This relates generally to input devices, and more particularly to providing dynamic displays associated with input devices.
The usability and appeal of an electronic device can depend in large part upon the degree to which a user interface associated with the device is perceived as natural or intuitive. The user interface tends to act as a gateway through which a user interacts with the device, including the device's features, tools, and functions. Some conventional user interfaces include input devices utilizing mechanical pushbuttons, for example, that can be associated with particular functionality when pressed.
Pushbuttons can provide a natural and intuitive mechanism by which a user may provide input to a device, but they can also be inflexible. For instance, pushbuttons integrated into the physical make-up of a device tend to have fixed locations and orientations relative to the device. Additionally, the location and orientation of any graphics, such as labels, associated with the pushbuttons also tend to be fixed relative to the device.
As electronic devices evolve, they tend to decrease in size and provide increased functionality. However, the development of user interfaces to support such advances can be constrained by the physical limitations of the associated input devices.
To improve user interfaces of electronic devices, an input device is disclosed that can modify the appearance and/or location of graphics associated with an input area of a device. The input device, for example, can enable a device to provide “virtual” buttons—graphical representations of buttons as viewed by a user and the button functionality associated therewith—that can be dynamically moved and mapped to different mechanical button areas provided in fixed locations within the device.
Such a configuration provides greater flexibility in the use and configuration of many input devices while overcoming their physical constraints.
The appearance and/or location of an input area's graphics can be modified based on various factors, such as device orientation, application context, etc. In one example, an input device can have a button layout that shifts based on the orientation of the electronic device relative to the user, such that the button layout is consistently presented to the user in an upright orientation. In another example, the input device can rotate and/or rename a button input area region depending on the context of an application running on the electronic device. In a further example, the input device can display dynamic graphic content in an input area which is distinct from a display screen of the electronic device. Such content can include, for example, a volume indicator and/or textual content on a wheel-based input device, and can be displayed when the display screen of the electronic device is off.
The present disclosure describes embodiments of an input device that can modify the appearance and/or location of graphics associated with an input area of a device. Such modifications can enable a device to provide “virtual” buttons—graphical representations of buttons as viewed by a user and the button functionality associated therewith—that can be dynamically moved and mapped to different mechanical button areas provided in fixed locations within the device. Such modifications can also enable the display of dynamic graphic content in an input area which is distinct from a display screen of the electronic device.
Such a configuration overcomes the physical constraints associated with many input devices, and provides greater flexibility in the use and configuration of such input devices.
Electronic devices (e.g., media players) generally have connection capabilities that allow a user to upload and download data to and from a host device, such as a general purpose computer (e.g., desktop computer, portable computer, etc.). For example, in the case of a camera, photo images can be downloaded to the general purpose computer for further processing (e.g., printing). With regard to music players, for example, songs and play lists stored on the general purpose computer can be downloaded into the music player. In the embodiment illustrated in
As shown in
Electronic device 100 may also include display screen 120. Display screen 120 can be used to display a graphical user interface as well as other information to the user (e.g., text, objects, graphics). By way of example, display screen 120 may be a liquid crystal display (LCD). In one embodiment, the display screen can correspond to a X-by-Y pixel high-resolution display, with a white LED backlight to give clear visibility in daylight as well as low-light conditions. Display screen 120 can also exhibit a “wide screen” aspect ratio (e.g., similar to a 16:9 aspect ratio) such that it may be relatively easy to perceive portrait and landscape orientations.
Electronic device 100 may also include input device 130. Input device 130 can be configured to provide one or more control functions for controlling various applications associated with electronic device 100. For example, a control function can be used to move an object or perform an action on display screen 120 or to make selections or issue commands associated with operating electronic device 100. Input device 130 may be widely varied. In one embodiment, input device 130 can include one or more movable sensor mechanisms for detecting input. The movable sensor mechanism can include, for example, one or more moving members that actuate a switch when a particular area of input device 130 is pressed. The movable sensor mechanism may operate as a mechanical push button and perform a clicking action when actuated. For example, input device 130 can include a movable platform that provides clicking actions at particular input area regions corresponding to button locations. For the purpose of the present disclosure, input area regions corresponding to button locations may also be referred to as button input area regions or button regions. In this example, Locations A-D, as illustrated in
An example of an input device comprising a rigid sensor mechanism may be found in U.S. Pat. No. 7,046,230 entitled “Touch Pad Handheld Device,” which is incorporated herein by reference in its entirety. An example of an input device comprising a combination of a rigid sensor mechanism and a movable sensor mechanism may be found in U.S. patent application Ser. No. 11/812,383 entitled “Gimballed Scroll Wheel,” filed Jun. 18, 2007, which is incorporated herein by reference in its entirety.
Various graphical features such as icons, symbols, text, etc. may be associated with input device 130. In the embodiment illustrated in
In accordance with one embodiment, each of the button input area regions such as Locations A-D can include dynamically controlled and discretely placed display nodes that can change the button layout of input device 130. The button layout can include, for example, the graphic features and corresponding button functionality associated with each button input area region of input device 130. The button layout may, for example, be configured to change in accordance with the orientation of electronic device 100 so that the button layout is consistently presented to a user of the device in an upright orientation (relative to gravity, for example). In one example, when electronic device 100 is held in a portrait orientation, its button layout can be displayed similarly to what is illustrated in
Referring to the embodiments illustrated in
Referring to the embodiment illustrated in
Menu=12 o'clock
Fast forward=3 o'clock
Pause/play=6 o'clock
Fast reverse=9 o'clock
Referring to the embodiment illustrated
Menu=3 o'clock
Fast forward=6 o'clock
Pause/play=9 o'clock
Fast reverse=12 o'clock
Stated somewhat differently, when the electronic device is positioned vertically, as shown in the embodiment of
Examples of modifying application context based on device orientation may be found in U.S. patent application Ser. No. 11/767,409 entitled “ELECTRONIC DEVICE WITH IMAGED BASED BROWSERS”, filed Jun. 22, 2007, and U.S. patent application Ser. No. 11/969,800 entitled “MODAL CHANGE BASED ON ORIENTATION OF A PORTABLE MULTIFUNCTION DEVICE”, filed Jan. 4, 2008, all of which are herein incorporated by reference.
Although
The example of
The example of
The illustrated process enables the development of applications that can rename or change a graphic and functionality associated with certain button input area regions, and associate application-specific functionality to button events associated with the button input area regions. This can enable a processor to coordinate the modification of icons and functionality associated with button input area regions of an input device.
In an example of one such application, a button layout associated with certain button input area regions can be programmed to change depending on choices provided in a user interface menu. For instance, a calendar application can be designed for electronic device 100 that causes a left and right button input area region to display month names, such as “Mar” and “May”. When a user presses a particular month name on the input device, the calendar application can be configured to provide calendar information for the selected month in response to the user input. In another example, the controls can be programmed to change in connection with a context of a game running on electronic device 100. The context of an application running on electronic device 100 can be dependent on actions taken by a user.
Any suitable display technology can be utilized to provide the graphic features associated with the input device. Display technologies can include, for example, electronic ink, LED, and LCD technologies. The graphic features can be positioned near or over the input sensors with which they are associated. For example, in one embodiment the graphic features can be provided on the electronic device housing adjacent to the corresponding button input area regions of the input device. In another embodiment, the graphic features can be provided over the corresponding button input area regions of the input device, as shown in the embodiments illustrated above.
In some embodiments, the input device can integrate the graphic feature display technology with the input detection technology of the input device. The input device can include a circuit board, such as a flexible printed circuit board (also referred to as FPC or flex) or a typical printed circuit board, that can enable any type of input detection technology. As described above, the input detection technology can include movable and rigid sensor mechanisms for example. Further, the circuit board can enable the input detection functionality and also be a main constituent of the input area display nodes.
In one such embodiment, electronic ink can be deposited on conductive display pads that are formed on the circuit board in a pixelated pattern. In one example, electronic ink can comprise a material that changes colors (e.g., between black and white) based on the charge that is applied to the electronic ink material. By applying a voltage to a particular arrangement of display pad pixels covered by the electronic ink, the circuit board can change the graphic features displayed by the electronic ink. An electronic ink display may have a slow response time relative to that of the input sensors of the input device, but a relatively slower response time may not necessarily be problematic for an embodiment that merely requires a change from one static image to another static image. Electronic ink may be advantageous in that it can provide a crisp, detailed image on top of either a flexible or rigid circuit board for example.
Also shown is a flexible connector that can connect FPC 1000 to a main printed circuit board (PCB) of the electronic device. Dome switches 1020 can be aligned with display pads 1010 on FPC 1000. Aligning dome switches 1020 and display pads 1010 in this manner can enable the graphic features controlled by each display pad 1010 to be properly associated with and mapped to its corresponding dome switch 1020.
In another embodiment, electronic ink 1050 can be printed directly on display pads 1010, and protective cover 1060 can be completely or partially transparent so that the graphic features displayed by electronic ink 1050 can be viewable by a user through cover 1060.
The conductive layer of FPC 1000 can also include sensor pads for capacitively sensing touch input. However, since the sensor pads cannot occupy the same area as the display pads, the ability of the input device to capacitively sense touch input may be relatively lower at locations where the display pads are placed. To compensate for this, the display pads may be placed in positions that least impact the sensing ability of the sensor pads. These positions may be widely varied. For example, in one embodiment, the display pads can be placed near the outer region of the FPC. In another embodiment, the display pads can be placed near the inner region of the FPC. The placement of the display pads need not be symmetrical, and can vary according to their desired functionality and impact on the operation of the input device.
However, utilizing two conductive layers can increase the relative height or thickness of the input device. The relative height or thickness of the input device may be lower in embodiments where the capacitive sensor pads and display pads are located on the same side of the flex. For example,
In addition to providing graphic features associated with button input area regions of the input device, the input device can also enable the display of other information on the surface of the input device. For example,
In some embodiments the capacitive sensor pads and display pads can use at least some common signal wires. This may reduce the number wires emanating from a flex. In some embodiments multiplexing techniques can be used. This may also reduce the number wires emanating from a flex. Examples of capacitive sensing devices that reduce the number of I/O contacts associated with the devices may be found in U.S. patent application Ser. No. 11/483,008 entitled “CAPACITANCE SENSING ELECTRODE WITH INTEGRATED I/O MECHANISM”, filed Jul. 6, 2006, and U.S. patent application Ser. No. 11/482,286 entitled “MUTUAL CAPACITANCE TOUCH SENSING DEVICE”, filed Jul. 6, 2006, all of which are herein incorporated by reference.
As described above, an orientation detection sensor, such as an accelerometer, may be associated with the electronic device and can be located on a main circuit board or motherboard of the electronic device in one embodiment. The accelerometer can be used for detecting the orientation of the electronic device and generating a signal associated with the orientation of the electronic device or a change in orientation of the electronic device for example. The signal can be used to change the orientation of the display on the electronic device's display screen for example. The same or a similar accelerometer can be used to send a signal to the input device via a flex circuit board connection. The signal from the accelerometer can also be used for a feedback loop that may indicate which picture to use on the display screen. Similarly, the same information from the accelerometer can be used to indicate whether the input device and the electronic ink icons should use a first relative orientation or a second relative orientation. As the electronic device moves from a first device orientation to a second device orientation, the display screen can respond by changing from a first display mode to a second display mode.
As shown in
Touch pad 1434 can provide location information for an object, such as a finger for example, in contact with or in proximity to the touch pad. This information can be used in combination with information provided by a movement indicator to generate a single command associated with the movement of the touch pad. The touch pad may be used as an input device by itself; for example, the touch pad may be used to scroll through a list of items on the device.
The shape, size and configuration of touch pad 1434 may be widely varied. In addition to the touchpad configurations disclosed above, a conventional touch pad based on the Cartesian coordinate system, or based on a Polar coordinate system can be configured to provide scrolling using rotational movements and can be configured to accept the multi-touch and gestures, for example those described herein. An example of a touch pad based on polar coordinates may be found in U.S. Pat. No. 7,046,230 which is incorporated by reference above. Furthermore, touch pad 1434 can be used in at least two different modes, which may be referred to as a relative mode and an absolute mode. In absolute mode, touch pad 1434 can, for example, report the absolute coordinates of the location at which it may be touched. For example, these would be “x” and “y” coordinates in the case of a standard Cartesian coordinate system or (r,θ) in the case of a Polar coordinate system. In relative mode, touch pad 1434 can report the direction and/or distance of change, for example, left/right, up/down, and the like. In most cases, the signals produced by touch pad 1434 can direct movement on the display screen in a direction similar to the direction of the finger as it may be moved across the surface of touch pad 1434.
Further examples of touch pad configurations may be found in U.S. patent application Ser. No. 10/949,060 entitled “Raw Data Track Pad Device and System,” filed Sep. 24, 2004, U.S. patent application Ser. No. 11/203,692 entitled “Method of Increasing the Spatial Resolution of Touch Sensitive Devices,” filed Aug. 15, 2005, and U.S. patent application Ser. No. 11/818,395 entitled “Touch Screen Stack-Ups,” filed Jun. 13, 2007, all of which are incorporated herein by reference in their entireties.
Further examples of touch pad sensing may be found in U.S. patent application Ser. No. 10/903,964 entitled “Gestures for Touch Sensitive Input Devices,” filed Jul. 30, 2004, U.S. patent application Ser. No. 11/038,590 entitled “Mode-Based Graphical User Interfaces for Touch Sensitive Input Devices,” filed Jan. 18, 2005, U.S. patent application Ser. No. 11/048,264 entitled “Gestures for Touch Sensitive Input Devices,” filed Jan. 31, 2005, U.S. patent application Ser. No. 11/232,299 entitled “System and Method for Processing Raw Data of Track Pad Device,” filed Sep. 21, 2005, and U.S. patent application Ser. No. 11/619,464 entitled “Multi-Touch Input Discrimination,” filed Jan. 3, 2007, all of which are incorporated herein by reference in their entireties.
The shape of touch pad 1434 may be widely varied. For example, it may be circular, oval, square, rectangular, triangular, and the like. In general, the outer perimeter can define the working boundary of touch pad 1434. In the embodiment illustrated in
Touch pad 1434, which can generally take the form of a rigid platform. The rigid platform may be planar, convex or concave, and may include touchable outer surface 1436, which may be textured, for receiving a finger or other object for manipulation of the touch pad. Although not shown in
In the embodiment illustrated in
In accordance with one embodiment, touch pad 1434 can be movable relative to the frame 1432. This movement can be detected by a movement detector that generates another control signal. By way of example, touch pad 1434 in the form of the rigid planar platform can rotate, pivot, slide, translate, flex and/or the like relative to frame 1432. Touch pad 1434 can be coupled to frame 1432 and/or it can be movably restrained by frame 1432. By way of example, touch pad 1434 can be coupled to frame 1432 through axels, pin joints, slider joints, ball and socket joints, flexure joints, magnets, cushions and/or the like. Touch pad 1434 can also float within a space of the frame (e.g., gimbal). It should be noted that input device 1430 may additionally include a combination of joints such as a pivot/translating joint, pivot/flexure joint, pivot/ball and socket joint, translating/flexure joint, and the like to increase the range of movement (e.g., increase the degree of freedom).
When moved, touch pad 1434 can be configured to actuate a movement detector circuit that generates one or more signals. The circuit may generally include one or more movement detectors such as switches, sensors, encoders, and the like.
In the embodiment illustrated in
As shown in
To elaborate, touch pad 1434 can be configured to actuate a movement detector, which together with the touch pad positional information, can form a button command when touch pad 1434 is moved to the depressed position. The movement detector can be located within frame 1432 and coupled to touch pad 1434 and/or frame 1432. The movement detector may be any combination of switches and sensors. Switches can be generally configured to provide pulsed or binary data such as activate (on) or deactivate (off). By way of example, an underside portion of touch pad 1434 can be configured to contact or engage (and thus activate) a switch when the user presses on touch pad 1434. The sensors, on the other hand, can be generally configured to provide continuous or analog data. By way of example, the sensor can be configured to measure the position or the amount of tilt of touch pad 1434 relative to the frame when a user presses on the touch pad 1434. Any suitable mechanical, electrical and/or optical switch or sensor may be used. For example, tact switches, force sensitive resistors, pressure sensors, proximity sensors, and the like may be used. In some case, the spring bias for placing touch pad 1434 in the upright position may be provided by a movement detector that includes a spring action. In other embodiments, input device 1430 can include one or more movement detectors in various locations positioned under and/or above touch pad 1434 to form button commands associated with the particular locations in which the movement detector is actuated.
Touch pad 1434 may can also be configured to provide a force feedback response. An example of touch pad configuration providing a haptic feedback response may be found in U.S. Pat. No. 6,337,678 entitled “Force Feedback Computer Input and Output Device with Coordinated Haptic Elements,” which is incorporated herein by reference in its entirety.
As should be appreciated, the button functions generated by pressing on each button zone may include selecting an item on the screen, opening a file or document, executing instructions, starting a program, viewing a menu, and/or the like. The button functions may also include functions that make it easier to navigate through the electronic system, as for example, zoom, scroll, open different menus, home the input pointer, perform keyboard related actions such as enter, delete, insert, page up/down, and the like. In the case of a music player, one of the button zones may be used to access a menu on the display screen, a second button zone may be used to seek forward through a list of songs or fast forward through a currently playing song, a third button zone may be used to seek backwards through a list of songs or fast rearward through a currently playing song, and a fourth button zone may be used to pause or stop a song that may be in the process of being played.
To elaborate, touch pad 1472 can be capable of moving relative to frame 1476 so as to create a clicking action. Frame 1476 can be formed from a single component or a combination of assembled components. The clicking action can actuate a movement detector contained inside frame 1476. The movement detector can be configured to sense movements of the button zones during the clicking action and to send a signal corresponding to the movement to the electronic device. By way of example, the movement detectors may be switches, sensors and/or the like.
In addition, touch pad 1472 can be configured to send positional information on what button zone may be acted on when the clicking action occurs. The positional information can allow the device to determine which button zone to activate when the touch pad is moved relative to the frame.
The movements of each of button zones 1474 may be provided by various rotations, pivots, translations, flexes and the like. In one embodiment, touch pad 1472 can be configured to gimbal relative to frame 1476. By gimbal, it is generally meant that the touch pad 1472 can float in space relative to frame 1476 while still being constrained thereto. The gimbal can allow the touch pad 1472 to move in single or multiple degrees of freedom (DOF) relative to the housing, for example, movements in the x, y and/or z directions and/or rotations about the x, y, and/or z axes (θxθyθz).
Both touch pad 1444 and movement detector 1446 can be operatively coupled to computing device 1442 through communication interface 1454. The communication interface provides a connection point for direct or indirect connection between the input device and the electronic device. Communication interface 1454 may be wired (wires, cables, connectors) or wireless (e.g., transmitter/receiver).
Referring to computing device 1442, it may include processor 1457 (e.g., CPU or microprocessor) configured to execute instructions and to carry out operations associated with computing device 1442. For example, using instructions retrieved from memory, the processor can control the reception and manipulation of input and output data between components of computing device 1442. Processor 1457 can be configured to receive input from both movement detector 1446 and touch pad 1444 and can form a signal/command that may be dependent upon both of these inputs. In most cases, processor 1457 can execute instruction under the control of an operating system or other software. Processor 1457 may be a single-chip processor or may be implemented with multiple components.
Computing device 1442 may also include input/output (I/O) controller 1456 (which can generally correspond to controller 704) that can be operatively coupled to processor 1457. (I/O) controller 1456 can be integrated with processor 1457 or it may be a separate component as shown. I/O controller 1456 can generally be configured to control interactions with one or more I/O devices that may be coupled to the computing device 1442, as for example input device 1440 and orientation detector 1455 (which can generally correspond to orientation detector 702), such as an accelerometer. I/O controller 1456 can generally operate by exchanging data between computing device 1442 and I/O devices that desire to communicate with computing device 1442.
Computing device 1442 may also include display controller 1458 that can be operatively coupled to processor 1457 (which can generally correspond to processor 802). Display controller 1458 can be integrated with processor 1457 or it may be a separate component as shown. Display controller 1458 can be configured to process display commands to produce text and graphics on display screen 1460. By way of example, display screen 1460 may be a monochrome display, color graphics adapter (CGA) display, enhanced graphics adapter (EGA) display, variable-graphics-array (VGA) display, super VGA display, liquid crystal display (e.g., active matrix, passive matrix and the like), cathode ray tube (CRT), plasma displays and the like. In the embodiment illustrated in
In some cases, processor 1457 together with an operating system operates to execute computer code and produce and use data. The computer code and data can reside within program storage area 1462 that may be operatively coupled to processor 1457. Program storage area 1462 can generally provide a place to hold data that may be used by computing device 1442. By way of example, the program storage area may include Read-Only Memory (ROM), Random-Access Memory (RAM), hard disk drive and/or the like. The computer code and data could also reside on a removable program medium and loaded or installed onto the computing device when needed. In one embodiment, program storage area 1462 can be configured to store information for controlling how the tracking and movement signals generated by the input device may be used, either alone or in combination for example, by computing device 1442 to generate an input event command, such as a single button press for example.
It will be appreciated that the above description for clarity has described embodiments of the disclosure with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units or processors may be used without detracting from the disclosure. For example, functionality illustrated to be performed by separate processors or controllers may be performed by the same processors or controllers. Hence, references to specific functional units may be seen as references to suitable means for providing the described functionality rather than indicative of a strict logical or physical structure or organization.
The disclosure may be implemented in any suitable form, including hardware, software, firmware, or any combination of these. The disclosure may optionally be implemented partly as computer software running on one or more data processors and/or digital signal processors. The elements and components of an embodiment of the disclosure may be physically, functionally, and logically implemented in any suitable way. Indeed, the functionality may be implemented in a single unit, in a plurality of units, or as part of other functional units. As such, the disclosure may be implemented in a single unit or may be physically and functionally distributed between different units and processors.
One skilled in the relevant art will recognize that many possible modifications and combinations of the disclosed embodiments can be used, while still employing the same basic underlying mechanisms and methodologies. The foregoing description, for purposes of explanation, has been written with references to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations can be possible in view of the above teachings. The embodiments were chosen and described to explain the principles of the disclosure and their practical applications, and to enable others skilled in the art to best utilize the disclosure and various embodiments with various modifications as suited to the particular use contemplated.
This claims priority under 35 USC 119(e) to U.S. Provisional Application No. 61/020,531, filed Jan. 11, 2008, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1061578 | Wischhusen et al. | May 1913 | A |
2063276 | Thomas | Dec 1936 | A |
2798907 | Schneider | Jul 1957 | A |
2903229 | Landge | Sep 1959 | A |
2945111 | McCormick | Jul 1960 | A |
3005055 | Mattke | Oct 1961 | A |
3965399 | Walker et al. | Jun 1976 | A |
3996441 | Ohashi | Dec 1976 | A |
4029915 | Ojima | Jun 1977 | A |
4103252 | Bobick | Jul 1978 | A |
4110749 | Janko et al. | Aug 1978 | A |
4115670 | Chandler | Sep 1978 | A |
4121204 | Welch et al. | Oct 1978 | A |
4129747 | Pepper | Dec 1978 | A |
4158216 | Bigelow | Jun 1979 | A |
4242676 | Piguet et al. | Dec 1980 | A |
4246452 | Chandler | Jan 1981 | A |
4264903 | Bigelow | Apr 1981 | A |
4266144 | Bristol | May 1981 | A |
4293734 | Pepper, Jr. | Oct 1981 | A |
D264969 | McGoutry | Jun 1982 | S |
4338502 | Hashimoto et al. | Jul 1982 | A |
4380007 | Steinegger | Apr 1983 | A |
4380040 | Posset | Apr 1983 | A |
4394649 | Suchoff et al. | Jul 1983 | A |
4475008 | Doi et al. | Oct 1984 | A |
4570149 | Thornburg et al. | Feb 1986 | A |
4583161 | Gunderson et al. | Apr 1986 | A |
4587378 | Moore | May 1986 | A |
4604786 | Howie, Jr. | Aug 1986 | A |
4613736 | Shichijo et al. | Sep 1986 | A |
4644100 | Brenner et al. | Feb 1987 | A |
4719524 | Morishima et al. | Jan 1988 | A |
4734034 | Maness et al. | Mar 1988 | A |
4736191 | Matzke et al. | Apr 1988 | A |
4739191 | Puar | Apr 1988 | A |
4739299 | Eventoff et al. | Apr 1988 | A |
4752655 | Tajiri et al. | Jun 1988 | A |
4755765 | Ferland | Jul 1988 | A |
4764717 | Tucker et al. | Aug 1988 | A |
4771139 | DeSmet | Sep 1988 | A |
4798919 | Miessler et al. | Jan 1989 | A |
4810992 | Eventoff | Mar 1989 | A |
4822957 | Talmage, Jr. et al. | Apr 1989 | A |
4831359 | Newell | May 1989 | A |
4849852 | Mullins | Jul 1989 | A |
4856993 | Maness et al. | Aug 1989 | A |
4860768 | Hon et al. | Aug 1989 | A |
4866602 | Hall | Sep 1989 | A |
4876524 | Jenkins | Oct 1989 | A |
4897511 | Itaya et al. | Jan 1990 | A |
4914624 | Dunthorn | Apr 1990 | A |
4917516 | Retter | Apr 1990 | A |
4943889 | Ohmatoi | Jul 1990 | A |
4951036 | Grueter et al. | Aug 1990 | A |
4954823 | Binstead | Sep 1990 | A |
4976435 | Shatford et al. | Dec 1990 | A |
4990900 | Kikuchi | Feb 1991 | A |
5008497 | Asher | Apr 1991 | A |
5036321 | Leach et al. | Jul 1991 | A |
5053757 | Meadows | Oct 1991 | A |
5086870 | Bolduc | Feb 1992 | A |
5125077 | Hall | Jun 1992 | A |
5159159 | Asher | Oct 1992 | A |
5179648 | Hauck | Jan 1993 | A |
5186646 | Pederson | Feb 1993 | A |
5192082 | Inoue et al. | Mar 1993 | A |
5193669 | Demeo et al. | Mar 1993 | A |
5231326 | Echols | Jul 1993 | A |
5237311 | Mailey et al. | Aug 1993 | A |
5278362 | Ohashi | Jan 1994 | A |
5305017 | Gerpheide | Apr 1994 | A |
5313027 | Inoue et al. | May 1994 | A |
D349280 | Kaneko | Aug 1994 | S |
5339213 | O'Callaghan | Aug 1994 | A |
5367199 | Lefkowitz et al. | Nov 1994 | A |
5374787 | Miller et al. | Dec 1994 | A |
5379057 | Clough et al. | Jan 1995 | A |
5404152 | Nagai | Apr 1995 | A |
5408621 | Ben-Arie | Apr 1995 | A |
5414445 | Kaneko et al. | May 1995 | A |
5416498 | Grant | May 1995 | A |
5424756 | Ho et al. | Jun 1995 | A |
5432531 | Calder et al. | Jul 1995 | A |
5438331 | Gilligan et al. | Aug 1995 | A |
D362431 | Kaneko et al. | Sep 1995 | S |
5450075 | Waddington | Sep 1995 | A |
5453761 | Tanaka | Sep 1995 | A |
5473343 | Kimmich et al. | Dec 1995 | A |
5473344 | Bacon et al. | Dec 1995 | A |
5479192 | Carroll, Jr. et al. | Dec 1995 | A |
5494157 | Golenz et al. | Feb 1996 | A |
5495566 | Kwatinetz | Feb 1996 | A |
5508703 | Okamura et al. | Apr 1996 | A |
5508717 | Miller | Apr 1996 | A |
5543588 | Bisset et al. | Aug 1996 | A |
5543591 | Gillespie et al. | Aug 1996 | A |
5555004 | Ono et al. | Sep 1996 | A |
5559301 | Bryan, Jr. et al. | Sep 1996 | A |
5559943 | Cyr et al. | Sep 1996 | A |
5561445 | Miwa et al. | Oct 1996 | A |
5564112 | Hayes et al. | Oct 1996 | A |
5565887 | McCambridge et al. | Oct 1996 | A |
5578817 | Bidiville et al. | Nov 1996 | A |
5581670 | Bier et al. | Dec 1996 | A |
5585823 | Duchon et al. | Dec 1996 | A |
5589856 | Stein et al. | Dec 1996 | A |
5589893 | Gaughan et al. | Dec 1996 | A |
5596347 | Robertson et al. | Jan 1997 | A |
5596697 | Foster et al. | Jan 1997 | A |
5598183 | Robertson et al. | Jan 1997 | A |
5611040 | Brewer et al. | Mar 1997 | A |
5611060 | Belfiore et al. | Mar 1997 | A |
5613137 | Bertram et al. | Mar 1997 | A |
5617114 | Bier et al. | Apr 1997 | A |
5627531 | Posso et al. | May 1997 | A |
5632679 | Tremmel | May 1997 | A |
5640258 | Kurashima et al. | Jun 1997 | A |
5648642 | Miller et al. | Jul 1997 | A |
D382550 | Kaneko et al. | Aug 1997 | S |
5657012 | Tait | Aug 1997 | A |
5661632 | Register | Aug 1997 | A |
D385542 | Kaneko et al. | Oct 1997 | S |
5675362 | Clough et al. | Oct 1997 | A |
5689285 | Asher | Nov 1997 | A |
5721849 | Amro | Feb 1998 | A |
5726687 | Belfiore et al. | Mar 1998 | A |
5729219 | Armstrong et al. | Mar 1998 | A |
5730165 | Philipp | Mar 1998 | A |
5748185 | Stephan et al. | May 1998 | A |
5751274 | Davis | May 1998 | A |
5754890 | Holmdahl et al. | May 1998 | A |
5764066 | Novak et al. | Jun 1998 | A |
5777605 | Yoshinobu et al. | Jul 1998 | A |
5786818 | Brewer et al. | Jul 1998 | A |
5790769 | Buxton et al. | Aug 1998 | A |
5798752 | Buxton et al. | Aug 1998 | A |
5805144 | Scholder et al. | Sep 1998 | A |
5808602 | Sellers | Sep 1998 | A |
5812239 | Eger | Sep 1998 | A |
5812498 | Terés | Sep 1998 | A |
5815141 | Phares | Sep 1998 | A |
5825351 | Tam | Oct 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5825353 | Will | Oct 1998 | A |
5828364 | Siddiqui | Oct 1998 | A |
5838304 | Hall | Nov 1998 | A |
5841078 | Miller et al. | Nov 1998 | A |
5841423 | Carroll, Jr. et al. | Nov 1998 | A |
D402281 | Ledbetter et al. | Dec 1998 | S |
5850213 | Imai et al. | Dec 1998 | A |
5856645 | Norton | Jan 1999 | A |
5856822 | Du et al. | Jan 1999 | A |
5859629 | Tognazzini | Jan 1999 | A |
5861875 | Gerpheide | Jan 1999 | A |
5869791 | Young | Feb 1999 | A |
5875311 | Bertram et al. | Feb 1999 | A |
5883619 | Ho et al. | Mar 1999 | A |
5889236 | Gillespie et al. | Mar 1999 | A |
5889511 | Ong et al. | Mar 1999 | A |
5894117 | Kamishima | Apr 1999 | A |
5903229 | Kishi | May 1999 | A |
5907152 | Dandliker et al. | May 1999 | A |
5907318 | Medina | May 1999 | A |
5909211 | Combs et al. | Jun 1999 | A |
5910802 | Shields et al. | Jun 1999 | A |
5914706 | Kono | Jun 1999 | A |
5923388 | Kurashima et al. | Jul 1999 | A |
D412940 | Kato et al. | Aug 1999 | S |
5933102 | Miller et al. | Aug 1999 | A |
5933141 | Smith | Aug 1999 | A |
5936619 | Nagasaki et al. | Aug 1999 | A |
5943044 | Martinelli et al. | Aug 1999 | A |
5953000 | Weirich | Sep 1999 | A |
5956019 | Bang et al. | Sep 1999 | A |
5959610 | Silfvast | Sep 1999 | A |
5959611 | Smailagic et al. | Sep 1999 | A |
5964661 | Dodge | Oct 1999 | A |
5973668 | Watanabe | Oct 1999 | A |
6000000 | Hawkins et al. | Dec 1999 | A |
6002093 | Hrehor et al. | Dec 1999 | A |
6002389 | Kasser | Dec 1999 | A |
6005299 | Hengst | Dec 1999 | A |
6025832 | Sudo et al. | Feb 2000 | A |
6031518 | Adams et al. | Feb 2000 | A |
6034672 | Gaultier et al. | Mar 2000 | A |
6057829 | Silfvast | May 2000 | A |
6075533 | Chang | Jun 2000 | A |
6084574 | Bidiville | Jul 2000 | A |
D430169 | Scibora | Aug 2000 | S |
6097372 | Suzuki | Aug 2000 | A |
6104790 | Narayanaswami | Aug 2000 | A |
6122526 | Parulski et al. | Sep 2000 | A |
6124587 | Bidiville et al. | Sep 2000 | A |
6128006 | Rosenberg et al. | Oct 2000 | A |
6131048 | Sudo et al. | Oct 2000 | A |
6141068 | Iijima | Oct 2000 | A |
6147856 | Karidis | Nov 2000 | A |
6163312 | Furuya | Dec 2000 | A |
6166721 | Kuroiwa et al. | Dec 2000 | A |
6179496 | Chou | Jan 2001 | B1 |
6181322 | Nanavati | Jan 2001 | B1 |
D437860 | Suzuki et al. | Feb 2001 | S |
6188391 | Seely et al. | Feb 2001 | B1 |
6188393 | Shu | Feb 2001 | B1 |
6191774 | Schena et al. | Feb 2001 | B1 |
6198054 | Janniere | Mar 2001 | B1 |
6198473 | Armstrong | Mar 2001 | B1 |
6211861 | Rosenberg et al. | Apr 2001 | B1 |
6219038 | Cho | Apr 2001 | B1 |
6222528 | Gerpheide et al. | Apr 2001 | B1 |
D442592 | Ledbetter et al. | May 2001 | S |
6225976 | Yates et al. | May 2001 | B1 |
6225980 | Weiss et al. | May 2001 | B1 |
6226534 | Aizawa | May 2001 | B1 |
6227966 | Yokoi | May 2001 | B1 |
D443616 | Fisher et al. | Jun 2001 | S |
6243078 | Rosenberg | Jun 2001 | B1 |
6243080 | Molne | Jun 2001 | B1 |
6243646 | Ozaki et al. | Jun 2001 | B1 |
6248017 | Roach | Jun 2001 | B1 |
6254477 | Sasaki et al. | Jul 2001 | B1 |
6256011 | Culver | Jul 2001 | B1 |
6259491 | Ekedahl et al. | Jul 2001 | B1 |
6262717 | Donohue et al. | Jul 2001 | B1 |
6262785 | Kim | Jul 2001 | B1 |
6266050 | Oh et al. | Jul 2001 | B1 |
6285211 | Sample et al. | Sep 2001 | B1 |
D448810 | Goto | Oct 2001 | S |
6297795 | Kato et al. | Oct 2001 | B1 |
6297811 | Kent et al. | Oct 2001 | B1 |
6300946 | Lincke et al. | Oct 2001 | B1 |
6307539 | Suzuki | Oct 2001 | B2 |
D450713 | Masamitsu et al. | Nov 2001 | S |
6314483 | Goto et al. | Nov 2001 | B1 |
6321441 | Davidson et al. | Nov 2001 | B1 |
6323845 | Robbins | Nov 2001 | B1 |
D452250 | Chan | Dec 2001 | S |
6337678 | Fish | Jan 2002 | B1 |
6340800 | Zhai et al. | Jan 2002 | B1 |
D454568 | Andre et al. | Mar 2002 | S |
6357887 | Novak | Mar 2002 | B1 |
D455793 | Lin | Apr 2002 | S |
6373265 | Morimoto et al. | Apr 2002 | B1 |
6373470 | Andre et al. | Apr 2002 | B1 |
6377530 | Burrows | Apr 2002 | B1 |
6396523 | Segal et al. | May 2002 | B1 |
6424338 | Anderson | Jul 2002 | B1 |
6429846 | Rosenberg et al. | Aug 2002 | B2 |
6429852 | Adams et al. | Aug 2002 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
6465271 | Ko et al. | Oct 2002 | B1 |
6473069 | Gerphelde | Oct 2002 | B1 |
6492602 | Asai et al. | Dec 2002 | B2 |
6492979 | Kent et al. | Dec 2002 | B1 |
6496181 | Bomer et al. | Dec 2002 | B1 |
6497412 | Bramm | Dec 2002 | B1 |
D468365 | Bransky et al. | Jan 2003 | S |
D469109 | Andre et al. | Jan 2003 | S |
D472245 | Andre et al. | Mar 2003 | S |
6546231 | Someya et al. | Apr 2003 | B1 |
6563487 | Martin et al. | May 2003 | B2 |
6587091 | Serpa | Jul 2003 | B2 |
6606244 | Liu et al. | Aug 2003 | B1 |
6618909 | Yang | Sep 2003 | B1 |
6636197 | Goldenberg et al. | Oct 2003 | B1 |
6639584 | Li | Oct 2003 | B1 |
6640250 | Chang et al. | Oct 2003 | B1 |
6650975 | Ruffner | Nov 2003 | B2 |
D483809 | Lim | Dec 2003 | S |
6658773 | Rohne et al. | Dec 2003 | B2 |
6664951 | Fujii et al. | Dec 2003 | B1 |
6677927 | Bruck et al. | Jan 2004 | B1 |
6678891 | Wilcox et al. | Jan 2004 | B1 |
6686904 | Sherman et al. | Feb 2004 | B1 |
6686906 | Salminen et al. | Feb 2004 | B2 |
6703550 | Chu | Mar 2004 | B2 |
6724817 | Simpson et al. | Apr 2004 | B1 |
6727889 | Shaw | Apr 2004 | B2 |
D489731 | Huang | May 2004 | S |
6738045 | Hinckley et al. | May 2004 | B2 |
6750803 | Yates et al. | Jun 2004 | B2 |
6753830 | Gelbman | Jun 2004 | B2 |
6781576 | Tamura | Aug 2004 | B2 |
6784384 | Park et al. | Aug 2004 | B2 |
6788288 | Ano | Sep 2004 | B2 |
6791533 | Su | Sep 2004 | B2 |
6795057 | Gordon | Sep 2004 | B2 |
D497618 | Andre et al. | Oct 2004 | S |
6810271 | Wood et al. | Oct 2004 | B1 |
6822640 | Derocher | Nov 2004 | B2 |
6834975 | Chu-Chia et al. | Dec 2004 | B2 |
6844872 | Farag et al. | Jan 2005 | B1 |
6855899 | Sotome | Feb 2005 | B2 |
6865718 | Levi Montalcini | Mar 2005 | B2 |
6886842 | Vey et al. | May 2005 | B2 |
6894916 | Reohr et al. | May 2005 | B2 |
D506476 | Andre et al. | Jun 2005 | S |
6922189 | Fujiyoshi | Jul 2005 | B2 |
6930494 | Tesdahl et al. | Aug 2005 | B2 |
6958614 | Morimoto | Oct 2005 | B2 |
6977808 | Lam et al. | Dec 2005 | B2 |
6978127 | Bulthuis et al. | Dec 2005 | B1 |
6985137 | Kaikuranta | Jan 2006 | B2 |
7006077 | Uusimäki | Feb 2006 | B1 |
7019225 | Matsumoto et al. | Mar 2006 | B2 |
7046230 | Zadesky et al. | May 2006 | B2 |
7050292 | Shimura et al. | May 2006 | B2 |
7069044 | Okada et al. | Jun 2006 | B2 |
7078633 | Ihalainen | Jul 2006 | B2 |
7084856 | Huppi | Aug 2006 | B2 |
7113196 | Kerr | Sep 2006 | B2 |
7117136 | Rosedale | Oct 2006 | B1 |
7119792 | Andre et al. | Oct 2006 | B1 |
7215319 | Kamijo et al. | May 2007 | B2 |
7233318 | Farag et al. | Jun 2007 | B1 |
7236154 | Kerr et al. | Jun 2007 | B1 |
7236159 | Siversson | Jun 2007 | B1 |
7253643 | Seguine | Aug 2007 | B1 |
7279647 | Philipp | Oct 2007 | B2 |
7288732 | Hashida | Oct 2007 | B2 |
7297883 | Rochon et al. | Nov 2007 | B2 |
7310089 | Baker et al. | Dec 2007 | B2 |
7312785 | Tsuk et al. | Dec 2007 | B2 |
7321103 | Nakanishi et al. | Jan 2008 | B2 |
7333092 | Zadesky et al. | Feb 2008 | B2 |
7348898 | Ono | Mar 2008 | B2 |
7382139 | Mackey | Jun 2008 | B2 |
7394038 | Chang | Jul 2008 | B2 |
7395081 | Bonnelykke Kristensen et al. | Jul 2008 | B2 |
7397467 | Park et al. | Jul 2008 | B2 |
7439963 | Geaghan et al. | Oct 2008 | B2 |
7466307 | Trent et al. | Dec 2008 | B2 |
7479949 | Jobs et al. | Jan 2009 | B2 |
7486323 | Lee et al. | Feb 2009 | B2 |
7502016 | Trent, Jr. et al. | Mar 2009 | B2 |
7503193 | Schoene et al. | Mar 2009 | B2 |
7593782 | Jobs et al. | Sep 2009 | B2 |
7645955 | Huang et al. | Jan 2010 | B2 |
7671837 | Forsblad et al. | Mar 2010 | B2 |
7708051 | Katsumi et al. | May 2010 | B2 |
7772507 | Orr et al. | Aug 2010 | B2 |
20010011991 | Wang et al. | Aug 2001 | A1 |
20010011993 | Saarinen | Aug 2001 | A1 |
20010033270 | Osawa et al. | Oct 2001 | A1 |
20010043545 | Aratani | Nov 2001 | A1 |
20010050673 | Davenport | Dec 2001 | A1 |
20010051046 | Watanabe et al. | Dec 2001 | A1 |
20020000978 | Gerpheide | Jan 2002 | A1 |
20020011993 | Lui et al. | Jan 2002 | A1 |
20020027547 | Kamijo et al. | Mar 2002 | A1 |
20020030665 | Ano | Mar 2002 | A1 |
20020033848 | Sciammarella et al. | Mar 2002 | A1 |
20020039493 | Tanaka | Apr 2002 | A1 |
20020045960 | Phillips et al. | Apr 2002 | A1 |
20020071550 | Pletikosa | Jun 2002 | A1 |
20020089545 | Levi Montalcini | Jul 2002 | A1 |
20020103796 | Hartley | Aug 2002 | A1 |
20020118131 | Yates et al. | Aug 2002 | A1 |
20020118169 | Hinckley et al. | Aug 2002 | A1 |
20020145594 | Derocher | Oct 2002 | A1 |
20020154090 | Lin | Oct 2002 | A1 |
20020158844 | McLoone et al. | Oct 2002 | A1 |
20020164156 | Bilbrey | Nov 2002 | A1 |
20020168947 | Lemley | Nov 2002 | A1 |
20020180701 | Hayama et al. | Dec 2002 | A1 |
20020196239 | Lee | Dec 2002 | A1 |
20030002246 | Kerr | Jan 2003 | A1 |
20030025679 | Taylor et al. | Feb 2003 | A1 |
20030028346 | Sinclair et al. | Feb 2003 | A1 |
20030043121 | Chen | Mar 2003 | A1 |
20030043174 | Hinckley et al. | Mar 2003 | A1 |
20030050092 | Yun | Mar 2003 | A1 |
20030076301 | Tsuk et al. | Apr 2003 | A1 |
20030076303 | Huppi | Apr 2003 | A1 |
20030076306 | Zadesky et al. | Apr 2003 | A1 |
20030091377 | Hsu et al. | May 2003 | A1 |
20030095095 | Pihlaja | May 2003 | A1 |
20030095096 | Robbin et al. | May 2003 | A1 |
20030098851 | Brink | May 2003 | A1 |
20030103043 | Mulligan et al. | Jun 2003 | A1 |
20030122792 | Yamamoto et al. | Jul 2003 | A1 |
20030135292 | Husgafvel et al. | Jul 2003 | A1 |
20030142081 | Iizuka et al. | Jul 2003 | A1 |
20030184517 | Senzui et al. | Oct 2003 | A1 |
20030197740 | Reponen | Oct 2003 | A1 |
20030206202 | Moriya | Nov 2003 | A1 |
20030210537 | Engelmann | Nov 2003 | A1 |
20030224831 | Engstrom et al. | Dec 2003 | A1 |
20040027341 | Derocher | Feb 2004 | A1 |
20040074756 | Kawakami et al. | Apr 2004 | A1 |
20040080682 | Dalton | Apr 2004 | A1 |
20040109357 | Cernea et al. | Jun 2004 | A1 |
20040150619 | Baudisch et al. | Aug 2004 | A1 |
20040156192 | Kerr et al. | Aug 2004 | A1 |
20040178997 | Gillespie et al. | Sep 2004 | A1 |
20040200699 | Matsumoto et al. | Oct 2004 | A1 |
20040215986 | Shakkarwar | Oct 2004 | A1 |
20040224638 | Fadell et al. | Nov 2004 | A1 |
20040239622 | Proctor et al. | Dec 2004 | A1 |
20040252109 | Trent, Jr. et al. | Dec 2004 | A1 |
20040252867 | Lan et al. | Dec 2004 | A1 |
20040253989 | Tupler et al. | Dec 2004 | A1 |
20040263388 | Krumm et al. | Dec 2004 | A1 |
20040267874 | Westberg et al. | Dec 2004 | A1 |
20050012644 | Hurst et al. | Jan 2005 | A1 |
20050017957 | Yi | Jan 2005 | A1 |
20050024340 | Bathiche | Feb 2005 | A1 |
20050024341 | Gillespie et al. | Feb 2005 | A1 |
20050030048 | Bolender | Feb 2005 | A1 |
20050052425 | Zadesky et al. | Mar 2005 | A1 |
20050052426 | Hagermoser et al. | Mar 2005 | A1 |
20050052429 | Philipp | Mar 2005 | A1 |
20050068304 | Lewis et al. | Mar 2005 | A1 |
20050083299 | Nagasaka | Apr 2005 | A1 |
20050083307 | Aufderheide | Apr 2005 | A1 |
20050090288 | Stohr et al. | Apr 2005 | A1 |
20050104867 | Westerman et al. | May 2005 | A1 |
20050110768 | Marriott et al. | May 2005 | A1 |
20050129199 | Abe | Jun 2005 | A1 |
20050139460 | Hosaka | Jun 2005 | A1 |
20050140657 | Park et al. | Jun 2005 | A1 |
20050143124 | Kennedy et al. | Jun 2005 | A1 |
20050156881 | Trent et al. | Jul 2005 | A1 |
20050162402 | Watanachote | Jul 2005 | A1 |
20050204309 | Szeto | Sep 2005 | A1 |
20050237308 | Autio et al. | Oct 2005 | A1 |
20060016884 | Block et al. | Jan 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060026535 | Hotelling et al. | Feb 2006 | A1 |
20060026536 | Hotelling et al. | Feb 2006 | A1 |
20060032680 | Elias et al. | Feb 2006 | A1 |
20060038791 | Mackey | Feb 2006 | A1 |
20060066582 | Lyon et al. | Mar 2006 | A1 |
20060066588 | Lyon et al. | Mar 2006 | A1 |
20060095848 | Naik | May 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060131156 | Voelckers | Jun 2006 | A1 |
20060143574 | Ito et al. | Jun 2006 | A1 |
20060174568 | Kinoshita et al. | Aug 2006 | A1 |
20060181517 | Zadesky et al. | Aug 2006 | A1 |
20060197750 | Kerr et al. | Sep 2006 | A1 |
20060232557 | Fallot-Burghardt | Oct 2006 | A1 |
20060236262 | Bathiche et al. | Oct 2006 | A1 |
20060250377 | Zadesky et al. | Nov 2006 | A1 |
20060274042 | Krah et al. | Dec 2006 | A1 |
20060274905 | Lindahl et al. | Dec 2006 | A1 |
20060279896 | Bruwer | Dec 2006 | A1 |
20060284836 | Philipp | Dec 2006 | A1 |
20070013671 | Zadesky et al. | Jan 2007 | A1 |
20070018970 | Tabasso et al. | Jan 2007 | A1 |
20070052044 | Forsblad et al. | Mar 2007 | A1 |
20070052691 | Zadesky et al. | Mar 2007 | A1 |
20070080936 | Tsuk et al. | Apr 2007 | A1 |
20070080938 | Robbin et al. | Apr 2007 | A1 |
20070080952 | Lynch et al. | Apr 2007 | A1 |
20070083822 | Robbin et al. | Apr 2007 | A1 |
20070085841 | Tsuk et al. | Apr 2007 | A1 |
20070097086 | Battles et al. | May 2007 | A1 |
20070120834 | Boillot | May 2007 | A1 |
20070126696 | Boillot | Jun 2007 | A1 |
20070152975 | Ogihara | Jul 2007 | A1 |
20070152977 | Ng et al. | Jul 2007 | A1 |
20070152983 | McKillop et al. | Jul 2007 | A1 |
20070155434 | Jobs et al. | Jul 2007 | A1 |
20070157089 | Van Os et al. | Jul 2007 | A1 |
20070242057 | Zadesky et al. | Oct 2007 | A1 |
20070247421 | Orsley et al. | Oct 2007 | A1 |
20070247443 | Philipp | Oct 2007 | A1 |
20070271516 | Carmichael | Nov 2007 | A1 |
20070273671 | Zadesky et al. | Nov 2007 | A1 |
20070276525 | Zadesky et al. | Nov 2007 | A1 |
20070279394 | Lampell | Dec 2007 | A1 |
20070285361 | Jovanovich | Dec 2007 | A1 |
20070285404 | Rimon et al. | Dec 2007 | A1 |
20070290990 | Robbin et al. | Dec 2007 | A1 |
20070291016 | Philipp | Dec 2007 | A1 |
20070296709 | GuangHai | Dec 2007 | A1 |
20080006453 | Hotelling | Jan 2008 | A1 |
20080006454 | Hotelling | Jan 2008 | A1 |
20080007533 | Hotelling | Jan 2008 | A1 |
20080007539 | Hotelling et al. | Jan 2008 | A1 |
20080012837 | Marriott et al. | Jan 2008 | A1 |
20080018615 | Zadesky et al. | Jan 2008 | A1 |
20080018616 | Lampell et al. | Jan 2008 | A1 |
20080018617 | Ng et al. | Jan 2008 | A1 |
20080036473 | Jansson | Feb 2008 | A1 |
20080036734 | Forsblad et al. | Feb 2008 | A1 |
20080060925 | Weber et al. | Mar 2008 | A1 |
20080062141 | Chandhri | Mar 2008 | A1 |
20080069412 | Champagne et al. | Mar 2008 | A1 |
20080079699 | Mackey | Apr 2008 | A1 |
20080087476 | Prest | Apr 2008 | A1 |
20080088582 | Prest | Apr 2008 | A1 |
20080088596 | Prest | Apr 2008 | A1 |
20080088597 | Prest | Apr 2008 | A1 |
20080088600 | Prest | Apr 2008 | A1 |
20080094352 | Tsuk et al. | Apr 2008 | A1 |
20080098330 | Tsuk et al. | Apr 2008 | A1 |
20080110739 | Peng et al. | May 2008 | A1 |
20080111795 | Bollinger | May 2008 | A1 |
20080143681 | XiaoPing | Jun 2008 | A1 |
20080158145 | Westerman | Jul 2008 | A1 |
20080165152 | Forstall et al. | Jul 2008 | A1 |
20080165158 | Hotelling et al. | Jul 2008 | A1 |
20080196945 | Konstas | Aug 2008 | A1 |
20080202824 | Philipp et al. | Aug 2008 | A1 |
20080209442 | Setlur et al. | Aug 2008 | A1 |
20080264767 | Chen et al. | Oct 2008 | A1 |
20080280651 | Duarte | Nov 2008 | A1 |
20080284742 | Prest | Nov 2008 | A1 |
20080293274 | Milan | Nov 2008 | A1 |
20090021267 | Golovchenko et al. | Jan 2009 | A1 |
20090026558 | Bauer et al. | Jan 2009 | A1 |
20090033635 | Wai | Feb 2009 | A1 |
20090036176 | Ure | Feb 2009 | A1 |
20090058687 | Rothkopf et al. | Mar 2009 | A1 |
20090058801 | Bull | Mar 2009 | A1 |
20090058802 | Orsley et al. | Mar 2009 | A1 |
20090073130 | Weber et al. | Mar 2009 | A1 |
20090078551 | Kang | Mar 2009 | A1 |
20090109181 | Hui et al. | Apr 2009 | A1 |
20090141046 | Rathnam et al. | Jun 2009 | A1 |
20090160771 | Hinckley et al. | Jun 2009 | A1 |
20090197059 | Weber et al. | Aug 2009 | A1 |
20090229892 | Fisher et al. | Sep 2009 | A1 |
20090273573 | Hotelling | Nov 2009 | A1 |
20100058251 | Rottler et al. | Mar 2010 | A1 |
20100060568 | Fisher et al. | Mar 2010 | A1 |
20100073319 | Lyon et al. | Mar 2010 | A1 |
20100149127 | Fisher et al. | Jun 2010 | A1 |
20100289759 | Fisher et al. | Nov 2010 | A1 |
20100313409 | Weber et al. | Dec 2010 | A1 |
20110005845 | Hotelling et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
1139235 | Jan 1997 | CN |
1455615 | Nov 2003 | CN |
1499356 | May 2004 | CN |
1659506 | Aug 2005 | CN |
3615742 | Nov 1987 | DE |
19722636 | Dec 1998 | DE |
10022537 | Nov 2000 | DE |
20019074 | Feb 2001 | DE |
10 2004 043 663 | Apr 2006 | DE |
0178157 | Apr 1986 | EP |
0419145 | Mar 1991 | EP |
0 498 540 | Aug 1992 | EP |
0 521 683 | Jan 1993 | EP |
0 674 288 | Sep 1995 | EP |
0 731 407 | Sep 1996 | EP |
0 551 778 | Jan 1997 | EP |
0 880 091 | Nov 1998 | EP |
1 026 713 | Aug 2000 | EP |
1 081 922 | Mar 2001 | EP |
1 098 241 | May 2001 | EP |
1 133 057 | Sep 2001 | EP |
1 162 826 | Dec 2001 | EP |
1 168 396 | Jan 2002 | EP |
1 205 836 | May 2002 | EP |
1 244 053 | Sep 2002 | EP |
1 251 455 | Oct 2002 | EP |
1263193 | Dec 2002 | EP |
1347481 | Sep 2003 | EP |
1376326 | Jan 2004 | EP |
1 467 392 | Oct 2004 | EP |
1 482 401 | Dec 2004 | EP |
1 496 467 | Jan 2005 | EP |
1 517 228 | Mar 2005 | EP |
1 542 437 | Jun 2005 | EP |
1 589 407 | Oct 2005 | EP |
1 784 058 | May 2007 | EP |
1 841 188 | Oct 2007 | EP |
1850218 | Oct 2007 | EP |
1 876 711 | Jan 2008 | EP |
2 686 440 | Jul 1993 | FR |
2015167 | Sep 1979 | GB |
2072389 | Sep 1981 | GB |
2315186 | Jan 1998 | GB |
2333215 | Jul 1999 | GB |
2391060 | Jan 2004 | GB |
2 402 105 | Dec 2004 | GB |
57-95722 | Jun 1982 | JP |
57-97626 | Jun 1982 | JP |
61-117619 | Jun 1986 | JP |
61-124009 | Jun 1986 | JP |
63-20411 | Jan 1988 | JP |
63-106826 | May 1988 | JP |
63-181022 | Jul 1988 | JP |
63-298518 | Dec 1988 | JP |
03-57617 | Jun 1991 | JP |
3-192418 | Aug 1991 | JP |
04-32920 | Feb 1992 | JP |
4-205408 | Jul 1992 | JP |
5-041135 | Feb 1993 | JP |
5-080938 | Apr 1993 | JP |
5-101741 | Apr 1993 | JP |
5-36623 | May 1993 | JP |
5-189110 | Jul 1993 | JP |
5-205565 | Aug 1993 | JP |
5-211021 | Aug 1993 | JP |
5-217464 | Aug 1993 | JP |
5-233141 | Sep 1993 | JP |
5-262276 | Oct 1993 | JP |
5-265656 | Oct 1993 | JP |
5-274956 | Oct 1993 | JP |
5-289811 | Nov 1993 | JP |
5-298955 | Nov 1993 | JP |
5-325723 | Dec 1993 | JP |
6-20570 | Jan 1994 | JP |
6-084428 | Mar 1994 | JP |
6-089636 | Mar 1994 | JP |
6-96639 | Apr 1994 | JP |
6-111695 | Apr 1994 | JP |
6-139879 | May 1994 | JP |
6-187078 | Jul 1994 | JP |
6-208433 | Jul 1994 | JP |
6-267382 | Sep 1994 | JP |
6-283993 | Oct 1994 | JP |
6-333459 | Dec 1994 | JP |
7-107574 | Apr 1995 | JP |
7-41882 | Jul 1995 | JP |
7-201249 | Aug 1995 | JP |
7-201256 | Aug 1995 | JP |
7-253838 | Oct 1995 | JP |
7-261899 | Oct 1995 | JP |
7-261922 | Oct 1995 | JP |
7-296670 | Nov 1995 | JP |
7-319001 | Dec 1995 | JP |
8-016292 | Jan 1996 | JP |
8-115158 | May 1996 | JP |
8-203387 | Aug 1996 | JP |
8-293226 | Nov 1996 | JP |
8-298045 | Nov 1996 | JP |
8-299541 | Nov 1996 | JP |
8-316664 | Nov 1996 | JP |
9-044289 | Feb 1997 | JP |
9-069023 | Mar 1997 | JP |
9-128148 | May 1997 | JP |
9-134248 | May 1997 | JP |
9-218747 | Aug 1997 | JP |
9-230993 | Sep 1997 | JP |
9-231858 | Sep 1997 | JP |
9-233161 | Sep 1997 | JP |
9-251347 | Sep 1997 | JP |
9-258895 | Oct 1997 | JP |
9-288926 | Nov 1997 | JP |
9-512979 | Dec 1997 | JP |
10-63467 | Mar 1998 | JP |
10-74127 | Mar 1998 | JP |
10-074429 | Mar 1998 | JP |
10-198507 | Jul 1998 | JP |
10-227878 | Aug 1998 | JP |
10-240693 | Sep 1998 | JP |
10-320322 | Dec 1998 | JP |
10-326149 | Dec 1998 | JP |
11-24834 | Jan 1999 | JP |
11-184607 | Jul 1999 | JP |
11-194863 | Jul 1999 | JP |
11-194872 | Jul 1999 | JP |
11-194882 | Jul 1999 | JP |
11-194883 | Jul 1999 | JP |
11-194891 | Jul 1999 | JP |
11-195353 | Jul 1999 | JP |
11-203045 | Jul 1999 | JP |
11-212725 | Aug 1999 | JP |
11-272378 | Oct 1999 | JP |
11-338628 | Dec 1999 | JP |
2000-200147 | Jul 2000 | JP |
2000-215549 | Aug 2000 | JP |
2000-267777 | Sep 2000 | JP |
2000-267786 | Sep 2000 | JP |
2000-267797 | Sep 2000 | JP |
2000-353045 | Dec 2000 | JP |
2001-11769 | Jan 2001 | JP |
2001-22508 | Jan 2001 | JP |
2001-184158 | Jul 2001 | JP |
3085481 | Feb 2002 | JP |
2002-215311 | Aug 2002 | JP |
2003-015796 | Jan 2003 | JP |
2003-060754 | Feb 2003 | JP |
2003-099198 | Apr 2003 | JP |
2003-150303 | May 2003 | JP |
2003-517674 | May 2003 | JP |
2003-280799 | Oct 2003 | JP |
2003-280807 | Oct 2003 | JP |
2004-362097 | Dec 2004 | JP |
2005-251218 | Sep 2005 | JP |
2005-285140 | Oct 2005 | JP |
2005-293606 | Oct 2005 | JP |
2006-004453 | Jan 2006 | JP |
2006-178962 | Jul 2006 | JP |
3852854 | Dec 2006 | JP |
2007-123473 | May 2007 | JP |
1998-71394 | Oct 1998 | KR |
1999-50198 | Jul 1999 | KR |
2000-0008579 | Feb 2000 | KR |
2001-0052016 | Jun 2001 | KR |
2001-108361 | Dec 2001 | KR |
2002-65059 | Aug 2002 | KR |
10-2006-0021678 | Mar 2006 | KR |
431607 | Apr 2001 | TW |
00470193 | Dec 2001 | TW |
547716 | Aug 2003 | TW |
I220491 | Aug 2004 | TW |
WO-9417494 | Aug 1994 | WO |
WO-9500897 | Jan 1995 | WO |
WO-9627968 | Sep 1996 | WO |
WO 9814863 | Apr 1998 | WO |
WO-9949443 | Sep 1999 | WO |
WO-0079772 | Dec 2000 | WO |
WO-0102949 | Jan 2001 | WO |
WO-0144912 | Jun 2001 | WO |
WO-0208881 | Jan 2002 | WO |
WO-03044645 | May 2003 | WO |
WO 03044956 | May 2003 | WO |
WO-03025960 | Sep 2003 | WO |
WO 03088176 | Oct 2003 | WO |
WO 03090008 | Oct 2003 | WO |
WO-04001573 | Dec 2003 | WO |
WO 2004040606 | May 2004 | WO |
WO-2004091956 | Oct 2004 | WO |
WO-2005055620 | Jun 2005 | WO |
WO 2005076117 | Aug 2005 | WO |
WO-2005114369 | Dec 2005 | WO |
WO 2005124526 | Dec 2005 | WO |
WO-2006020305 | Feb 2006 | WO |
WO-2006021211 | Mar 2006 | WO |
WO 2006037545 | Apr 2006 | WO |
WO 2006104745 | Oct 2006 | WO |
WO-2006135127 | Dec 2006 | WO |
WO 2007025858 | Mar 2007 | WO |
WO-2007078477 | Jul 2007 | WO |
WO-2007084467 | Jul 2007 | WO |
WO-2007089766 | Aug 2007 | WO |
WO-2008007372 | Jan 2008 | WO |
WO-2008045414 | Apr 2008 | WO |
WO-2008045833 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20090179854 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
61020531 | Jan 2008 | US |