Emissions Standards, as articulated in The Clean Air Act Amendments of 1990 as established by the U.S. Environmental Protection Agency (EPA), required assessment of hazardous air pollutants from utility power plants. In December 2000 the EPA announced their intention to regulate mercury emissions from coal-fired utility boilers. Coal-fired utility boilers are a known major source of anthropogenic mercury emissions in the United States. Elemental mercury and many of its compounds are volatile and will therefore leave the boiler as trace constituents in boiler flue gases. Some of these mercury constituents are insoluble in water, which renders them difficult to capture in conventional wet and dry scrubbers. Thus new methods and processes are needed to capture these trace constituents from boiler flue gases.
Mercury appears in coal combustion flue gases in both solid and gas phases (particulate-bound mercury and vapor-phase mercury, respectively). The so-called particulate-phase mercury is really vapor-phase mercury adsorbed onto the surface of ash or carbon particles. Due to the high volatility of mercury and many of its compounds, most of the mercury found in flue gases is vapor-phase mercury. Vapor-phase mercury can appear as elemental mercury (elemental, metallic mercury vapor) or as oxidized mercury (vapor-phase species of various compounds of mercury). Speciation, which refers to the form of mercury present, is a key parameter in the development and design of mercury control strategies. All efforts to devise new control strategies for mercury emissions from power plants must focus on this characteristic of mercury.
Particulate collectors in use at electric utility plants, most commonly electrostatic precipitators (ESP) or fabric filters (FF), sometimes called baghouses, provide high-efficiency removal of particulate-bound mercury. Fabric filters tend to exhibit better particulate-bound mercury removal than ESPs by providing a filter cake upon which to trap the particulate mercury as the flue gas passes through said filter cake. If the filter cake also contains constituents that will react with mercury such as unreacted carbon or even activated carbon, then the filter cake can act as a site to facilitate gas-solid reactions between the gaseous mercury and the solid carbon particles. If a power plant is equipped with a Flue Gas Desulfurization System (FGD) then either wet scrubbers or spray dryer absorbers (SDA) can remove significant amounts of oxidized mercury. Oxidized mercury, typically appearing in the form of mercuric chloride, is soluble in water, making it amenable to removal in sulfur dioxide scrubbers. Elemental mercury, insoluble in water, is less likely to be scrubbed in conventional scrubbers. Removal of elemental mercury, therefore, remains an important issue in the search for cost-effective mercury control techniques.
Numerous studies have been, and continue to be, conducted to develop cost-effective approaches to the control of elemental mercury. Many of the studies have focused on the injection of a carbonaceous sorbent (e.g., powdered activated carbon, or PAC) into the flue gas upstream of the particulate collector to adsorb vapor-phase mercury. The sorbent, and its burden of adsorbed mercury, are subsequently removed from the flue gases in a downstream particulate collector. Adsorption is a technique that has often been successfully applied for the separation and removal of trace quantities of undesirable components. PAC injection is used, commercially, to remove mercury from municipal waste combustor exhaust gases. PAC injection removes both oxidized and elemental mercury species, although removal efficiencies are higher for the oxidized form. Although this approach appeared attractive in early work, the economics of high injection rates can be prohibitive when applied to coal-fired utility plants. More refined studies are now in progress to define more precisely what can and cannot be achieved with PAC. Still other studies seek to enhance PAC technology. One technique subjects the PAC to an impregnation process wherein elements such as iodine or sulfur are incorporated into the carbonaceous sorbent. Such processes can yield sorbents that more strongly bond with adsorbed mercury species, but also result in significantly higher sorbent cost.
The speciation of vapor-phase mercury depends on coal type. Eastern U.S. bituminous coals tend to produce a higher percentage of oxidized mercury than do western subbituminous and lignite coals. Western coals have low chloride content compared to typical eastern bituminous coals. It has been recognized for several years that a loose empirical relationship holds between the chloride content of coal and the extent to which mercury appears in the oxidized form.
Although elemental mercury can be adsorbed onto the surface of activated carbon, the capacity is very limited and reversible. That is, the mercury is bonded to the carbon is a simple adsorption scheme and will eventually evolve off the surface of the carbon to be re-emitted to the gas phase. If the mercury is to be permanently captured by the carbon, it must be converted (oxidized) on the surface. It has been observed that the reactivity of conventional PAC with elemental mercury vapor is dependent upon the presence of certain acid gas species (e.g., hydrogen chloride and sulfur trioxide) in the flue gas stream. The presence of hydrogen chloride (HCl), in particular, has been shown to significantly improve the adsorption of elemental mercury from coal combustion flue gases. The hydrogen chloride is apparently adsorbed onto the carbon surface, facilitating the subsequent oxidation of elemental mercury on the surface of the carbon. This phenomenon is of great practical importance for the application of PAC injection for mercury control for plants firing subbituminous and lignite coals. These coals tend to have very low chlorine content, and therefore produce combustion gases containing only small amounts of hydrogen chloride, and therefore would benefit significantly by the addition of hydrogen chloride in judicious ways.
The dearth of halogen-containing gases can be further exacerbated if the PAC injection process is operating downstream of a sulfur dioxide scrubber, such as a wet or SDA (“dry”) flue gas desulfurization system. The scrubber removes acid gases such as hydrogen chloride in addition to the removal of sulfur dioxide. As an example, consider the application of PAC injection to a unit equipped with SDA and a fabric filter that fires a low-chlorine coal. The concentration of hydrogen chloride in the flue gases resulting from the combustion of these coals is low. This concentration is further reduced by absorption in the SDA system. This renders the PAC largely ineffective for elemental mercury capture in the SDA and fabric filter. PAC must therefore be injected sufficiently far upstream of the SDA to allow for the capture of mercury prior to the removal of the acid gases in the SDA. This significantly limits the effective residence time available for mercury removal, and necessitates the use of high carbon injection rates.
Felsvang et al. (U.S. Pat. No. 5,435,980) teaches that the mercury removal of a coal-fired system employing an SDA system can be enhanced by increasing the chlorine-containing species (e.g., hydrogen chloride) in the flue gases. Felsvang et al. further teaches that this can be accomplished through the addition of a chlorine-containing agent to the combustion zone of the boiler, or through the injection of hydrochloric acid (HCl) vapor into the flue gases upstream of the SDA. These techniques are claimed to improve the mercury removal performance of PAC when used in conjunction with an SDA system.
One aspect of the present invention is drawn to an inexpensive, yet effective method for increasing the concentration of hydrogen chloride, or other halogen-containing compounds, on the surface of the carbonaceous sorbent as the sorbent is conveyed to the injection location.
Another aspect of the present invention is drawn to the use of bromine-containing compounds (which the present inventors have determined through experimental testing are significantly more effective than chlorine-containing compounds) to enhance the capture of elemental mercury by carbonaceous sorbents.
Yet another aspect of the present invention is drawn to a method of mercury removal that is applicable to virtually all coal-fired utility power plants, including those equipped with wet or dry FGD systems, as well as those plants equipped only with particulate collectors.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the present invention, its operating advantages and the specific benefits attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
Referring to the drawings generally, wherein like numerals designate the same or functionally similar elements throughout the several drawings, and to
The present invention is advantageous to the approaches of the prior art. The removal of elemental mercury from coal combustion gases generated by electric utility plants through the application of a conventional PAC injection process is very expensive. The present invention promises to significantly reduce the cost of mercury removal at coal-fired electric plants. First, the process provides the benefits, in terms of reactivity with elemental mercury, of replacing an expensive, pretreated PAC sorbent (e.g., iodine-impregnated PAC) with a conventional, low-cost sorbent.
The present invention is an improvement over Felsvang et al. (U.S. Pat. No. 5,435,980) because the present invention makes much more efficient use of the halogen-containing reagent 24 by placing it onto the carbon sorbent 14 surface just prior to injection into the flue gases. In the transport line, the sorbent does not have to compete with the alkaline fly ash or SDA lime slurry for the available halogen gas. It has been found by the inventors, and by several other investigators, that the addition of hydrogen chloride gas to the flue gases separately of the PAC injection system, as taught by Felsvang et al., does not significantly improve the elemental mercury removal performance of the PAC injection process. This is due to the fact that much of the injected hydrogen chloride reacts with other flue gas constituents (e.g., calcium compounds contained in the coal fly ash particles), thereby preventing the halogen from adsorbing onto the sorbent and thereby enhancing the performance of the injected PAC. By making efficient use of the halogen-containing reagent 24, the present invention permits much lower addition rates for the halogen-containing reagent 24 relative to other methods for halogen addition. The present invention also has a significant advantage over other means of adding halogen-containing compounds 24 to the flue gases in that the boiler and other power plant components are not subjected to the corrosive nature of the halogen compounds. This is especially true when compared to the addition of halogens to the boiler combustion chamber. High-temperature corrosion of boiler components by chlorides is a well-known and serious concern.
The present invention was tested in a 5 million Btu/hr Small Boiler Simulator (SBS) Facility. The SBS was fired at approximately 4.3 million Btu/hr with a western U.S. subbituminous coal. During these tests flue gases exiting the SBS boiler first passed through a spray dryer absorber (SDA) for removal of sulfur dioxide, and then through a fabric filter (FF) for removal of fly ash and spent sorbent from the SDA system.
A stream of Dynamically Halogenated PAC, prepared by the method of the present invention, was injected into the flue gas stream downstream of the SDA, and upstream of the fabric filter. Hydrogen bromide (HBr), hydrogen chloride and chlorine gases were each examined. All were effective, but HBr was most effective. The halogen-containing reagent 24, and a commercially-produced PAC were used as the carbonaceous sorbent 14.
In the preferred embodiment illustrated in
In yet another embodiment the coal-fired boiler fuel may include bituminous, subbituminous, and lignite coals and blends, thereof. The present invention is not limited to applications where coal is being combusted. It may also be applied to any type of combustion process where mercury emissions are to be controlled, such as in connection with combustion processes involving the combustion of municipal solid waste in incineration plants.
In yet another embodiment, the bromine-containing reagent 24 could comprise hydrogen bromide gas (HBr) or bromine (Br2).
In yet another embodiment, the halogen-containing gases 24 may include any one or more of the following: hydrogen chloride, chlorine (Cl2), as well as compounds of fluorine and iodine, and halide derivatives thereof.
In yet another embodiment, the carbonaceous sorbents 14 may include, but are not limited to, powdered activated carbon (PAC), carbons and chars produced from coal and other organic materials, and unburned carbon produced by the combustion process itself.
In yet another embodiment, the electric utility plant configurations may include plants equipped with only a particulate collector (FF or ESP) (
In yet another embodiment, the spent carbonaceous sorbent can be removed separately from the coal fly ash, if desired, by adding an additional particulate collector designed specifically to capture the injected quantity of carbonaceous sorbent.
The present invention takes advantage of the ability to dynamically halogenate the carbonaceous sorbent 14 on site, at the coal-fired utility plant, as needed, thus avoiding any elaborate off-site manufacturing processes. Conventional pneumatic transport equipment can be used, and the mixing of the stream of halogen containing reagent 24 and the stream of carbonaceous sorbent 14 can take place at typical ambient conditions for such equipment at a power plant site; e.g. from about 0 C. to about 50 C. In so far as the specific injection locations 28 where the combined stream of halogen reagent and carbonaceous sorbent may be injected into the mercury-containing flue gas, various locations will suffice. One such location could be into the flue gas stream just downstream (with respect to a direction of flue gas flow through the installation) of the air heaters conventionally used on such power plants, i.e., at location 28A as illustrated in
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, those skilled in the art will appreciate that changes may be made in the form of the invention covered by the following claims without departing from such principles. For example, the present invention may be applied to new fossil-fueled boiler construction which requires removal of mercury from flue gases produced thereby, or to the replacement, repair or modification of existing fossil-fueled boiler installations. The present invention may also be applied, as described earlier, to new incinerators for the combustion of MSW, or to the replacement, repair or modification of existing incinerators. In some embodiments of the invention, certain features of the invention may sometimes be used to advantage without a corresponding use of the other features. Accordingly, there are other alternative embodiments which would be apparent to those skilled in the art and based on the teachings of the present invention, and which are intended to be included within the scope and equivalents of the following claims of this invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/09441 | 3/21/2005 | WO | 9/5/2006 |
Number | Date | Country | |
---|---|---|---|
60555281 | Mar 2004 | US |