotate one vertebra relative to an adjacent vertebra, thereby allowing for improved spinal motion following surgery and recovery. Accordingly, as described herein, various implants, including a number of rod configurations having flexible portions are presented that provide a device having the ability to elongate and bend. Thus, it is a first aspect of the present invention to provide a device that elongates, and a second aspect of the present invention to provide a device that bends. More particularly, present invention is a dynamic fixation device that includes a flexible rod portion, wherein the flexible rod portion can include one or more of the following: a thin section of rod, a curvilinear rod portion, a geometric shape, and a hinge portion. These dynamic fixation devices are constructed of a material of an appropriate size, geometry, and having mechanical properties such that they bend, thus allowing the vertebrae associated with the implant to rotate relative to one another, similar to the movement of a natural spine.
The normal instantaneous axis of rotation of the lumbar spine occurs typically near the lower posterior third of the disk. Conventional pedicle fixation of the spine typically places the fixation rod or plate at the dorsal aspect of the apophyseal joint or posterior to the joint. Therefore, it is appropriate to consider a construct that effectively shifts this rotation point anteriorly toward the physiologic axis.
A group of geometries exist, which if applied to a posterior device, will constrain the subluxation of the segment and maintain the rotation in or close to the normal zone or axis of rotation. The indication for use is to constrain the stresses and motion within a range which will allow the body's normal healing response to maintain adequate competence in the motion segment to avoid development of instability or neurologic deficit and minimize pain or arthritis. The important features allow for maintenance of physiologic motion without the abnormal subluxation or translation that are associated with a degenerating disk and contribute to further degeneration. Thus, it is a separate aspect of the invention to provide a construct that limits excessive subluxation or translation.
Although the motion is complex related to the range of stresses which may be applied, it is nonetheless possible to provide a device so that while in compression, movement is axial or accompanied by slight dorsal translation, and that while in flexion allows both separation of posterior elements and slight ventral translation allowing rotation about the posterior portion of the disk.
Accordingly, it is an aspect of the present invention to provide a device that allows for some limited motion, thereby decreasing the stresses placed on the various component parts of the implant, as well as the affected vertebrae. It is a further aspect of the present invention to provide a device whose motion is designed to model the bending motion of the spine. Several separate embodiments of the present invention accomplish such tasks.
It is a separate aspect of the present invention to provide a construct that geometrically accommodates the human spinal anatomy, while providing a structural member that provides an anteriorly projected zone of rotation.
In a first embodiment, an implantable elastomeric material may be used, or a surgically implantable alloy can be used that is appropriately shaped and thinned to function as a spring and/or pivot. Appropriate shaping and contouring the flexible rod portion allows the flexible rod portion material to function in its elastic range and avoid stress failure. Additionally, this aspect of the invention allows control of how the motion occurs. More particularly, this feature provides a virtual axis of rotation not necessarily centered at the rod, thereby allowing the implant to more closely approximate the normal physiology of the spine. Thus, in the first embodiment provided herein, thinning and/or flattening a rod will allow simple flexion to occur. As the flattened segment is lengthened, progressively more translation may be allowed.
In a second embodiment presented herein, use of a more complex curve on the flexible rod portion allows both flexion and controlled translation, as well as axial settling in the event of an axial load on the spine. Controlling areas of thinning along the curve allows for controlling how the flexible rod portion bends when loaded. In addition, variable adjustment of thinning along the curve provides the ability to control translation, and thereby fine tuning of the effective axis of rotation. Furthermore, creating a curved rather than flat section allows for modification capability to selectively vary the bending characteristics in flexion versus extension, thus allowing a physician to control segmental shifts.
In yet a separate embodiment, a double center section is used to provide additional control of rotation, or allow for translation without rotation. The double center section includes a arcuate member and an inverted T-shaped member. The members are appropriately thinned or flattened sufficiently to allow controlled bending in flexion. Thus, the dual members may take on a variety of different shapes to achieve the appropriate bending characteristics.
For the above described devices, first and second rod arms are attached to either end of the flexible construct, with the other end of the rod arms attached to connectors, which in turn are connected to pedicle screws that are inserted into vertebrae of the spine. During flexion and extension each vertebra exhibits an arcuate motion in relation to the vertebra below. The center of the arc lies below the moving vertebra. The dynamic fusion device provides a device for allowing movement of the vertebrae, with a forwardly or anteriorly projected pivot location that models and substantially aligns with the actual pivot point of rotation for the vertebrae to which the device is attached. Accordingly, the dynamic fusion device provides a bendable rod for fusion that mimics the movement of the vertebrae of the spine.
The dynamic portions of the various embodiments of the present invention lengthen as they are elongated and shorten as they compressed. This characteristic allows the devices to be implanted in the spine with a pedicle screw system, and while the actual construct is positioned well dorsal in the spine, it will allow the spine to function as though there were a flexible construct in the anterior column of the spine.
In use, a problematic spinal disc is initially identified by a physician. During surgery, an incision is made through the skin and muscle overlying the implant location of the spine. Then a first pedicle screw is inserted into a first vertebra and a second pedicle screw is inserted into a second vertebra. The surgeon then attaches the dynamic fixation device to the pedicle screws using either an adjustable connector or an end connector that is integrally formed as a part of the dynamic fixation device.
Additional advantages of the present invention will become readily apparent from the following discussion, particularly when taken together with the accompanying drawings.
a-8h depict cross-sectional views of various potential center sections;
a-11f depict cross-sectional views of various potential center sections.
While the present invention will be described more fully hereinafter with reference to the accompanying drawings, in which particular embodiments and methods of implantation are shown, it is to be understood at the outset that persons skilled in the art may modify the invention herein described while achieving the functions and results of this invention. Accordingly, the descriptions which follow are to be understood as illustrative and exemplary of specific structures, aspects and features within the broad scope of the present invention and not as limiting of such broad scope.
As noted above, at each intervertebral joint or disc D, flexion involves a combination of anterior sagittal rotation and a small amplitude anterior translation. The various embodiments of the present invention allow for controlled rotation while limiting translation within an acceptable, normal physiological range.
Referring now to
The center section 14 may have a constant cross-sectional area as shown in
Referring now to
Referring now to
Referring now to
The above described alternative configurations offer different bending characteristics, such as the ability to allow a measure of twisting rotation as opposed to only pure bending. Depending upon a patient's circumstances, the attending physician may desire incorporating an implant with one of these different profiles to provide dynamic fixation of the patient's vertebrae.
Referring now to
As shown in
Appropriate shaping and contouring of the center section 14 allows rod portion 10 to function in its elastic range, and avoid stress failure. Furthermore, the center section 14 provides a virtual axis of rotation not necessarily centered at rod portion 10, thereby allowing the implant to more closely approximate the normal physiology of the spine.
Referring now to
Center section 14 preferably includes at least two bends, and more preferably, a series of bends that add a further spring effect. As noted above, rod portion 10 of the dynamic fixation device 24 depicted in
The modified dynamic fixation device 24 shown in
Similar to dynamic fixation device 1, the center section 14 of dynamic fixation device 24 can have a variety of different cross-sections. The center sections 14 shown in
Referring now to
The functional aspects of the dynamic fixation device 30 are achieved by providing dual central members 32a and 32b. First central member 32a includes an inverted T-shaped region similar to that previously described, and as depicted in
The combination of two central members 32a and 32b maybe modified in orientation depending upon the patient's needs. More particularly, the arcuate shaped member may be positioned above (not shown) the inverted T-shaped member or adjacent (not shown) the T-shaped member, and not necessarily under the T-shaped member as depicted in
For the embodiment depicted in
In yet a separate embodiment, a dynamic fixation device can utilize a coil portion (not shown) for providing a mechanism for allowing the rod to bend. In an alternate design of this embodiment, a composite material is used to serve as a bendable portion. Whether a coil or composite material is used to form a bendable portion, this embodiment preferably utilizes a mechanism for preventing reverse bending, or posterior sagittal rotation. For example, a separate stiffener may be provided on the posterior side of the coil portion, thereby allowing the device to bend in a forward direction, allowing anterior sagittal rotation, but substantially limiting or preventing bending in a reverse direction, thereby preventing posterior sagittal rotation. Furthermore, multiple stiffeners may be used to limit lateral rotation. That is, additional stiffeners may be incorporated that substantially limit or prevent left or right coronal rotation.
The nature of the coil may be a single winding, a double winding, or it may contain a plurality of windings. In one preferred embodiment, a helix-shaped coil is provided. Coils uncoil when stressed. Composites have physical properties that mimic coiling and uncoiling depending upon the loading conditions. Coils may be used in combination with composite materials, and in combination with stiffeners of various orientations.
In a typical use to span two vertebra, the total length of the dynamic fixation devices 1, 24, and 30 may be approximately 25 to 30 mm. For a dynamic fixation device spanning one joint, it will expand up to approximately 5 to 10 mm in length, and will rotate forward up to between 5 to 10 degrees to accommodate flexion of the spine. Obviously, different size dynamic fixation devices may be used to accommodate the specific needs of each individual patient. More particularly, a relatively large dynamic fixation device may be needed for a large man, while a relatively small dynamic fixation device may be needed for a smaller patient, such as child or a petite woman. However, a limited number of sizes may provide adequate coverage for the majority of the patient population. For any given device, a potential elongation of the dynamic fixation device of approximately 20% is anticipated.
The dynamic fixation devices can be used to flexibly fuse a plurality of vertebra. Alternatively, the dynamic fixation devices can be located at specific points where bending of the spine is desired, while a rigid rod may be used at other locations desired by the physician.
The structures of the present invention are made from one or more materials that possesses the appropriate strength characteristics necessary to withstand loading from the human body when used in medical applications. In addition, the materials are compatible with the human body. Preferably, materials include ceramics, plastics, metals, or carbon fiber composites. More preferably, the materials are made from titanium, a titanium alloy, or stainless steel.
Devices disclosed herein can also be made of thermal memory materials or materials that possess different elastic properties at varying temperatures. In this aspect of the invention, the subject component(s) may be heated or cooled to a desired temperature, implanted, then subsequently allowed to cool or warm to the temperature of the ambient conditions that will exist during the usage period for the subject device, namely, normal body temperature.
It is to be understood that the present invention has application to medical devices other than spinal implants. Furthermore, it is understood that the present invention has application outside the medical field. The dynamic fixation device of the present invention is not limited to medical implants. The device could be used in seismic dampening applications. Alternatively, the present invention could be used to secure any two objects, such as in linking mechanisms, and has application to any type of mechanical device with a moving connection. Other applications, by no means exhaustive, may include connecting any articulated device, such as an implement connection to a tractor. It may also be used in heretofore static type connection applications, such as attaching an antenna to a base structure. One of skill in various of the construction arts will appreciate how to make and use the present invention in view of the guidance provided herein (with respect to a surgical application) and in view of the figures set forth herein.
While various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. However, it is to be expressly understood that such modifications and adaptations are within the spirit and scope of the present invention, as set forth in the following claims.
This application is a continuation application of U.S. patent application Ser. No. 10/406,895 filed on Apr. 4, 2003, now U.S. Pat. No. 6,966,910, which claimed the benefit of U.S. Provisional Patent Application No. 60/370,708 filed Apr. 5, 2002 entitled “Dynamic Fusion System” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2191 | Pitney | Jul 1841 | A |
569839 | Roeloffs | Oct 1896 | A |
605652 | Pitt | Jun 1898 | A |
1090746 | Nourse | Mar 1914 | A |
1097978 | Johnson | May 1914 | A |
2611434 | Mugler | Sep 1952 | A |
3467079 | James | Sep 1969 | A |
3470872 | Grieshaber | Oct 1969 | A |
3875595 | Froning | Apr 1975 | A |
3893454 | Hagelin | Jul 1975 | A |
4041939 | Hall | Aug 1977 | A |
4232660 | Coles | Nov 1980 | A |
4440168 | Warren | Apr 1984 | A |
4481947 | Chester | Nov 1984 | A |
4545374 | Jacobson | Oct 1985 | A |
4573448 | Kambin | Mar 1986 | A |
4617922 | Griggs | Oct 1986 | A |
4620460 | Gonzales, Jr. | Nov 1986 | A |
4686972 | Kurland | Aug 1987 | A |
4736738 | Lipovsek | Apr 1988 | A |
4743260 | Burton | May 1988 | A |
4747394 | Watanabe | May 1988 | A |
4798111 | Cheeseman | Jan 1989 | A |
4803976 | Frigg | Feb 1989 | A |
4817587 | Janese | Apr 1989 | A |
4862891 | Smith | Sep 1989 | A |
4863423 | Wallace | Sep 1989 | A |
4882958 | McNeeley | Nov 1989 | A |
4889112 | Schachner et al. | Dec 1989 | A |
4946458 | Harms et al. | Aug 1990 | A |
4995875 | Coes | Feb 1991 | A |
5002542 | Frigg | Mar 1991 | A |
5002576 | Fuhrmann et al. | Mar 1991 | A |
5018507 | Montaldi | May 1991 | A |
5024213 | Asher et al. | Jun 1991 | A |
5026373 | Ray et al. | Jun 1991 | A |
5030220 | Howland | Jul 1991 | A |
5030223 | Anderson et al. | Jul 1991 | A |
5035232 | Lutze et al. | Jul 1991 | A |
5048379 | Gramera | Sep 1991 | A |
5052373 | Michelson | Oct 1991 | A |
5055104 | Ray | Oct 1991 | A |
5084043 | Hertzmann | Jan 1992 | A |
5098435 | Stednitz | Mar 1992 | A |
5106376 | Mononen | Apr 1992 | A |
5129900 | Asher et al. | Jul 1992 | A |
5133720 | Greenberg | Jul 1992 | A |
5135525 | Biscoping | Aug 1992 | A |
5148724 | Rexford | Sep 1992 | A |
5158543 | Lazarus | Oct 1992 | A |
5165306 | Hellon | Nov 1992 | A |
5180393 | Commarmond | Jan 1993 | A |
5195541 | Obenchain | Mar 1993 | A |
5217007 | Ciaglia | Jun 1993 | A |
5246016 | Lieber et al. | Sep 1993 | A |
5275600 | Allard et al. | Jan 1994 | A |
5275611 | Behl | Jan 1994 | A |
5279567 | Ciaglia | Jan 1994 | A |
5282863 | Burton | Feb 1994 | A |
5292309 | Van Tassel | Mar 1994 | A |
5303694 | Mikhail | Apr 1994 | A |
5304179 | Wagner | Apr 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5312360 | Behl | May 1994 | A |
5312405 | Korotko et al. | May 1994 | A |
5330473 | Howland | Jul 1994 | A |
5330474 | Lin | Jul 1994 | A |
5330476 | Hiot et al. | Jul 1994 | A |
5356413 | Martins et al. | Oct 1994 | A |
5363841 | Coker | Nov 1994 | A |
5363853 | Lieber et al. | Nov 1994 | A |
5387213 | Breard et al. | Feb 1995 | A |
5415661 | Holmes | May 1995 | A |
5423816 | Lin | Jun 1995 | A |
5431639 | Shaw | Jul 1995 | A |
5431651 | Goble | Jul 1995 | A |
D361381 | Koros et al. | Aug 1995 | S |
5439464 | Shapiro | Aug 1995 | A |
5466238 | Lin | Nov 1995 | A |
5472426 | Bonati | Dec 1995 | A |
5474555 | Puno et al. | Dec 1995 | A |
5480401 | Navas | Jan 1996 | A |
5484440 | Allard | Jan 1996 | A |
5484445 | Knuth | Jan 1996 | A |
5489274 | Chu | Feb 1996 | A |
5489308 | Kuslich et al. | Feb 1996 | A |
5498262 | Bryan | Mar 1996 | A |
5499983 | Hughes | Mar 1996 | A |
5501684 | Schlapfer et al. | Mar 1996 | A |
5512038 | O'Neal et al. | Apr 1996 | A |
5545166 | Howland | Aug 1996 | A |
5549612 | Yapp et al. | Aug 1996 | A |
5558622 | Greenberg | Sep 1996 | A |
5562663 | Wisnewski et al. | Oct 1996 | A |
5565502 | Glimcher et al. | Oct 1996 | A |
5569300 | Redmon | Oct 1996 | A |
5584831 | McKay | Dec 1996 | A |
5584833 | Fournet-Fayard et al. | Dec 1996 | A |
5591166 | Bernhardt et al. | Jan 1997 | A |
5591235 | Kuslich | Jan 1997 | A |
5593409 | Michelson | Jan 1997 | A |
5601550 | Esser | Feb 1997 | A |
5603714 | Kaneda et al. | Feb 1997 | A |
5611778 | Brinon | Mar 1997 | A |
5613968 | Lin | Mar 1997 | A |
5628740 | Mullane | May 1997 | A |
5630816 | Kambin | May 1997 | A |
5643263 | Simonson | Jul 1997 | A |
5643264 | Sherman et al. | Jul 1997 | A |
5645544 | Tai et al. | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5649925 | Barbera Alacreu | Jul 1997 | A |
5662620 | Lieber et al. | Sep 1997 | A |
5667506 | Sutterlin | Sep 1997 | A |
5672175 | Martin | Sep 1997 | A |
5683389 | Orsak | Nov 1997 | A |
5683392 | Richelsoph et al. | Nov 1997 | A |
5683463 | Godefroy et al. | Nov 1997 | A |
5687739 | McPherson | Nov 1997 | A |
5690632 | Schwartz et al. | Nov 1997 | A |
5691397 | Glimcher et al. | Nov 1997 | A |
5695993 | Fukudome et al. | Dec 1997 | A |
5702455 | Saggar | Dec 1997 | A |
5716355 | Jackson et al. | Feb 1998 | A |
5716415 | Steffee | Feb 1998 | A |
5725528 | Errico et al. | Mar 1998 | A |
5735850 | Baumgartner et al. | Apr 1998 | A |
5735851 | Errico et al. | Apr 1998 | A |
5735899 | Schwartz et al. | Apr 1998 | A |
5743853 | Lauderdale | Apr 1998 | A |
5746720 | Stouder, Jr. | May 1998 | A |
5746741 | Kraus et al. | May 1998 | A |
5752957 | Ralph et al. | May 1998 | A |
5766221 | Benderev et al. | Jun 1998 | A |
5766253 | Brosnahan, III | Jun 1998 | A |
5772582 | Huttner et al. | Jun 1998 | A |
5782832 | Larsen et al. | Jul 1998 | A |
5785648 | Min | Jul 1998 | A |
5785710 | Michelson | Jul 1998 | A |
5785712 | Runciman et al. | Jul 1998 | A |
5792044 | Foley | Aug 1998 | A |
5797912 | Runciman et al. | Aug 1998 | A |
5800435 | Errico et al. | Sep 1998 | A |
5810816 | Roussouly et al. | Sep 1998 | A |
5810817 | Roussouly et al. | Sep 1998 | A |
D399955 | Koros et al. | Oct 1998 | S |
5816257 | Chin | Oct 1998 | A |
5827328 | Buttermann | Oct 1998 | A |
5833645 | Lieber et al. | Nov 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
RE36020 | Moore et al. | Dec 1998 | E |
5851207 | Cesarone | Dec 1998 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5865847 | Kohrs et al. | Feb 1999 | A |
5865848 | Baker | Feb 1999 | A |
5876404 | Zucherman et al. | Mar 1999 | A |
5882344 | Stouder, Jr. | Mar 1999 | A |
5885285 | Simonson | Mar 1999 | A |
5885299 | Winslow et al. | Mar 1999 | A |
5885300 | Tokuhashi et al. | Mar 1999 | A |
5891147 | Moskovitz et al. | Apr 1999 | A |
5895352 | Kleiner | Apr 1999 | A |
5895390 | Moran et al. | Apr 1999 | A |
5897593 | Kohrs et al. | Apr 1999 | A |
5899901 | Middleton | May 1999 | A |
5902231 | Foley | May 1999 | A |
5902304 | Walker et al. | May 1999 | A |
5904650 | Wells | May 1999 | A |
5906616 | Pavlov et al. | May 1999 | A |
5913818 | Co et al. | Jun 1999 | A |
5928139 | Koros | Jul 1999 | A |
5928233 | Apfelbaum et al. | Jul 1999 | A |
5931838 | Vito | Aug 1999 | A |
5938663 | Petreto | Aug 1999 | A |
5944658 | Koros et al. | Aug 1999 | A |
5947965 | Bryan | Sep 1999 | A |
5954635 | Foley | Sep 1999 | A |
5954671 | O'Neill | Sep 1999 | A |
5961516 | Graf | Oct 1999 | A |
5967970 | Cowan | Oct 1999 | A |
5968098 | Winslow | Oct 1999 | A |
5971920 | Nagel | Oct 1999 | A |
5976135 | Sherman et al. | Nov 1999 | A |
5976146 | Ogawa et al. | Nov 1999 | A |
5984924 | Asher et al. | Nov 1999 | A |
5996447 | Bayouth | Dec 1999 | A |
5997539 | Errico et al. | Dec 1999 | A |
6004322 | Bernstein | Dec 1999 | A |
6007487 | Foley et al. | Dec 1999 | A |
6010520 | Pattison | Jan 2000 | A |
6017342 | Rinner | Jan 2000 | A |
6027533 | Olerud | Feb 2000 | A |
6045579 | Hochshuler et al. | Apr 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6050997 | Mullane | Apr 2000 | A |
6063088 | Winslow | May 2000 | A |
6068630 | Zucherman et al. | May 2000 | A |
6074390 | Zucherman et al. | Jun 2000 | A |
6074393 | Sitoto | Jun 2000 | A |
6080155 | Michelson | Jun 2000 | A |
6080193 | Hochshuler et al. | Jun 2000 | A |
6081741 | Hollis | Jun 2000 | A |
6083225 | Winslow et al. | Jul 2000 | A |
6083226 | Fiz | Jul 2000 | A |
6090112 | Zucherman et al. | Jul 2000 | A |
6102948 | Brosnahan, III | Aug 2000 | A |
6113602 | Sand | Sep 2000 | A |
6117137 | Halm et al. | Sep 2000 | A |
6117174 | Nolan | Sep 2000 | A |
6120434 | Kimura | Sep 2000 | A |
6120506 | Kohrs et al. | Sep 2000 | A |
6123705 | Michelson | Sep 2000 | A |
6123706 | Lange | Sep 2000 | A |
6132430 | Wagner | Oct 2000 | A |
D433296 | Yamakawa | Nov 2000 | S |
6146383 | Studer et al. | Nov 2000 | A |
6149652 | Zucherman et al. | Nov 2000 | A |
6149686 | Kuslich et al. | Nov 2000 | A |
6150825 | Prokopp et al. | Nov 2000 | A |
6152871 | Foley | Nov 2000 | A |
6152926 | Zucherman et al. | Nov 2000 | A |
6156006 | Brosens | Dec 2000 | A |
6156038 | Zucherman et al. | Dec 2000 | A |
6159179 | Simonson | Dec 2000 | A |
6162170 | Foley | Dec 2000 | A |
6162236 | Osada | Dec 2000 | A |
D436513 | Yamakawa | Jan 2001 | S |
6176823 | Foley | Jan 2001 | B1 |
6176861 | Bernstein et al. | Jan 2001 | B1 |
6179838 | Fiz | Jan 2001 | B1 |
D438074 | Marr | Feb 2001 | S |
6183471 | Zucherman et al. | Feb 2001 | B1 |
6187005 | Brace et al. | Feb 2001 | B1 |
6190387 | Zucherman et al. | Feb 2001 | B1 |
6190414 | Young et al. | Feb 2001 | B1 |
6196696 | Shiao | Mar 2001 | B1 |
6196969 | Bester et al. | Mar 2001 | B1 |
6197002 | Peterson | Mar 2001 | B1 |
6206822 | Foley | Mar 2001 | B1 |
6206826 | Mathews et al. | Mar 2001 | B1 |
6206885 | Ghahremani et al. | Mar 2001 | B1 |
6206922 | Zdeblick et al. | Mar 2001 | B1 |
6206923 | Boyd et al. | Mar 2001 | B1 |
6210413 | Justis et al. | Apr 2001 | B1 |
6214004 | Coker | Apr 2001 | B1 |
6217509 | Foley | Apr 2001 | B1 |
6224597 | Coker | May 2001 | B1 |
6224608 | Ciccolella | May 2001 | B1 |
6224631 | Kohrs | May 2001 | B1 |
6231575 | Krag | May 2001 | B1 |
6235030 | Zucherman et al. | May 2001 | B1 |
6238397 | Zucherman et al. | May 2001 | B1 |
6245072 | Zdeblick et al. | Jun 2001 | B1 |
6248104 | Chopin et al. | Jun 2001 | B1 |
6248106 | Ferree | Jun 2001 | B1 |
6258097 | Cook | Jul 2001 | B1 |
6261287 | Metz-Stavenhagen | Jul 2001 | B1 |
6264658 | Lee et al. | Jul 2001 | B1 |
6267763 | Castro | Jul 2001 | B1 |
6267764 | Elberg | Jul 2001 | B1 |
6267765 | Taylor et al. | Jul 2001 | B1 |
6270498 | Michelson | Aug 2001 | B1 |
6273914 | Papas | Aug 2001 | B1 |
6283966 | Houfburg | Sep 2001 | B1 |
6287309 | Baccelli et al. | Sep 2001 | B1 |
6287313 | Sasso | Sep 2001 | B1 |
6287343 | Kuslich et al. | Sep 2001 | B1 |
6290700 | Schmotzer | Sep 2001 | B1 |
6293949 | Justis et al. | Sep 2001 | B1 |
6296609 | Brau | Oct 2001 | B1 |
6299614 | Kretschmer et al. | Oct 2001 | B1 |
6302842 | Auerbach et al. | Oct 2001 | B1 |
6309390 | Le Couedic et al. | Oct 2001 | B1 |
6309391 | Crandall et al. | Oct 2001 | B1 |
6312432 | Leppelmeier | Nov 2001 | B1 |
6332883 | Zucherman et al. | Dec 2001 | B1 |
6342057 | Brace | Jan 2002 | B1 |
6348058 | Melkent et al. | Feb 2002 | B1 |
6354176 | Nordlin | Mar 2002 | B1 |
6355038 | Pisharodi | Mar 2002 | B1 |
6361541 | Barnhart | Mar 2002 | B1 |
6364881 | Apgar et al. | Apr 2002 | B1 |
6368320 | Le Couedic et al. | Apr 2002 | B1 |
6368350 | Erickson et al. | Apr 2002 | B1 |
6368351 | Glenn et al. | Apr 2002 | B1 |
6371959 | Trice | Apr 2002 | B1 |
6371968 | Kogasaka et al. | Apr 2002 | B1 |
6379354 | Rogozinski | Apr 2002 | B1 |
6391058 | Kuslich et al. | May 2002 | B1 |
6395033 | Pepper | May 2002 | B1 |
6418821 | Yamakawa | Jul 2002 | B1 |
6425901 | Zhu et al. | Jul 2002 | B1 |
6428472 | Haas | Aug 2002 | B1 |
6440169 | Elberg et al. | Aug 2002 | B1 |
6440170 | Jackson | Aug 2002 | B1 |
6443953 | Perra et al. | Sep 2002 | B1 |
6443989 | Jackson | Sep 2002 | B1 |
6461330 | Miyagi | Oct 2002 | B1 |
6461359 | Tribus et al. | Oct 2002 | B1 |
6471724 | Zdeblick et al. | Oct 2002 | B2 |
6475219 | Shelokov | Nov 2002 | B1 |
6478798 | Howland | Nov 2002 | B1 |
D466766 | Marty | Dec 2002 | S |
6506151 | Estes et al. | Jan 2003 | B2 |
6520907 | Foley | Feb 2003 | B1 |
6524238 | Velikaris et al. | Feb 2003 | B2 |
6530880 | Pagliuca | Mar 2003 | B2 |
6530926 | Davison | Mar 2003 | B1 |
6540756 | Vaughan | Apr 2003 | B1 |
6551320 | Lieberman | Apr 2003 | B2 |
6551322 | Lieberman | Apr 2003 | B1 |
6554831 | Rivard et al. | Apr 2003 | B1 |
6562046 | Sasso | May 2003 | B2 |
6562073 | Foley | May 2003 | B2 |
6565569 | Assaker et al. | May 2003 | B1 |
6569164 | Assaker et al. | May 2003 | B1 |
6576017 | Foley et al. | Jun 2003 | B2 |
6579292 | Taylor | Jun 2003 | B2 |
6585738 | Mangione et al. | Jul 2003 | B1 |
6585769 | Muhanna et al. | Jul 2003 | B1 |
6595993 | Donno et al. | Jul 2003 | B2 |
6599290 | Bailey et al. | Jul 2003 | B2 |
6610062 | Bailey et al. | Aug 2003 | B2 |
6626904 | Jammet et al. | Sep 2003 | B1 |
6626906 | Young | Sep 2003 | B1 |
6648887 | Ashman | Nov 2003 | B2 |
6671725 | Noel, Jr. et al. | Dec 2003 | B1 |
6676661 | Martin Benlloch et al. | Jan 2004 | B1 |
6679833 | Smith et al. | Jan 2004 | B2 |
6682532 | Johnson et al. | Jan 2004 | B2 |
6685705 | Taylor | Feb 2004 | B1 |
6692434 | Ritland | Feb 2004 | B2 |
6736816 | Ritland | May 2004 | B2 |
6743257 | Castro | Jun 2004 | B2 |
6749613 | Conchy et al. | Jun 2004 | B1 |
6749614 | Teitelbaum et al. | Jun 2004 | B2 |
6752832 | Neumann | Jun 2004 | B2 |
6761719 | Justis et al. | Jul 2004 | B2 |
6783528 | Vincent-Prestigiacomo | Aug 2004 | B2 |
6851430 | Tsou | Feb 2005 | B2 |
6875211 | Nichols et al. | Apr 2005 | B2 |
6916319 | Munting | Jul 2005 | B2 |
6916330 | Simonson | Jul 2005 | B2 |
6929606 | Ritland | Aug 2005 | B2 |
6951538 | Ritland | Oct 2005 | B2 |
6955678 | Gabriel et al. | Oct 2005 | B2 |
6966910 | Ritland | Nov 2005 | B2 |
6974480 | Messerli et al. | Dec 2005 | B2 |
6991632 | Ritland | Jan 2006 | B2 |
7008421 | Daniel et al. | Mar 2006 | B2 |
7115142 | Muhanna et al. | Oct 2006 | B2 |
7166073 | Ritland | Jan 2007 | B2 |
7195633 | Medoff et al. | Mar 2007 | B2 |
7207992 | Ritland | Apr 2007 | B2 |
7344539 | Serhan et al. | Mar 2008 | B2 |
7520880 | Claypool et al. | Apr 2009 | B2 |
7632292 | Sengupta et al. | Dec 2009 | B2 |
7758582 | Ferrante et al. | Jul 2010 | B2 |
7828825 | Bruneau et al. | Nov 2010 | B2 |
7951170 | Jackson | May 2011 | B2 |
20010005796 | Zdeblick et al. | Jun 2001 | A1 |
20010010021 | Boyd et al. | Jul 2001 | A1 |
20010012942 | Estes | Aug 2001 | A1 |
20010027320 | Sasso | Oct 2001 | A1 |
20010047207 | Michelson | Nov 2001 | A1 |
20020011135 | Hall | Jan 2002 | A1 |
20020016592 | Branch | Feb 2002 | A1 |
20020022764 | Smith | Feb 2002 | A1 |
20020029082 | Muhanna | Mar 2002 | A1 |
20020049368 | Ritland | Apr 2002 | A1 |
20020052603 | Nichols et al. | May 2002 | A1 |
20020058948 | Arlettaz | May 2002 | A1 |
20020068973 | Jackson | Jun 2002 | A1 |
20020068975 | Teitelbaum et al. | Jun 2002 | A1 |
20020077632 | Tsou | Jun 2002 | A1 |
20020082695 | Neumann | Jun 2002 | A1 |
20020107571 | Foley | Aug 2002 | A1 |
20020107572 | Foley et al. | Aug 2002 | A1 |
20020111625 | Richelsoph et al. | Aug 2002 | A1 |
20020120270 | Trieu et al. | Aug 2002 | A1 |
20020123668 | Ritland | Sep 2002 | A1 |
20020143235 | Pagliuca | Oct 2002 | A1 |
20030045874 | Thomas, Jr. | Mar 2003 | A1 |
20030083688 | Simonson | May 2003 | A1 |
20030083689 | Simonson | May 2003 | A1 |
20030093078 | Ritland | May 2003 | A1 |
20030109880 | Shirado et al. | Jun 2003 | A1 |
20030139812 | Garcia et al. | Jul 2003 | A1 |
20030144665 | Munting | Jul 2003 | A1 |
20030171749 | Le Couedic et al. | Sep 2003 | A1 |
20030171751 | Ritland | Sep 2003 | A1 |
20030187431 | Simonson | Oct 2003 | A1 |
20030191470 | Ritland | Oct 2003 | A1 |
20030220689 | Ritland | Nov 2003 | A1 |
20030236447 | Ritland | Dec 2003 | A1 |
20040002708 | Ritland | Jan 2004 | A1 |
20040073215 | Carli | Apr 2004 | A1 |
20040106997 | Lieberson | Jun 2004 | A1 |
20040138534 | Ritland | Jul 2004 | A1 |
20040172023 | Ritland | Sep 2004 | A1 |
20040181223 | Ritland | Sep 2004 | A1 |
20040254428 | Ritland | Dec 2004 | A1 |
20050004593 | Simonson | Jan 2005 | A1 |
20050020920 | Ritland | Jan 2005 | A1 |
20050027360 | Webb et al. | Feb 2005 | A1 |
20050049587 | Jackson | Mar 2005 | A1 |
20050119656 | Ferrante et al. | Jun 2005 | A1 |
20050143737 | Pafford et al. | Jun 2005 | A1 |
20050149023 | Ritland | Jul 2005 | A1 |
20050149191 | Cragg et al. | Jul 2005 | A1 |
20050192579 | Jackson | Sep 2005 | A1 |
20050203517 | Jahng et al. | Sep 2005 | A1 |
20050203519 | Harms et al. | Sep 2005 | A1 |
20050209694 | Loeb | Sep 2005 | A1 |
20050228233 | Ritland | Oct 2005 | A1 |
20060009768 | Ritland | Jan 2006 | A1 |
20060025770 | Schlapfer et al. | Feb 2006 | A1 |
20060041259 | Paul et al. | Feb 2006 | A1 |
20060064090 | Park | Mar 2006 | A1 |
20060069390 | Frigg et al. | Mar 2006 | A1 |
20060079899 | Ritland | Apr 2006 | A1 |
20060195087 | Sacher et al. | Aug 2006 | A1 |
20060205525 | Owen | Sep 2006 | A1 |
20060276794 | Stern | Dec 2006 | A1 |
20080071275 | Ferree | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
2320821 | Aug 1999 | CA |
9004960 | Aug 1991 | DE |
0 820 731 | Jan 1998 | EP |
1585427 | Oct 2005 | EP |
1658815 | Oct 2005 | EP |
2735351 | Dec 1996 | FR |
2796828 | Feb 2001 | FR |
2799949 | Apr 2001 | FR |
2812185 | Feb 2002 | FR |
6-3551 | Feb 1994 | JP |
07-008504 | Jan 1995 | JP |
2000-33091 | Feb 2000 | JP |
9508298 | Mar 1995 | WO |
9629947 | Oct 1996 | WO |
9706742 | Feb 1997 | WO |
9732533 | Sep 1997 | WO |
9909902 | Mar 1999 | WO |
WO 9940866 | Aug 1999 | WO |
WO 0018306 | Apr 2000 | WO |
0057801 | Oct 2000 | WO |
0164144 | Sep 2001 | WO |
0167973 | Sep 2001 | WO |
0207621 | Jan 2002 | WO |
WO 0202022 | Jan 2002 | WO |
WO 0207621 | Jan 2002 | WO |
WO 02060330 | Aug 2002 | WO |
02036026 | Oct 2002 | WO |
02102259 | Dec 2002 | WO |
WO 03026523 | Apr 2003 | WO |
WO 03026523 | Apr 2003 | WO |
WO 03073908 | Sep 2003 | WO |
WO 03073908 | Sep 2003 | WO |
WO 03094699 | Nov 2003 | WO |
WO 03094699 | Nov 2003 | WO |
03105704 | Dec 2003 | WO |
2004052218 | Jun 2004 | WO |
WO 2004075778 | Sep 2004 | WO |
WO 2004089244 | Oct 2004 | WO |
Entry |
---|
U.S. Appl. No. 10/165,991, Simonson. |
U.S. Appl. No. 11/425,987, Ritland. |
Hilton et al.; “Meditronic Sofamor Danek METRX Microdiscectomy Surgical Technique Brochure”; 2000. |
Sofamor Danek Video Systems Brochure, printed Mar. 24, 2005. |
Web pages, http://www.brainlab.com, Apr. 2, 2002; 5 pp. |
Office Action dated Dec. 5, 2008, issued in co-pending Chinese Patent Application No. 200480014833.8. |
Office Action for U.S. Appl. No. 10/406,895, mailed Aug. 17, 2004. |
Amendment and Response to Election Requirements for U.S. Appl. No. 10/406,895, mailed Sep. 17, 2004. |
Office Action for U.S. Appl. No. 10/406,895, mailed Dec. 13, 2004. |
Amendment and Response to Dec. 13, 2004 Office Action for U.S. Appl. No. 10/406,895, mailed Feb. 28, 2005. |
Notice of Allowance for U.S. Appl. No. 10/406,895, mailed Jun. 1, 2005. |
Supplemental Notice of Allowability for U.S. Appl. No. 10/406,895, mailed Oct. 13, 2005. |
Official Action for U.S. Appl. No. 10/435,330, mailed Jan. 11, 2005. |
Amendment and Response to Election Requirements, mailed Feb. 5, 2005. |
Official Action for U.S. Appl. No. 10/435,330, mailed May 5, 2005. |
Amendment and Response to Office Action Dated May 5, 2005, mailed Aug. 5, 2005. |
Official Action for U.S. Appl. No. 10/435,330, mailed Aug. 28, 2006. |
Amendment and Response for U.S. Appl. No. 10/435,330, mailed Dec. 28, 2006. |
Official Action for U.S. Appl. No. 10/435,330, mailed Mar. 26, 2007. |
Amendment and Response for U.S. Appl. No. 10/435,330, mailed May 29, 2007. |
Office Action dated Aug. 29, 2008, issued in European Patent Application No. 04758814.0. |
Response to Office Action dated Aug. 29, 2008, filed in European Patent Application No. 04758814.0. |
Supplemental Search Report dated Mar. 24, 2009, issued in European Patent Application No. 06785447.1. |
Office Action dated Dec. 16, 2008, issued in Japanese Patent Application No. 2006-509659. |
Office Action dated Apr. 16, 2008, issued in U.S. Appl. No. 10/435,330. |
Amendment and Response to Office Action filed Jul. 8, 2008, in U.S. Appl. No. 10/435,330. |
Office Action dated Oct. 28, 2008, issued in U.S. Appl. No. 10/435,330. |
Amendment and Response to Office Action filed Apr. 27, 2009, in U.S. Appl. No. 10/435,330. |
Office Action dated May 7, 2009, issued in Japanese Patent Application No. 2004-502799. |
EPO Supplemental Search Report dated May 25, 2009, issued in European Patent Application No. 03733832.4. |
Office Action dated Dec. 5, 2008, issued in Chinese Patent Application No. 200480014833.8. |
Office Action dated Mar. 31, 2009, issued in Japanese Patent Application No. 2003-572434. |
Response to Office Action dated Oct. 17, 2007, issued in Australian Patent Application No. 2003228960. |
Office Action dated Feb. 5, 2009, issued in U.S. Appl. No. 11/458,629. |
Amendment and Response to Office Action filed Jun. 3, 2009, in U.S. Appl. No. 11/458,629. |
Supplemental European Search Report dated Jun. 10, 2008, received in EPO Application No. 04758814.0. |
China Chemical Reporter, “Rapid Development of Polyether ether ketone.” CNCIC Chemdata Inc, 2004, 2 pages. |
Green, “Effects of Gamma Sterilisation on Implant Grade Polyetheretherketone”, Invibio Inc, Lancashire, United Kingdom, undated, 1 pages. |
Green, et al., “A Polyaryletherketone Biomaterial for use in Medical Implant Applications”, Lancashire, United Kingdom, 2001, 1 page. |
Green, “Body Building—Medical Materials for Systems and Scaffolding”, Materials World, Journal of the Institute of Materials, vol. 10 No. 2, 2001, 4 pages. |
Green, “PEEK-Optima Polymer in the Implantable Medical Device Industry”, Invibio, Inc., Lancashire, United Kingdom, undated, 2 pages. |
Green, “In Vivo Biostability Study on Polyaryletheretherketone Biomaterial”, Invibio Inc, Lancashire, United Kingdom, undated, 2 pages, Mar./Apr. 2002. |
Green, et al., “Polyetheretherketone Polymer and Compounds for Surgical Applications”, Lancashire, United Kingdom, undated, 9 pages, 2000. |
Invibio, Biomaterials Solutions, “PEEK-Optima Polymer: Performance Purity Flexibility Endurance”, Invibio Inc, Lancashire, United Kingdom, 2004, 3 pages. |
Invibio, Biomaterials Solutions, “PEEK-Classix”, Invibio Inc, Lancashire, United Kingdom, 2003, 2 pages. |
Invibio, Biomaterials Solutions, “PEEK-Optima, Composite Hip”, Invibio Inc, Lancashire, United Kingdom, undated, 2 pages. |
Invibio, Biomaterials Solutions, “High Performance PEEK-Optima Biocompatible Polymer Chosen for New Generation Heart Valve”, Invibio Inc, Lancashire, United Kingdom, undated, 1 page. |
Invibio, Biomaterials Solutions, “PEEK-Optima, Spiked Washers”, Invibio Inc, Lancashire, United Kingdom, undated, 1 page. |
Invibio, Biomaterials Solutions, “High Performance PEEK-Optima Biocompatible Polymer Chosen for Dental Abutment Healing Caps”, Invibio Inc, Lancashire, United Kingdom, undated, 1 page. |
Tangram Technology Ltd. “Polymer Data File: Polyether ether ketone—PEEK”, Available at http://www.tangram.co.uk/TI-Polymer-PEEK.html, 2001, 5 pages. |
Caspar; “Technique of Microsurgery: Microsurgery of the Lumbar Spine: Principles and Techniques in Spine Surgery”; Aspen Publications; 1990; 105-122. |
“New Minimally Invasive Techniques, Improve Outcome of Spine Surgeries”, Meditronic Sofamor Danek. |
Kambin; “Arthroscopic Microdiscectomy: Minimal Intervention in Spinal Surgery”; National Library of Medicine; 1991; 67-100. |
Kambin; “Percutaneous Posterolateral Discectomy”; Clincial Orthopaedics and Related Research, Section II; 145-154119, 1985. |
Savitz; “Same-Day Microsurgical Arthroscopic Latera-Approach Laser-Assisted (SMALL) Fluoroscopic Discectomy”; Journal of Neurosurgery; Jun. 1994; 1039-1045. |
Schaffer et al.; “Percutaneous Posterolateral Lumbar Discectomy and Decompression with a 6.9 Millimeter Cannula”; Journal of Bone and Joint Surgery; 1991; 822-831. |
Wiltse; “New Uses and Refinements of the Paraspinal Approach to the Lumbar Spine”; Spine; 1988; 13(6):696-706. |
International Search Report for International (PCT) Application No. PCT/US06/24491, mailed Sep. 25, 2007. |
Written Opinion for International (PCT) Application No. PCT/US06/24491, mailed Sep. 25, 2007. |
Final Office Action dated Jul. 23, 2009, issued in U.S. Appl. No. 10/435,330. |
Office Action dated Jun. 19, 2009, issued in Chinese Application No. 200680030105.5. |
Notification of Reasons for Refusal dated Oct. 17, 2006, issued in Korean Application No. 10-2005-7018906. |
Notification of Decision to Grant dated May 30, 2007, issued in Korean Application No. 10-2005-7018906. |
Office Action dated Sep. 14, 2009, issued in Canadian Application No. 2484923. |
International Search Report for PCT Application Serial No. PCT/US2004/010277 mailed Feb. 11, 2005. |
Written Opinion for PCT Application Serial No. PCT/US2004/010277 mailed Feb. 11, 2005. |
International Preliminary Report on Patentability for PCT Application Serial No. PCT/US2004/010277 mailed Oct. 27, 2005. |
Notification of Reasons for Refusal for Korean Patent Application No. 10-2005-7018906, Oct. 17, 2006. |
Notification of Decision to Grant: Korean Patent Application No. 10-2005-7018906, May 30, 2007. |
Office Action for Canadian Patent Application No. 2,520,741, mailed Feb. 28, 2007. |
Office Action for Chinese Patent Application No. 200480014833.8 (including translation), dated Jan. 19, 2007. |
Examiner's First Report for Australian Patent Application No. 2004228019, mailed Mar. 27, 2007. |
Written Opinion for PCT Application Serial No. PCT/US03/14615 mailed Oct. 14, 2005. |
International Preliminary Examination Report for PCT Application Serial No. PCT/US03/14615 mailed Jan. 10, 2006. |
Examiner's First Report for Australian Patent Application No. 2003228960, mailed Oct. 17, 2007. |
International Preliminary Report on Patentability for International (PCT) Application No. PCT/US06/24491, mailed Jan. 10, 2008. |
Official Action for U.S. Appl. No. 10/435,330, mailed Aug. 24, 2007. |
Invibio, Biomaterials Solutions, “PEEK-Optima Polymer Processing Guide”, Invibio Ltd., 2004, 17 pages. |
Office Action dated Aug. 7, 2009, in European Patent Application 06785447.1. |
Office Action dated Oct. 24, 2008, in Australian Patent Application No. 2008201824. |
Notice of Allowance dated Nov. 23, 2009, in U.S. Appl. No. 11/069,390. |
Supplemental Search Report dated Mar. 24, 2010, in European Patent Application 03726737.4. |
Office Action dated Jun. 15, 2010, in European Patent Application 03726737.4. |
Office Action dated Jul. 9, 2010, in U.S. Appl. No. 11/425,987. |
Number | Date | Country | |
---|---|---|---|
20060009768 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
60370708 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10406895 | Apr 2003 | US |
Child | 11223530 | US |