The present disclosure relates generally to audiovisual presentations and, more particularly, to systems and methods for dynamically modifying the features of a video library display based on decisions made in interactive videos.
Online streaming and cable media services often present viewers with a library display on their computers, televisions, or other devices that allows the viewers to browse among television shows, movies, and other various forms of media content. Netflix, Amazon Video, and Hulu, for example, make it easy for a viewer to browse through a library of episodes for a television series and view information about each episode, such as the title, actors, episode length, and a representative image. This information is generally static and the same for all viewers, as it is representative of static media content. With interactive videos, however, static information may not adequately describe the videos for users having different individual experiences in the interactive videos.
Systems and methods are described for implementing a video library interface/display having a listing of interactive videos and information associated therewith that is dynamically updated based on user decisions made within the interactive videos. In one aspect, a computer-implemented method includes the steps of providing an interactive video comprising a plurality of traversable video paths; receiving, during presentation of the interactive video to a user, a first interaction with the interactive video, the first interaction comprising a decision made by the user in the interactive video; traversing a particular video path in the interactive video in response to the first interaction; providing a video library display comprising a visual depiction of information associated with a plurality of videos; and dynamically modifying the video library display based on one or more interactions made by the user with respect to the interactive video, the one or more interactions including the first interaction. Other aspects of the foregoing include corresponding systems and computer programs on non-transitory storage media.
Various implementations can include one or more of the following features. The videos include individual episodes of a series. The visual depiction of information comprises a list of the videos, and dynamically modifying the video library display comprises removing one of the videos from the list, adding a video to the list, or changing an order of videos in the list. The visual depiction of information comprises at least one of metadata associated with a particular video, a thumbnail image of a particular video, and a summary of a particular video. Dynamically modifying the video library display comprises modifying the metadata, thumbnail image, or summary of a first one of the videos. The metadata, thumbnail image, or summary of the first video is modified to reflect one or more decisions made by the user in the first video. Dynamically modifying the video library display comprises including in the video library display supplemental content relating to one or more of the plurality of videos.
In one implementation, a selection of a first one of the videos in the video library display is received, and presentation of the first video is commenced at a first decision point in the first video, where a plurality of possible traversable video paths branch from the first decision point. The visually depicted information can include visual references to a plurality of traversable decision points in the first video including the first decision point, and presentation of the first video can be commenced based on receiving a selection of the first decision point in the visual references by the user.
In another implementation, a first one of the videos comprises an interactive video comprising a plurality of traversable video paths; the first video is presented a plurality of times, wherein in each presentation of the first video, at least one different video path is traversed; information relating to the different traversed video paths is aggregated over the plurality of times the first video is presented; and the video library display is dynamically modified by including in the visual depiction of information the aggregated information.
Further aspects and advantages of the invention will become apparent from the following drawings, detailed description, and claims, all of which illustrate the principles of the invention, by way of example only.
A more complete appreciation of the invention and many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings. In the drawings, like reference characters generally refer to the same parts throughout the different views. Further, the drawings are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the invention.
Described herein are various implementations of methods and supporting systems for dynamically modifying a video library display based on decisions made, paths traversed, or other events occurring in an interactive video.
The application 112 can be a video player/editor and library browser that is implemented as a native application, web application, or other form of software. In some implementations, the application 112 is in the form of a web page, widget, and/or Java, JavaScript, .Net, Silverlight, Flash, and/or other applet or plug-in that is downloaded to the user device 110 and runs in conjunction with a web browser. The application 112 and the web browser can be part of a single client-server interface; for example, the application 112 can be implemented as a plugin to the web browser or to another framework or operating system. Any other suitable client software architecture, including but not limited to widget frameworks and applet technology, can also be employed.
Media content can be provided to the user device 110 by content server 102, which can be a web server, media server, a node in a content delivery network, or other content source. In some implementations, the application 112 (or a portion thereof) is provided by application server 106. For example, some or all of the described functionality of the application 112 can be implemented in software downloaded to or existing on the user device 110 and, in some instances, some or all of the functionality exists remotely. For example, certain video encoding and processing functions can be performed on one or more remote servers, such as application server 106. In some implementations, the user device 110 serves only to provide output and input functionality, with the remainder of the processes being performed remotely.
The user device 110, content server 102, application server 106, and/or other devices and servers can communicate with each other through communications network 114. The communication can take place via any media such as standard telephone lines, LAN or WAN links (e.g., T1, T3, 56 kb, X.25), broadband connections (ISDN, Frame Relay, ATM), wireless links (802.11, Bluetooth, GSM, CDMA, etc.), and so on. The network 114 can carry TCP/IP protocol communications and HTTP/HTTPS requests made by a web browser, and the connection between clients and servers can be communicated over such TCP/IP networks. The type of network is not a limitation, however, and any suitable network can be used.
More generally, the techniques described herein can be implemented in any suitable hardware or software. If implemented as software, the processes can execute on a system capable of running one or more custom operating systems or commercial operating systems such as the Microsoft Windows® operating systems, the Apple OS X® operating systems, the Apple iOS® platform, the Google Android™ platform, the Linux® operating system and other variants of UNIX® operating systems, and the like. The software can be implemented a computer including a processing unit, a system memory, and a system bus that couples various system components including the system memory to the processing unit.
The system can include a plurality of software modules stored in a memory and executed on one or more processors. The modules can be in the form of a suitable programming language, which is converted to machine language or object code to allow the processor or processors to read the instructions. The software can be in the form of a standalone application, implemented in any suitable programming language or framework.
Method steps of the techniques described herein can be performed by one or more programmable processors executing a computer program to perform functions of the invention by operating on input data and generating output. Method steps can also be performed by, and apparatus of the invention can be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific integrated circuit). Modules can refer to portions of the computer program and/or the processor/special circuitry that implements that functionality.
Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. One or more memories can store media assets (e.g., audio, video, graphics, interface elements, and/or other media files), configuration files, and/or instructions that, when executed by a processor, form the modules, engines, and other components described herein and perform the functionality associated with the components. The processor and the memory can be supplemented by, or incorporated in special purpose logic circuitry.
It should also be noted that the present implementations can be provided as one or more computer-readable programs embodied on or in one or more articles of manufacture. The article of manufacture can be any suitable hardware apparatus, such as, for example, a floppy disk, a hard disk, a CD-ROM, a CD-RW, a CD-R, a DVD-ROM, a DVD-RW, a DVD-R, a flash memory card, a PROM, a RAM, a ROM, or a magnetic tape. In general, the computer-readable programs can be implemented in any programming language. The software programs can be further translated into machine language or virtual machine instructions and stored in a program file in that form. The program file can then be stored on or in one or more of the articles of manufacture.
The media presentations referred to herein can be structured in various forms. For example, a particular media presentation can be an online streaming video having multiple tracks or streams that a user can switch among in real-time or near real-time. For example, a media presentation can be structured using parallel audio and/or video tracks as described in U.S. patent application Ser. No. 14/534,626, filed on Nov. 6, 2014, and entitled “Systems and Methods for Parallel Track Transitions,” the entirety of which is incorporated by reference herein. More specifically, a playing video file or stream can have one or more parallel tracks that can be switched among in real-time automatically and/or based on user interactions. In some implementations, such switches are made seamlessly and substantially instantaneously, such that the audio and/or video of the playing content can continue without any perceptible delays, gaps, or buffering. In further implementations, switches among tracks maintain temporal continuity; that is, the tracks can be synchronized to a common timeline so that there is continuity in audio and/or video content when switching from one track to another (e.g., the same song is played using different instruments on different audio tracks; same storyline performed by different characters on different video tracks, and the like).
Such media presentations can also include interactive video structured in a video tree, hierarchy, or other form. A video tree can be formed by nodes that are connected in a branching, hierarchical, or other linked form. Nodes can each have an associated video segment, audio segment, graphical user interface (GUI) elements, and/or other associated media. Users (e.g., viewers) can watch a video that begins from a starting node in the tree and proceeds along connected nodes in a branch or path. Upon reaching a point during playback of the video where multiple video segments (child nodes) branch off from a segment (parent node), the user can interactively select the branch or path to traverse and, thus, the next video segment to watch.
As referred to herein, a particular branch or path in an interactive media structure, such as a video tree, can refer to a set of consecutively linked nodes between a starting node and ending node, inclusively, or can refer to some or all possible linked nodes that are connected subsequent to (e.g., sub-branches) or that include a particular node. Branched video can include seamlessly assembled and selectably presentable multimedia content such as that described in U.S. patent application Ser. No. 13/033,916, filed on Feb. 24, 2011, and entitled “System and Method for Seamless Multimedia Assembly” (the “Seamless Multimedia Assembly application”), and U.S. patent application Ser. No. 14/107,600, filed on Dec. 16, 2013, and entitled “Methods and Systems for Unfolding Video Pre-Roll,” the entireties of which are hereby incorporated by reference.
The prerecorded video segments in a video tree or other structure can be selectably presentable multimedia content; that is, some or all of the video segments in the video tree can be individually or collectively played for a user based upon the user's selection of a particular video segment, an interaction with a previous or playing video segment, or other interaction that results in a particular video segment or segments being played. The video segments can include, for example, one or more predefined, separate multimedia content segments that can be combined in various manners to create a continuous, seamless presentation such that there are no noticeable gaps, jumps, freezes, delays, or other visual or audible interruptions to video or audio playback between segments. In addition to the foregoing, “seamless” can refer to a continuous playback of content that gives the user the appearance of watching a single, linear multimedia presentation, as well as a continuous playback of multiple content segments that have smooth audio and/or video transitions (e.g., fadeout/fade-in, linking segments) between two or more of the segments.
In some instances, the user is permitted to make choices or otherwise interact in real-time at decision points or during decision periods interspersed throughout the multimedia content. Decision points and/or decision periods can occur at any time and in any number during a multimedia segment, including at or near the beginning and/or the end of the segment. Decision points and/or periods can be predefined, occurring at fixed points or during fixed periods in the multimedia content segments. Based at least in part on the user's choices made before or during playback of content, one or more subsequent multimedia segment(s) associated with the choices can be presented to the user. In some implementations, the subsequent segment is played immediately and automatically following the conclusion of the current segment, whereas in other implementations, the subsequent segment is played immediately upon the user's interaction with the video, without waiting for the end of the decision period or the end of the segment itself.
If a user does not make a selection at a decision point or during a decision period, a default, previously identified selection, or random selection can be made by the system. In some instances, the user is not provided with options; rather, the system automatically selects the segments that will be shown based on information that is associated with the user, other users, or other factors, such as the current date. For example, the system can automatically select subsequent segments based on the user's IP address, location, time zone, the weather in the user's location, social networking ID, saved selections, stored user profiles, preferred products or services, and so on. The system can also automatically select segments based on previous selections made by other users, such as the most popular suggestion or shared selections. The information can also be displayed to the user in the video, e.g., to show the user why an automatic selection is made. As one example, video segments can be automatically selected for presentation based on the geographical location of three different users: a user in Canada will see a twenty-second beer commercial segment followed by an interview segment with a Canadian citizen; a user in the US will see the same beer commercial segment followed by an interview segment with a US citizen; and a user in France is shown only the beer commercial segment.
Multimedia segment(s) selected automatically or by a user can be presented immediately following a currently playing segment, or can be shown after other segments are played. Further, the selected multimedia segment(s) can be presented to the user immediately after selection, after a fixed or random delay, at the end of a decision period, and/or at the end of the currently playing segment. Two or more combined segments can form a seamless multimedia content path or branch, and users can take multiple paths over multiple playthroughs, and experience different complete, start-to-finish, seamless presentations. Further, one or more multimedia segments can be shared among intertwining paths while still ensuring a seamless transition from a previous segment and to the next segment. The content paths can be predefined, with fixed sets of possible transitions in order to ensure seamless transitions among segments. The content paths can also be partially or wholly undefined, such that, in some or all instances, the user can switch to any known video segment without limitation. There can be any number of predefined paths, each having any number of predefined multimedia segments. Some or all of the segments can have the same or different playback lengths, including segments branching from a single source segment.
Traversal of the nodes along a content path in a tree can be performed by selecting among options that appear on and/or around the video while the video is playing. In some implementations, these options are presented to users at a decision point and/or during a decision period in a content segment. Some or all of the displayed options can hover and then disappear when the decision period ends or when an option has been selected. Further, a timer, countdown or other visual, aural, or other sensory indicator can be presented during playback of content segment to inform the user of the point by which he should (or, in some cases, must) make his selection. For example, the countdown can indicate when the decision period will end, which can be at a different time than when the currently playing segment will end. If a decision period ends before the end of a particular segment, the remaining portion of the segment can serve as a non-interactive seamless transition to one or more other segments. Further, during this non-interactive end portion, the next multimedia content segment (and other potential next segments) can be downloaded and buffered in the background for later playback (or potential playback).
A segment that is played after (immediately after or otherwise) a currently playing segment can be determined based on an option selected or other interaction with the video. Each available option can result in a different video and audio segment being played. As previously mentioned, the transition to the next segment can occur immediately upon selection, at the end of the current segment, or at some other predefined or random point. Notably, the transition between content segments can be seamless. In other words, the audio and video continue playing regardless of whether a segment selection is made, and no noticeable gaps appear in audio or video playback between any connecting segments. In some instances, the video continues on to another segment after a certain amount of time if none is chosen, or can continue playing in a loop.
In one example, the multimedia content is a music video in which the user selects options upon reaching segment decision points to determine subsequent content to be played. First, a video introduction segment is played for the user. Prior to the end of the segment, a decision point is reached at which the user can select the next segment to be played from a listing of choices. In this case, the user is presented with a choice as to who will sing the first verse of the song: a tall, female performer, or a short, male performer. The user is given an amount of time to make a selection (i.e., a decision period), after which, if no selection is made, a default segment will be automatically selected. The default can be a predefined or random selection. Of note, the media content continues to play during the time the user is presented with the choices. Once a choice is selected (or the decision period ends), a seamless transition occurs to the next segment, meaning that the audio and video continue on to the next segment as if there were no break between the two segments and the user cannot visually or audibly detect the transition. As the music video continues, the user is presented with other choices at other decisions points, depending on which path of choices is followed. Ultimately, the user arrives at a final segment, having traversed a complete multimedia content path.
Inputs Collector 244 receives user inputs 240 from input components such as a device display screen 272, keyboard, mouse, microphone, virtual reality headset, and the like. Such inputs 240 can include, for example, mouse clicks, keyboard presses, touchpad presses, eye movement, head movement, voice input, and other interactions. Inputs Collector 244 provides input information based on the inputs 240 to Choice Manager 216, which also receives information from a Project Configuration File 230 to determine which video segment should be currently played and which video segments may be played or presented as options to be played at a later time. Choice Manager 216 notifies Video Appender 270 of the video segment to be currently played, and Video Appender 270 seamlessly connects that video segment to the video stream being played in real time. Choice Manager 216 notifies Loading Manager 262 of the video segments that may be played or presented as options to be played at a later time.
Project Configuration File 230 can include information defining the media presentation, such as the video tree or other structure, and how video segments can be linked together in various manners to form one or more paths. Project Configuration File 230 can further specify which audio, video, and/or other media files correspond to each segment (e.g., node in a video tree), that is, which audio, video, and/or other media should be retrieved when application 112 determines that a particular segment should be played. Additionally, Project Configuration File 230 can indicate interface elements that should be displayed or otherwise presented to users, as well as when the elements should be displayed, such that the audio, video, and interactive elements of the media presentation are synchronized. Project Configuration File 230 can be stored on user device 110 or can be remotely accessed by Choice Manager 216.
In some implementations, Project Configuration File 230 is also used in determining which media files should be loaded or buffered prior to being played (or potentially played). Because decision points can occur near the end of a segment, it may be necessary to begin transferring one or more of the potential next segments to viewers prior to a selection being made. For example, if a viewer is approaching a decision point with three possible branches, all three potential next segments can be preloaded partially or fully to ensure a smooth transition upon conclusion of the current segment. Intelligent buffering and progressive downloading of the video, audio, and/or other media content can be performed as described in U.S. patent application Ser. No. 13/437,164, filed Apr. 2, 2012, and entitled “Systems and Methods for Loading More Than One Video Content at a Time,” the entirety of which is incorporated by reference herein.
Using information in Project Configuration File 230, Choice Manager 216 can inform GUI Manager 254 of which interface elements should be displayed to viewers on screen 272. Project Configuration File 230 can further indicate the specific timings for which actions can be taken with respect to the interface elements (e.g., when a particular element is active and can be interacted with). The interface elements can include, for example, playback controls (pause, stop, play, seek, etc.), segment option selectors (e.g., buttons, images, text, animations, video thumbnails, and the like, that a viewer can interact with during decision periods, the selection of which results in a particular multimedia segment being seamlessly played following the conclusion of the current segment), timers (e.g., a clock or other graphical or textual countdown indicating the amount of time remaining to select an option or next segment, which, in some cases, can be the amount of time remaining until the current segment will transition to the next segment), links, popups, an index (e.g., for browsing and/or selecting other multimedia content to view or listen to), and/or a dynamic progress bar such as that described in U.S. patent application Ser. No. 13/622,795, filed Sep. 19, 2012, and entitled “Progress Bar for Branched Videos,” the entirety of which is incorporated by reference herein. In addition to visual elements, sounds or other sensory elements can be presented. For example, a timer can have a “ticking” sound synchronized with the movement of a clock hand. The interactive interface elements can be shared among multimedia segments or can be unique to one or more of the segments.
In addition to reading information from Project Configuration File 230, Choice Manager 216 is notified of user interactions (e.g., mouse clicks, keyboard presses, touchpad presses, eye movements, etc.) from Inputs Collector 244, which interactions can be translated into actions associated with the playback of a media presentation (e.g., segment selections, playback controls, etc.). Based thereon, Choice Manager 216 notifies Loading Manager 262, which can process the actions as further described below. Choice Manager 216 can also interface with Loading Manager 262 and Video Appender 270. For example, Choice Manager 216 can listen for user interaction information from Inputs Collector 244 and notify Loading Manager 262 when an interaction by the viewer (e.g., a selection of an option displayed during the video) has occurred. In some implementations, based on its analysis of received events, Choice Manager 216 causes the presentation of various forms of sensory output, such as visual, aural, tactile, olfactory, and the like.
As earlier noted, Choice Manager 216 can also notify Loading Manager 262 of video segments that may be played at a later time, and Loading Manger 262 can retrieve the corresponding videos 225 (whether stored locally or on, e.g., content server 102) to have them prepared for potential playback through Video Appender 270. Choice Manager 216 and Loading Manager 262 can function to manage the downloading of hosted streaming media according to a loading logic. In one implementation, Choice Manager 216 receives information defining the media presentation structure from Project Configuration File 230 and, using information from Inputs Collector 244, determines which media segments to download and/or buffer (e.g., if the segments are remotely stored). For example, if Choice Manager 216 informs Loading Manager 262 that a particular segment A will or is likely to be played at an upcoming point in the presentation timeline, Loading Manager 262 can intelligently request the segment for download, as well as additional media segments X, Y and Z that can be played following segment A, in advance of playback or notification of potential playback thereof. The downloading can occur even if fewer than all of X, Y, Z will be played (e.g., if X, Y and Z are potential segment choices branching off segment A and only one will be selected for playback).
In some implementations, Loading Manager 262 ceases or cancels downloading of content segments or other media if it determines that it is no longer possible for a particular media content segment (or other content) to be presented on a currently traversed media path. Referring to the above example, a user interacts with the video presentation such that segment Y is determined to be the next segment that will be played. The interaction can be received by Choice Manager 216 and, based on its knowledge of the path structure of the video presentation, Loading Manager 262 is notified to stop active downloads or dequeue pending downloads of content segments no longer reachable now that segment Y has been selected.
Video Appender 270 receives media content from Loading Manager 262 and instructions from Choice Manager 216 on which media segments to include in a media presentation. Video Appender 270 can analyze and/or modify raw video or other media content, for example, to concatenate two separate media streams into a single timeline. Video Appender 270 can also insert cue points and other event markers, such as junction events, into media streams. Further, Video Appender 270 can form one or more streams of bytes from multiple video, audio or other media streams, and feed the formed streams to a video playback function such that there is seamless playback of the combined media content on display screen 272 (as well as through speakers for audio, for example).
The client-side video library component includes subcomponents that provide for the management of a browseable library of media information using Media Data 227 received from a server. Video Data Manager 261 receives Media Data 227 and, based on this information, loads and manages the various types of information associated with each available item of media content. List Manager 265 utilizes Media Data 227 to load and manage a listing of all available items of media content. Library GUI Module 269 receives the media information and listing constructed by Video Data Manager 261 and List Manager 265, respectively, and combines this data into a library interface for output to screen 272. A user can interact with the library interface by navigating through the library, viewing information associated with the library items, and selecting an item to play. Subsequently, using playback interfaces in the video player, the user can control the playing media using controls such as play, stop, pause, toggle subtitles, fast-forward, fast-backward, etc.
The video library and video player components also communicate through Choice Manager 216, which as earlier described receives user interactions with playing content through Inputs Collector 244. More specifically, based on the received user interactions, Choice Manager 216 informs List Manager 265 which items of media content should be included in or excluded from the media item listing generated by List Manager 265, and informs Video Data Manager 261 which media information (e.g., metadata, thumbnail images, etc.) can be presented in the video library user interface. In some implementations, List Manager 265 and Video Data Manager 261 save the listing and media information configurations locally and/or on the server for use in regenerating the video library interface at a later time.
In some implementations, application 112 tracks data regarding user interactions, users, and/or player devices, and provides the data to an analytics server. Collected analytics can include, but are not limited to: the number, type, and/or location of a device; user data, such as login information, name, address, age, sex, and the like; user interactions, such as button/touchpad presses, mouse clicks, mouse/touchpad movements, interaction timings, and the like; decisions made by users or automatically (e.g., content segment user choices or default selections); and content paths followed in the presentation content structure. The analytics can include those described in U.S. patent application Ser. No. 13/034,645, entitled “System and Method for Data Mining within Interactive Multimedia,” and filed Feb. 24, 2011, the entirety of which is incorporated by reference herein.
In one implementation, media list 302 and/or video information display screen 304 dynamically change based on decisions made by a user or other events occurring within one or more interactive videos. Such interactive videos can include those shown in media list 302 and/or other videos not listed. One will appreciate the various ways in which the displays can change based on the decisions and events, including but not limited to including or excluding episodes or other media items from the media list 302, changing the order of the media items in the media list 302, providing different default information or modifying information (e.g., metadata, thumbnail image, summary, etc.) in the video information display screen 304 for a particular media item, including supplemental content (e.g., trailers, behind the scenes videos, interviews, etc.) in the media list 302, and so on.
In one example, as shown in
In one implementation, the user's progression through an interactive episodic series causes information about the episodes to be change within the video library interface. Referring to
During presentation of the first interactive video, the user is given the option for the character, James, to travel to “the black forest” or “the islands of doom.”
In some implementations, the metadata for a particular video is partially displayed in a video information display screen. For example, the summary description for an interactive video can have blank spaces that are filled in as a user progresses through that video or through other videos. Referring to
In one implementation, the video library interface allows the user to select a video for playback from, for example, the video title listing or a video information display screen.
Notably, not only can the user start playback of episode 1 from this screen 702, but the user can also easily navigate to a particular decision point in the interactive video. This allows the user to change his previous decision, if desired, and continue the video from that point (or start from a particular decision point on the first playback of the video). To facilitate this navigation process, the metadata (episode description 704) in the video information display screen 702 for the video includes links that the user can select. As noted above, the description 704 includes three bolded portions of text (“party”, “Drew”, and “airport”) that correspond to decision points in episode 1, and by selecting one of the text portions, the user can navigate to the corresponding decision point in the episode. Thus, for example, by selecting “Drew,” the user can start episode 1 at the point in time where Irene is deciding whom at the party to talk to, and can choose to speak with someone else. The episode will then continue based on the new decision, and the episode metadata can be updated accordingly. Similarly, if the user decides to restart the episode from the beginning and make different decisions within the episode, the metadata associated for all decisions in that episode can dynamically change as well. In further implementations, video summaries can exhibit similar behavior; e.g., when a user interacts with (clicks, taps, etc.) a particular video summary, he will be navigated to the part of the video where the decision reflected in the summary was made.
In some implementations, interactions within one video can affect information associated with and displayed in the video library interface for that video as well as other videos in the same episodic series, or even other unrelated videos.
Referring to Episode 1 in
The information associated with a video or other media content can be initialized or dynamically change in different ways among various implementations. In one implementation, the information for a particular video is an aggregation or other form of combination of some or all versions of the video that the user has seen thus far (e.g., all different paths the user has taken through an interactive video). Consider, for example, an interactive video series based on the Sherlock Holmes character, in which the user needs to discover multiple clues in order to solve a mystery; however, not all clues can be found on a single playthrough of the episode. After watching the episode multiple times making different decisions at different points in the episode, the user is able to discover the necessary clues. In correspondence with each viewing of the episode, the video metadata can update to reflect each clue the user has found. For example, after the first playthrough of the episode, the episode summary can be, “Sherlock Holmes finds a spent bullet casing in the fireplace, his first clue!” After the second playthrough, the summary can be updated to, “After a second search of the house, Sherlock locates a gun in a locked chest that appears to have been recently fired and matches the caliber of the previously found bullet casing.” Similarly, video information can also be updated to reflect decisions yet to be made or paths not taken. For example, after the second playthrough, the summary can also include, “Sherlock still needs to search the house more closely to gather clues about who the killer might be.”
In another implementation, the information associated with a video can be initialized or updated based on the decisions of others, instead of or in addition to those of an individual viewer. For example, the description of a video can reflect a community preference by including the most popular decisions made in an interactive video. Consider, for example, an interactive video in which a user can choose to drive a car or ride a motorcycle to a party. If the user decides to take the car but most users select the motorcycle, the video description can state, “Yoni breaks the mold and drives the Pinto to the party, but everyone else passes him on their motorcycles!” In further implementations, the information associated with a video can be initialized or updated based on known characteristics of the user (e.g., demographics, location, local weather or events, etc.).
In some implementations, the decisions the user makes in one video can also affect not only the information associated with the same video, related videos (e.g., other videos in a series), or unrelated videos, but also the content provided and/or decisions made available to the user in such video(s). For example, if the user consistently avoids violent interactions in one interactive video, the present system can remove options in further playbacks of that video that result in violent content being shown. Moreover, such options and content can be correspondingly disabled in other videos so that the user also will not be exposed to violent content when viewing those videos. This feature can also be used to dynamically adapt content for particular audiences (e.g., children).
Various examples of how the techniques described herein can be applied will now be described; however, it is to be appreciated that the uses are wide-ranging and nearly limitless. In one example, a user views a trailer video, and the video library list is dynamically populated with videos related to the trailer content. In another example, a user watches a episodic documentary about chefs from different countries, can select a different chef to watch after each episode, and the metadata associated with the episodes changes to describe the which chefs the user has already observed. In yet another example, an interactive game has multiple episodes, and each episode is unlocked only when a mystery has been solved in the preceding episode. In a further example, an interactive video series depicts the ups and downs of a relationship between two people. At each decision point in an episode, the user can decide what will happen next, and each person in the video reacts accordingly. Depending on which choices are made in episodes the user has watched, different episodes will be provided for the user to watch next. So, for example, if the user decides that the couple will ski at the end of the second episode, then the next episode made available to the user will be one in which the couple is at a ski resort.
As another example, consider an interactive series based around the lives of several characters. Each character has at least one interactive episode centered around that character, and a user viewing the episode can make decisions within the episode that affect the life of the character as well as the world in which the characters exist (and thereby affect other episodes). So, for example, if the user chooses a path in one episode that causes the character to rob a bank, the other episodes in the series are dynamically modified to include the bank robbing event, and the robbery can be reflected in the description of the episode and other episodes. Ultimately, the choices made in one interactive episode can affect the content made available or shown in other episodes, as well as affect the information shown in the video library interface that is associated with the interactive episode and/or other episodes.
Although the systems and methods described herein relate primarily to audio and video playback, the invention is equally applicable to various streaming and non-streaming media, including animation, video games, interactive media, and other forms of content usable in conjunction with the present systems and methods. Further, there can be more than one audio, video, and/or other media content stream played in synchronization with other streams. Streaming media can include, for example, multimedia content that is continuously presented to a user while it is received from a content delivery source, such as a remote video server. If a source media file is in a format that cannot be streamed and/or does not allow for seamless connections between segments, the media file can be transcoded or converted into a format supporting streaming and/or seamless transitions.
While various implementations of the present invention have been described herein, it should be understood that they have been presented by example only. For example, one of skill in the art will appreciate that the techniques for creating seamless audio segments can be applied to creating seamless video segments and other forms of seamless media as well. Where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art having the benefit of this disclosure would recognize that the ordering of certain steps can be modified and that such modifications are in accordance with the given variations. For example, although various implementations have been described as having particular features and/or combinations of components, other implementations are possible having any combination or sub-combination of any features and/or components from any of the implementations described herein.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 16/283,066, titled “Dynamic Library Display For Interactive Videos” and filed on Feb. 22, 2019 under, which is a continuation of U.S. patent application Ser. No. 15/863,191, titled “Dynamic Library Display For Interactive Videos” and filed on Jan. 5, 2018, now U.S. Pat. No. 10,257,578, issued on Apr. 9, 2019 under, which are hereby incorporated by reference herein their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4569026 | Best | Feb 1986 | A |
5137277 | Kitaue | Aug 1992 | A |
5161034 | Klappert | Nov 1992 | A |
5568602 | Callahan et al. | Oct 1996 | A |
5568603 | Chen et al. | Oct 1996 | A |
5597312 | Bloom et al. | Jan 1997 | A |
5607356 | Schwartz | Mar 1997 | A |
5610653 | Abecassis | Mar 1997 | A |
5636036 | Ashbey | Jun 1997 | A |
5676551 | Knight et al. | Oct 1997 | A |
5694163 | Harrison | Dec 1997 | A |
5715169 | Noguchi | Feb 1998 | A |
5734862 | Kulas | Mar 1998 | A |
5737527 | Shiels et al. | Apr 1998 | A |
5745738 | Ricard | Apr 1998 | A |
5751953 | Shiels | May 1998 | A |
5754770 | Shiels et al. | May 1998 | A |
5818435 | Kozuka et al. | Oct 1998 | A |
5848934 | Shiels et al. | Dec 1998 | A |
5887110 | Sakamoto et al. | Mar 1999 | A |
5894320 | Vancelette | Apr 1999 | A |
5956037 | Osawa et al. | Sep 1999 | A |
5966121 | Hubbell et al. | Oct 1999 | A |
5983190 | Trower, II et al. | Nov 1999 | A |
6067400 | Saeki et al. | May 2000 | A |
6091886 | Abecassis | Jul 2000 | A |
6122668 | Teng et al. | Sep 2000 | A |
6128712 | Hunt et al. | Oct 2000 | A |
6191780 | Martin et al. | Feb 2001 | B1 |
6222925 | Shiels et al. | Apr 2001 | B1 |
6240555 | Shoff et al. | May 2001 | B1 |
6298020 | Kumagami | Oct 2001 | B1 |
6298482 | Seidman et al. | Oct 2001 | B1 |
6460036 | Herz | Oct 2002 | B1 |
6535639 | Uchihachi et al. | Mar 2003 | B1 |
6657906 | Martin | Dec 2003 | B2 |
6698020 | Zigmond et al. | Feb 2004 | B1 |
6728477 | Watkins | Apr 2004 | B1 |
6771875 | Kunieda et al. | Aug 2004 | B1 |
6801947 | Li | Oct 2004 | B1 |
6947966 | Oko, Jr. et al. | Sep 2005 | B1 |
7085844 | Thompson | Aug 2006 | B2 |
7155676 | Land et al. | Dec 2006 | B2 |
7231132 | Davenport | Jun 2007 | B1 |
7296231 | Loui et al. | Nov 2007 | B2 |
7310784 | Gottlieb et al. | Dec 2007 | B1 |
7379653 | Yap et al. | May 2008 | B2 |
7430360 | Abecassis | Sep 2008 | B2 |
7444069 | Bernsley | Oct 2008 | B1 |
7472910 | Okada et al. | Jan 2009 | B1 |
7627605 | Lamere et al. | Dec 2009 | B1 |
7650623 | Hudgeons | Jan 2010 | B2 |
7669128 | Bailey et al. | Feb 2010 | B2 |
7694320 | Yeo et al. | Apr 2010 | B1 |
7779438 | Davies | Aug 2010 | B2 |
7787973 | Lambert | Aug 2010 | B2 |
7917505 | van Gent et al. | Mar 2011 | B2 |
8024762 | Britt | Sep 2011 | B2 |
8046801 | Ellis et al. | Oct 2011 | B2 |
8065710 | Malik | Nov 2011 | B2 |
8151139 | Gordon | Apr 2012 | B1 |
8176425 | Wallace et al. | May 2012 | B2 |
8190001 | Bernsley | May 2012 | B2 |
8202167 | Ackley et al. | Jun 2012 | B2 |
8276058 | Gottlieb et al. | Sep 2012 | B2 |
8281355 | Weaver et al. | Oct 2012 | B1 |
8321905 | Streeter et al. | Nov 2012 | B1 |
8341662 | Bassett | Dec 2012 | B1 |
8350908 | Morris et al. | Jan 2013 | B2 |
8600220 | Bloch et al. | Dec 2013 | B2 |
8612517 | Yadid et al. | Dec 2013 | B1 |
8626337 | Corak et al. | Jan 2014 | B2 |
8646020 | Reisman | Feb 2014 | B2 |
8650489 | Baum et al. | Feb 2014 | B1 |
8667395 | Hosogai et al. | Mar 2014 | B2 |
8750682 | Nicksay et al. | Jun 2014 | B1 |
8752087 | Begeja et al. | Jun 2014 | B2 |
8826337 | Issa et al. | Sep 2014 | B2 |
8860882 | Bloch et al. | Oct 2014 | B2 |
8930975 | Woods et al. | Jan 2015 | B2 |
8977113 | Rumteen et al. | Mar 2015 | B1 |
9009619 | Bloch et al. | Apr 2015 | B2 |
9021537 | Funge et al. | Apr 2015 | B2 |
9082092 | Henry | Jul 2015 | B1 |
9094718 | Barton et al. | Jul 2015 | B2 |
9190110 | Bloch | Nov 2015 | B2 |
9257148 | Bloch et al. | Feb 2016 | B2 |
9268774 | Kim et al. | Feb 2016 | B2 |
9271015 | Bloch et al. | Feb 2016 | B2 |
9363464 | Alexander | Jun 2016 | B2 |
9367196 | Goldstein et al. | Jun 2016 | B1 |
9374411 | Goetz | Jun 2016 | B1 |
9390099 | Wang et al. | Jul 2016 | B1 |
9456247 | Pontual et al. | Sep 2016 | B1 |
9465435 | Zhang et al. | Oct 2016 | B1 |
9473582 | Fraccaroli | Oct 2016 | B1 |
9510044 | Pereira et al. | Nov 2016 | B1 |
9520155 | Bloch et al. | Dec 2016 | B2 |
9530454 | Bloch et al. | Dec 2016 | B2 |
9531998 | Farrell et al. | Dec 2016 | B1 |
9538219 | Sakata et al. | Jan 2017 | B2 |
9554061 | Proctor, Jr. et al. | Jan 2017 | B1 |
9571877 | Lee et al. | Feb 2017 | B2 |
9607655 | Bloch et al. | Mar 2017 | B2 |
9641898 | Bloch et al. | May 2017 | B2 |
9653115 | Bloch et al. | May 2017 | B2 |
9653116 | Paulraj et al. | May 2017 | B2 |
9672868 | Bloch et al. | Jun 2017 | B2 |
9715901 | Singh et al. | Jul 2017 | B1 |
9736503 | Bakshi et al. | Aug 2017 | B1 |
9792026 | Bloch et al. | Oct 2017 | B2 |
9792957 | Bloch et al. | Oct 2017 | B2 |
9826285 | Mishra et al. | Nov 2017 | B1 |
9967621 | Armstrong et al. | May 2018 | B2 |
10070192 | Baratz | Sep 2018 | B2 |
10178304 | Tudor et al. | Jan 2019 | B1 |
10178421 | Thomas et al. | Jan 2019 | B2 |
10187687 | Harb et al. | Jan 2019 | B2 |
10194189 | Goetz et al. | Jan 2019 | B1 |
10257572 | Manus et al. | Apr 2019 | B2 |
10257578 | Bloch | Apr 2019 | B1 |
10310697 | Roberts | Jun 2019 | B2 |
10419790 | Gersten | Sep 2019 | B2 |
10460765 | Bloch et al. | Oct 2019 | B2 |
10523982 | Oyman | Dec 2019 | B2 |
10771824 | Haritaoglu et al. | Sep 2020 | B1 |
10856049 | Bloch | Dec 2020 | B2 |
11003748 | Oliker et al. | May 2021 | B2 |
20010056427 | Yoon et al. | Dec 2001 | A1 |
20020019799 | Ginsberg et al. | Feb 2002 | A1 |
20020029218 | Bentley et al. | Mar 2002 | A1 |
20020053089 | Massey | May 2002 | A1 |
20020086724 | Miyaki et al. | Jul 2002 | A1 |
20020091455 | Williams | Jul 2002 | A1 |
20020105535 | Wallace et al. | Aug 2002 | A1 |
20020106191 | Betz et al. | Aug 2002 | A1 |
20020120456 | Berg et al. | Aug 2002 | A1 |
20020120931 | Huber | Aug 2002 | A1 |
20020124250 | Proehl et al. | Sep 2002 | A1 |
20020129374 | Freeman et al. | Sep 2002 | A1 |
20020140719 | Amir et al. | Oct 2002 | A1 |
20020144262 | Plotnick et al. | Oct 2002 | A1 |
20020174430 | Ellis et al. | Nov 2002 | A1 |
20020177914 | Chase | Nov 2002 | A1 |
20020194595 | Miller et al. | Dec 2002 | A1 |
20030007560 | Mayhew et al. | Jan 2003 | A1 |
20030012409 | Overton et al. | Jan 2003 | A1 |
20030020744 | Ellis et al. | Jan 2003 | A1 |
20030023757 | Ishioka et al. | Jan 2003 | A1 |
20030039471 | Hashimoto | Feb 2003 | A1 |
20030069057 | DeFrees-Parrott | Apr 2003 | A1 |
20030076347 | Barrett et al. | Apr 2003 | A1 |
20030101164 | Pic et al. | May 2003 | A1 |
20030148806 | Weiss | Aug 2003 | A1 |
20030159566 | Sater et al. | Aug 2003 | A1 |
20030183064 | Eugene et al. | Oct 2003 | A1 |
20030184598 | Graham | Oct 2003 | A1 |
20030221541 | Platt | Dec 2003 | A1 |
20040009813 | Wind | Jan 2004 | A1 |
20040019905 | Fellenstein et al. | Jan 2004 | A1 |
20040034711 | Hughes | Feb 2004 | A1 |
20040070595 | Atlas et al. | Apr 2004 | A1 |
20040091848 | Nemitz | May 2004 | A1 |
20040125124 | Kim et al. | Jul 2004 | A1 |
20040128317 | Sull et al. | Jul 2004 | A1 |
20040138948 | Loomis | Jul 2004 | A1 |
20040146275 | Takata et al. | Jul 2004 | A1 |
20040172476 | Chapweske | Sep 2004 | A1 |
20040194128 | McIntyre et al. | Sep 2004 | A1 |
20040194131 | Ellis et al. | Sep 2004 | A1 |
20040199923 | Russek | Oct 2004 | A1 |
20040261127 | Freeman et al. | Dec 2004 | A1 |
20050019015 | Ackley et al. | Jan 2005 | A1 |
20050028193 | Candelore et al. | Feb 2005 | A1 |
20050055377 | Dorey et al. | Mar 2005 | A1 |
20050091597 | Ackley | Apr 2005 | A1 |
20050102707 | Schnitman | May 2005 | A1 |
20050107159 | Sato | May 2005 | A1 |
20050120389 | Boss et al. | Jun 2005 | A1 |
20050132401 | Boccon-Gibod et al. | Jun 2005 | A1 |
20050166224 | Ficco | Jul 2005 | A1 |
20050198661 | Collins et al. | Sep 2005 | A1 |
20050210145 | Kim et al. | Sep 2005 | A1 |
20050240955 | Hudson | Oct 2005 | A1 |
20050251820 | Stefanik et al. | Nov 2005 | A1 |
20050251827 | Ellis et al. | Nov 2005 | A1 |
20050289582 | Tavares et al. | Dec 2005 | A1 |
20060002895 | McDonnell et al. | Jan 2006 | A1 |
20060024034 | Filo et al. | Feb 2006 | A1 |
20060028951 | Tozun et al. | Feb 2006 | A1 |
20060064733 | Norton et al. | Mar 2006 | A1 |
20060080167 | Chen et al. | Apr 2006 | A1 |
20060120624 | Jojic et al. | Jun 2006 | A1 |
20060130121 | Candelore et al. | Jun 2006 | A1 |
20060150072 | Salvucci | Jul 2006 | A1 |
20060150216 | Herz et al. | Jul 2006 | A1 |
20060153537 | Kaneko et al. | Jul 2006 | A1 |
20060155400 | Loomis | Jul 2006 | A1 |
20060200842 | Chapman et al. | Sep 2006 | A1 |
20060212904 | Klarfeld et al. | Sep 2006 | A1 |
20060222322 | Levitan | Oct 2006 | A1 |
20060224260 | Hicken et al. | Oct 2006 | A1 |
20060253330 | Maggio et al. | Nov 2006 | A1 |
20060274828 | Siemens et al. | Dec 2006 | A1 |
20070003149 | Nagumo et al. | Jan 2007 | A1 |
20070024706 | Brannon et al. | Feb 2007 | A1 |
20070028272 | Lockton | Feb 2007 | A1 |
20070033633 | Andrews et al. | Feb 2007 | A1 |
20070055989 | Shanks et al. | Mar 2007 | A1 |
20070079325 | de Heer | Apr 2007 | A1 |
20070085759 | Lee et al. | Apr 2007 | A1 |
20070099684 | Butterworth | May 2007 | A1 |
20070101369 | Dolph | May 2007 | A1 |
20070118801 | Harshbarger et al. | May 2007 | A1 |
20070154169 | Cordray et al. | Jul 2007 | A1 |
20070157234 | Walker | Jul 2007 | A1 |
20070157260 | Walker | Jul 2007 | A1 |
20070157261 | Steelberg et al. | Jul 2007 | A1 |
20070162395 | Ben-Yaacov et al. | Jul 2007 | A1 |
20070180488 | Walter | Aug 2007 | A1 |
20070220583 | Bailey et al. | Sep 2007 | A1 |
20070226761 | Zalewski et al. | Sep 2007 | A1 |
20070239754 | Schnitman | Oct 2007 | A1 |
20070253677 | Wang | Nov 2007 | A1 |
20070253688 | Koennecke | Nov 2007 | A1 |
20070263722 | Fukuzawa | Nov 2007 | A1 |
20080019445 | Aono et al. | Jan 2008 | A1 |
20080021187 | Wescott et al. | Jan 2008 | A1 |
20080021874 | Dahl et al. | Jan 2008 | A1 |
20080022320 | Ver Steeg | Jan 2008 | A1 |
20080031595 | Cho | Feb 2008 | A1 |
20080086456 | Rasanen et al. | Apr 2008 | A1 |
20080086754 | Chen et al. | Apr 2008 | A1 |
20080091721 | Harboe et al. | Apr 2008 | A1 |
20080092159 | Dmitriev et al. | Apr 2008 | A1 |
20080148152 | Blinnikka et al. | Jun 2008 | A1 |
20080161111 | Schuman | Jul 2008 | A1 |
20080170687 | Moors et al. | Jul 2008 | A1 |
20080177893 | Bowra et al. | Jul 2008 | A1 |
20080178232 | Velusamy | Jul 2008 | A1 |
20080276157 | Kustka et al. | Nov 2008 | A1 |
20080300967 | Buckley et al. | Dec 2008 | A1 |
20080301750 | Silfvast et al. | Dec 2008 | A1 |
20080314232 | Hansson et al. | Dec 2008 | A1 |
20090022015 | Harrison | Jan 2009 | A1 |
20090022165 | Candelore et al. | Jan 2009 | A1 |
20090024923 | Hartwig et al. | Jan 2009 | A1 |
20090027337 | Hildreth | Jan 2009 | A1 |
20090029771 | Donahue | Jan 2009 | A1 |
20090055880 | Batteram et al. | Feb 2009 | A1 |
20090063681 | Ramakrishnan et al. | Mar 2009 | A1 |
20090063995 | Baron et al. | Mar 2009 | A1 |
20090077137 | Weda et al. | Mar 2009 | A1 |
20090079663 | Chang et al. | Mar 2009 | A1 |
20090083631 | Sidi et al. | Mar 2009 | A1 |
20090116817 | Kim et al. | May 2009 | A1 |
20090131764 | Lee et al. | May 2009 | A1 |
20090133051 | Hildreth | May 2009 | A1 |
20090133071 | Sakai et al. | May 2009 | A1 |
20090138805 | Hildreth | May 2009 | A1 |
20090177538 | Brewer et al. | Jul 2009 | A1 |
20090178089 | Picco et al. | Jul 2009 | A1 |
20090191971 | Avent | Jul 2009 | A1 |
20090195652 | Gal | Aug 2009 | A1 |
20090199697 | Lehtiniemi et al. | Aug 2009 | A1 |
20090210790 | Thomas | Aug 2009 | A1 |
20090226046 | Shteyn | Sep 2009 | A1 |
20090228572 | Wall et al. | Sep 2009 | A1 |
20090254827 | Gonze et al. | Oct 2009 | A1 |
20090258708 | Figueroa | Oct 2009 | A1 |
20090265737 | Issa et al. | Oct 2009 | A1 |
20090265746 | Halen et al. | Oct 2009 | A1 |
20090297118 | Fink et al. | Dec 2009 | A1 |
20090320075 | Marko | Dec 2009 | A1 |
20100017820 | Thevathasan et al. | Jan 2010 | A1 |
20100042496 | Wang et al. | Feb 2010 | A1 |
20100050083 | Axen et al. | Feb 2010 | A1 |
20100069159 | Yamada et al. | Mar 2010 | A1 |
20100070987 | Amento et al. | Mar 2010 | A1 |
20100077290 | Pueyo | Mar 2010 | A1 |
20100088726 | Curtis et al. | Apr 2010 | A1 |
20100122286 | Begeja et al. | May 2010 | A1 |
20100146145 | Tippin et al. | Jun 2010 | A1 |
20100153512 | Balassanian et al. | Jun 2010 | A1 |
20100153885 | Yates | Jun 2010 | A1 |
20100161792 | Palm et al. | Jun 2010 | A1 |
20100162344 | Casagrande et al. | Jun 2010 | A1 |
20100167816 | Perlman et al. | Jul 2010 | A1 |
20100167819 | Schell | Jul 2010 | A1 |
20100186032 | Pradeep et al. | Jul 2010 | A1 |
20100186579 | Schnitman | Jul 2010 | A1 |
20100199299 | Chang et al. | Aug 2010 | A1 |
20100210351 | Berman | Aug 2010 | A1 |
20100251295 | Amento et al. | Sep 2010 | A1 |
20100262336 | Rivas et al. | Oct 2010 | A1 |
20100267450 | McMain | Oct 2010 | A1 |
20100268361 | Mantel et al. | Oct 2010 | A1 |
20100278509 | Nagano et al. | Nov 2010 | A1 |
20100287033 | Mathur | Nov 2010 | A1 |
20100287475 | van Zwol et al. | Nov 2010 | A1 |
20100293455 | Bloch | Nov 2010 | A1 |
20100312670 | Dempsey | Dec 2010 | A1 |
20100325135 | Chen et al. | Dec 2010 | A1 |
20100332404 | Valin | Dec 2010 | A1 |
20110000797 | Henry | Jan 2011 | A1 |
20110007797 | Palmer et al. | Jan 2011 | A1 |
20110010742 | White | Jan 2011 | A1 |
20110026898 | Lussier et al. | Feb 2011 | A1 |
20110033167 | Arling et al. | Feb 2011 | A1 |
20110041059 | Amarasingham et al. | Feb 2011 | A1 |
20110069940 | Shimy et al. | Mar 2011 | A1 |
20110078023 | Aldrey et al. | Mar 2011 | A1 |
20110078740 | Bolyukh et al. | Mar 2011 | A1 |
20110096225 | Candelore | Apr 2011 | A1 |
20110126106 | Ben Shaul et al. | May 2011 | A1 |
20110131493 | Dahl | Jun 2011 | A1 |
20110138331 | Pugsley et al. | Jun 2011 | A1 |
20110163969 | Anzures et al. | Jul 2011 | A1 |
20110169603 | Fithian et al. | Jul 2011 | A1 |
20110182366 | Frojdh et al. | Jul 2011 | A1 |
20110191684 | Greenberg | Aug 2011 | A1 |
20110191801 | Vytheeswaran | Aug 2011 | A1 |
20110193982 | Kook et al. | Aug 2011 | A1 |
20110197131 | Duffin et al. | Aug 2011 | A1 |
20110200116 | Bloch et al. | Aug 2011 | A1 |
20110202562 | Bloch et al. | Aug 2011 | A1 |
20110238494 | Park | Sep 2011 | A1 |
20110239246 | Woodward et al. | Sep 2011 | A1 |
20110246661 | Manzari et al. | Oct 2011 | A1 |
20110246885 | Pantos et al. | Oct 2011 | A1 |
20110252320 | Arrasvuori et al. | Oct 2011 | A1 |
20110264755 | Salvatore De Villiers | Oct 2011 | A1 |
20110282745 | Meoded et al. | Nov 2011 | A1 |
20110282906 | Wong | Nov 2011 | A1 |
20110307786 | Shuster | Dec 2011 | A1 |
20110307919 | Weerasinghe | Dec 2011 | A1 |
20110307920 | Blanchard et al. | Dec 2011 | A1 |
20110313859 | Stillwell et al. | Dec 2011 | A1 |
20110314030 | Burba et al. | Dec 2011 | A1 |
20120004960 | Ma et al. | Jan 2012 | A1 |
20120005287 | Gadel et al. | Jan 2012 | A1 |
20120011438 | Kim et al. | Jan 2012 | A1 |
20120017141 | Eelen et al. | Jan 2012 | A1 |
20120062576 | Rosenthal et al. | Mar 2012 | A1 |
20120072420 | Moganti et al. | Mar 2012 | A1 |
20120081389 | Dilts | Apr 2012 | A1 |
20120089911 | Hosking et al. | Apr 2012 | A1 |
20120090000 | Cohen et al. | Apr 2012 | A1 |
20120094768 | McCaddon | Apr 2012 | A1 |
20120105723 | van Coppenolle et al. | May 2012 | A1 |
20120110618 | Kilar et al. | May 2012 | A1 |
20120110620 | Kilar et al. | May 2012 | A1 |
20120120114 | You et al. | May 2012 | A1 |
20120134646 | Alexander | May 2012 | A1 |
20120137015 | Sun | May 2012 | A1 |
20120147954 | Kasai et al. | Jun 2012 | A1 |
20120159530 | Ahrens et al. | Jun 2012 | A1 |
20120159541 | Carton et al. | Jun 2012 | A1 |
20120179970 | Hayes | Jul 2012 | A1 |
20120198412 | Creighton et al. | Aug 2012 | A1 |
20120198489 | O'Connell et al. | Aug 2012 | A1 |
20120213495 | Hafeneger et al. | Aug 2012 | A1 |
20120225693 | Sirpal et al. | Sep 2012 | A1 |
20120233631 | Geshwind | Sep 2012 | A1 |
20120246032 | Beroukhim et al. | Sep 2012 | A1 |
20120263263 | Olsen et al. | Oct 2012 | A1 |
20120308206 | Kulas | Dec 2012 | A1 |
20120317198 | Patton et al. | Dec 2012 | A1 |
20120324491 | Bathiche et al. | Dec 2012 | A1 |
20130021269 | Johnson et al. | Jan 2013 | A1 |
20130024888 | Sivertsen | Jan 2013 | A1 |
20130028446 | Krzyzanowski | Jan 2013 | A1 |
20130028573 | Hoofien et al. | Jan 2013 | A1 |
20130031582 | Tinsman et al. | Jan 2013 | A1 |
20130033542 | Nakazawa | Feb 2013 | A1 |
20130036200 | Roberts et al. | Feb 2013 | A1 |
20130039632 | Feinson | Feb 2013 | A1 |
20130046847 | Zavesky et al. | Feb 2013 | A1 |
20130054728 | Amir et al. | Feb 2013 | A1 |
20130055321 | Cline et al. | Feb 2013 | A1 |
20130061263 | Issa et al. | Mar 2013 | A1 |
20130094830 | Stone et al. | Apr 2013 | A1 |
20130097643 | Stone et al. | Apr 2013 | A1 |
20130117248 | Bhogal et al. | May 2013 | A1 |
20130125181 | Montemayor et al. | May 2013 | A1 |
20130129304 | Feinson | May 2013 | A1 |
20130129308 | Karn et al. | May 2013 | A1 |
20130167168 | Ellis et al. | Jun 2013 | A1 |
20130173765 | Korbecki | Jul 2013 | A1 |
20130177294 | Kennberg | Jul 2013 | A1 |
20130188923 | Hartley et al. | Jul 2013 | A1 |
20130195427 | Sathish | Aug 2013 | A1 |
20130202265 | Arrasvuori et al. | Aug 2013 | A1 |
20130204710 | Boland et al. | Aug 2013 | A1 |
20130205314 | Ramaswamy et al. | Aug 2013 | A1 |
20130219425 | Swartz | Aug 2013 | A1 |
20130235152 | Hannuksela et al. | Sep 2013 | A1 |
20130235270 | Sasaki et al. | Sep 2013 | A1 |
20130254292 | Bradley | Sep 2013 | A1 |
20130259442 | Bloch et al. | Oct 2013 | A1 |
20130282917 | Reznik et al. | Oct 2013 | A1 |
20130283401 | Pabla et al. | Oct 2013 | A1 |
20130290818 | Arrasvuori et al. | Oct 2013 | A1 |
20130298146 | Conrad et al. | Nov 2013 | A1 |
20130308926 | Jang et al. | Nov 2013 | A1 |
20130328888 | Beaver et al. | Dec 2013 | A1 |
20130330055 | Zimmermann et al. | Dec 2013 | A1 |
20130335427 | Cheung et al. | Dec 2013 | A1 |
20140015940 | Yoshida | Jan 2014 | A1 |
20140019865 | Shah | Jan 2014 | A1 |
20140025620 | Greenzeiger et al. | Jan 2014 | A1 |
20140025839 | Marko et al. | Jan 2014 | A1 |
20140040273 | Cooper et al. | Feb 2014 | A1 |
20140040280 | Slaney et al. | Feb 2014 | A1 |
20140046946 | Friedmann et al. | Feb 2014 | A2 |
20140078397 | Bloch et al. | Mar 2014 | A1 |
20140082666 | Bloch et al. | Mar 2014 | A1 |
20140085196 | Zucker et al. | Mar 2014 | A1 |
20140086445 | Brubeck et al. | Mar 2014 | A1 |
20140094313 | Watson et al. | Apr 2014 | A1 |
20140101550 | Zises | Apr 2014 | A1 |
20140105420 | Lee | Apr 2014 | A1 |
20140126877 | Crawford et al. | May 2014 | A1 |
20140129618 | Panje et al. | May 2014 | A1 |
20140136186 | Adami et al. | May 2014 | A1 |
20140152564 | Gulezian et al. | Jun 2014 | A1 |
20140156677 | Collins, III et al. | Jun 2014 | A1 |
20140178051 | Bloch et al. | Jun 2014 | A1 |
20140186008 | Eyer | Jul 2014 | A1 |
20140194211 | Chimes et al. | Jul 2014 | A1 |
20140210860 | Caissy | Jul 2014 | A1 |
20140219630 | Minder | Aug 2014 | A1 |
20140220535 | Angelone | Aug 2014 | A1 |
20140237520 | Rothschild et al. | Aug 2014 | A1 |
20140245152 | Carter et al. | Aug 2014 | A1 |
20140270680 | Bloch et al. | Sep 2014 | A1 |
20140279032 | Roever et al. | Sep 2014 | A1 |
20140282013 | Amijee | Sep 2014 | A1 |
20140282642 | Needham et al. | Sep 2014 | A1 |
20140298173 | Rock | Oct 2014 | A1 |
20140314239 | Meyer et al. | Oct 2014 | A1 |
20140317638 | Hayes | Oct 2014 | A1 |
20140380167 | Bloch et al. | Dec 2014 | A1 |
20150007234 | Rasanen et al. | Jan 2015 | A1 |
20150012369 | Dharmaji et al. | Jan 2015 | A1 |
20150015789 | Guntur et al. | Jan 2015 | A1 |
20150020086 | Chen et al. | Jan 2015 | A1 |
20150033266 | Klappert et al. | Jan 2015 | A1 |
20150046946 | Hassell et al. | Feb 2015 | A1 |
20150058342 | Kim et al. | Feb 2015 | A1 |
20150063781 | Silverman et al. | Mar 2015 | A1 |
20150067596 | Brown et al. | Mar 2015 | A1 |
20150067723 | Bloch et al. | Mar 2015 | A1 |
20150070458 | Kim et al. | Mar 2015 | A1 |
20150070516 | Shoemake et al. | Mar 2015 | A1 |
20150104155 | Bloch et al. | Apr 2015 | A1 |
20150106845 | Popkiewicz et al. | Apr 2015 | A1 |
20150124171 | King | May 2015 | A1 |
20150154439 | Anzue et al. | Jun 2015 | A1 |
20150160853 | Hwang et al. | Jun 2015 | A1 |
20150179224 | Bloch et al. | Jun 2015 | A1 |
20150181271 | Onno et al. | Jun 2015 | A1 |
20150181291 | Wheatley | Jun 2015 | A1 |
20150181301 | Bloch et al. | Jun 2015 | A1 |
20150185965 | Belliveau et al. | Jul 2015 | A1 |
20150195601 | Hahm | Jul 2015 | A1 |
20150199116 | Bloch et al. | Jul 2015 | A1 |
20150201187 | Ryo | Jul 2015 | A1 |
20150256861 | Oyman | Sep 2015 | A1 |
20150258454 | King et al. | Sep 2015 | A1 |
20150286716 | Snibbe et al. | Oct 2015 | A1 |
20150293675 | Bloch et al. | Oct 2015 | A1 |
20150294685 | Bloch et al. | Oct 2015 | A1 |
20150304698 | Redol | Oct 2015 | A1 |
20150318018 | Kaiser et al. | Nov 2015 | A1 |
20150331485 | Wilairat et al. | Nov 2015 | A1 |
20150331933 | Tocchini, IV et al. | Nov 2015 | A1 |
20150331942 | Tan | Nov 2015 | A1 |
20150348325 | Voss | Dec 2015 | A1 |
20150373385 | Straub | Dec 2015 | A1 |
20160009487 | Edwards et al. | Jan 2016 | A1 |
20160021412 | Zito, Jr. | Jan 2016 | A1 |
20160029002 | Balko | Jan 2016 | A1 |
20160037217 | Harmon et al. | Feb 2016 | A1 |
20160057497 | Kim et al. | Feb 2016 | A1 |
20160062540 | Yang et al. | Mar 2016 | A1 |
20160065831 | Howard et al. | Mar 2016 | A1 |
20160066051 | Caidar et al. | Mar 2016 | A1 |
20160086585 | Sugimoto | Mar 2016 | A1 |
20160094875 | Peterson et al. | Mar 2016 | A1 |
20160099024 | Gilley | Apr 2016 | A1 |
20160100226 | Sadler et al. | Apr 2016 | A1 |
20160104513 | Bloch et al. | Apr 2016 | A1 |
20160105724 | Bloch et al. | Apr 2016 | A1 |
20160132203 | Seto et al. | May 2016 | A1 |
20160134946 | Glover | May 2016 | A1 |
20160142889 | O'Connor et al. | May 2016 | A1 |
20160150278 | Greene | May 2016 | A1 |
20160162179 | Annett et al. | Jun 2016 | A1 |
20160170948 | Bloch | Jun 2016 | A1 |
20160173944 | Kilar et al. | Jun 2016 | A1 |
20160192009 | Sugio et al. | Jun 2016 | A1 |
20160217829 | Bloch et al. | Jul 2016 | A1 |
20160224573 | Shahraray et al. | Aug 2016 | A1 |
20160232579 | Fahnestock | Aug 2016 | A1 |
20160277779 | Zhang et al. | Sep 2016 | A1 |
20160303608 | Jossick | Oct 2016 | A1 |
20160321689 | Turgeman | Nov 2016 | A1 |
20160322054 | Bloch et al. | Nov 2016 | A1 |
20160323608 | Bloch et al. | Nov 2016 | A1 |
20160337691 | Prasad et al. | Nov 2016 | A1 |
20160344873 | Jenzeh et al. | Nov 2016 | A1 |
20160365117 | Boliek et al. | Dec 2016 | A1 |
20160366454 | Tatourian et al. | Dec 2016 | A1 |
20170006322 | Dury et al. | Jan 2017 | A1 |
20170041372 | Hosur | Feb 2017 | A1 |
20170062012 | Bloch et al. | Mar 2017 | A1 |
20170142486 | Masuda | May 2017 | A1 |
20170149795 | Day, II | May 2017 | A1 |
20170178409 | Bloch et al. | Jun 2017 | A1 |
20170178601 | Bloch et al. | Jun 2017 | A1 |
20170195736 | Chai et al. | Jul 2017 | A1 |
20170264920 | Mickelsen | Sep 2017 | A1 |
20170286424 | Peterson | Oct 2017 | A1 |
20170289220 | Bloch et al. | Oct 2017 | A1 |
20170295410 | Bloch et al. | Oct 2017 | A1 |
20170326462 | Lyons et al. | Nov 2017 | A1 |
20170337196 | Goela et al. | Nov 2017 | A1 |
20170345460 | Bloch et al. | Nov 2017 | A1 |
20180007443 | Cannistraro et al. | Jan 2018 | A1 |
20180014049 | Griffin et al. | Jan 2018 | A1 |
20180025078 | Quennesson | Jan 2018 | A1 |
20180048831 | Berwick et al. | Feb 2018 | A1 |
20180060430 | Lu | Mar 2018 | A1 |
20180068019 | Novikoff et al. | Mar 2018 | A1 |
20180115592 | Samineni | Apr 2018 | A1 |
20180130501 | Bloch et al. | May 2018 | A1 |
20180176573 | Chawla et al. | Jun 2018 | A1 |
20180191574 | Vishnia et al. | Jul 2018 | A1 |
20180254067 | Elder | Sep 2018 | A1 |
20180262798 | Ramachan Dra | Sep 2018 | A1 |
20180310049 | Takahashi et al. | Oct 2018 | A1 |
20180314959 | Apokatanidis et al. | Nov 2018 | A1 |
20180376205 | Oswal et al. | Dec 2018 | A1 |
20190066188 | Rothschild | Feb 2019 | A1 |
20190069038 | Phillips | Feb 2019 | A1 |
20190069039 | Phillips | Feb 2019 | A1 |
20190075367 | van Zessen et al. | Mar 2019 | A1 |
20190090002 | Ramadorai et al. | Mar 2019 | A1 |
20190098371 | Keesan | Mar 2019 | A1 |
20190132639 | Panchaksharaiah et al. | May 2019 | A1 |
20190166412 | Panchaksharaiah et al. | May 2019 | A1 |
20190182525 | Steinberg et al. | Jun 2019 | A1 |
20190238719 | Alameh et al. | Aug 2019 | A1 |
20190335225 | Fang et al. | Oct 2019 | A1 |
20190354936 | Deluca et al. | Nov 2019 | A1 |
20200023157 | Lewis et al. | Jan 2020 | A1 |
20200037047 | Cheung et al. | Jan 2020 | A1 |
20200169787 | Pearce et al. | May 2020 | A1 |
20200193163 | Chang et al. | Jun 2020 | A1 |
20200344508 | Edwards et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2639491 | Mar 2010 | CA |
004038801 | Jun 1992 | DE |
10053720 | Apr 2002 | DE |
0965371 | Dec 1999 | EP |
1033157 | Sep 2000 | EP |
2104105 | Sep 2009 | EP |
2359916 | Sep 2001 | GB |
2428329 | Jan 2007 | GB |
2003-245471 | Sep 2003 | JP |
2008005288 | Jan 2008 | JP |
2004-0005068 | Jan 2004 | KR |
2010-0037413 | Apr 2010 | KR |
WO-1996013810 | May 1996 | WO |
WO-2000059224 | Oct 2000 | WO |
WO-2007062223 | May 2007 | WO |
WO-2007138546 | Dec 2007 | WO |
WO-2008001350 | Jan 2008 | WO |
WO-2008052009 | May 2008 | WO |
WO-2008057444 | May 2008 | WO |
WO-2009125404 | Oct 2009 | WO |
WO-2009137919 | Nov 2009 | WO |
Entry |
---|
U.S. Appl. No. 15/356,913, Systems and Methods for Real-Time Pixel Switching, filed Nov. 21, 2016. |
U.S. Appl. No. 15/481,916 Published as US 2017-0345460, Systems and Methods for Creating Linear Video From Branched Video, filed Apr. 7, 2017. |
U.S. Appl. No. 14/534,626 Published as US-2018-0130501-A1, Systems and Methods for Dynamic Video Bookmarking, filed Sep. 13, 2017. |
U.S. Appl. No. 16/865,896, Systems and Methods for Dynamic Video Bookmarking, filed May 4, 2020. |
U.S. Appl. No. 16/752,193, Systems and Methods for Nonlinear Video Playback Using Linear Real-Time Video Players, filed Jan. 24, 2020. |
U.S. Appl. No. 16/800,994, Systems and Methods for Adaptive and Responsive Video, filed Feb. 25, 2020. |
U.S. Appl. No. 14/978,464 Published as US2017/0178601, Intelligent Buffering of Large-Scale Video, filed Dec. 22, 2015. |
U.S. Appl. No. 14/978,491, Published as US2017/0178409, Seamless Transitions in Large-Scale Video, filed Dec. 22, 2015. |
U.S. Appl. No. 15/395,477 Published as US2018/0191574, Systems and Methods for Dynamic Weighting of Branched Video Paths, filed Dec. 30, 2016. |
U.S. Appl. No. 16/591,103, Systems and Methods for Dynamically Adjusting Video Aspect Ratios, filed Oct. 2, 2019. |
U.S. Appl. No. 16/793,205, Dynamic Adaptation of Interactive Video Players Using Behavioral Analytics, filed Feb. 18, 2020. |
U.S. Appl. No. 16/793,201, Systems and Methods for Detecting Anomalous Activities for Interactive Videos, filed Feb. 18, 2020. |
U.S. Appl. No. 16/922,540, Systems and Methods for Seamless Audio and Video Endpoint Transitions, filed Jul. 7, 2020. |
U.S. Appl. No. 12/706,721, now U.S. Pat. No. 9,190,110, the Office Actions dated Apr. 26, 2012, Aug. 17, 2012, Mar. 28, 2013, Jun. 20, 2013, Jan. 3, 2014, Jul. 7, 2014, and Dec. 19, 2014; the Notices of Allowance dated Jun. 19, 2015, Jul. 17, 2015, Jul. 29, 2015, Aug. 12, 2015, and Sep. 14, 2015. |
U.S Appl. No. 14/884,284, the Office Actions dated Sep. 8, 2017; May 18, 2018; Dec. 14, 2018; Jul. 25, 2019; Nov. 18, 2019 and Feb. 21, 2020. |
U.S. Appl. No. 13/033,916, now U.S. Pat. No. 9,607,655, the Office Actions dated Jun. 7, 2013, Jan. 2, 2014, Aug. 28, 2014, Jan. 5, 2015, Jul. 9, 2015, and Jan. 5, 2016; the Advisory Action dated May 11, 2016; and the Notice of Allowance dated Dec. 21, 2016. |
U.S. Appl. No. 13/034,645, the Office Actions dated Jul. 23, 2012, Mar. 21, 2013, Sep. 15, 2014, Jun. 4, 2015, Apr. 7, 2017, Oct. 6, 2017, Aug. 10, 2018, Jul. 5, 2016, Apr. 5, 2019 and Dec. 26, 2019. |
U.S. Appl. No. 13/437,164, now U.S. Pat. No. 8,600,220, the Notice of Allowance dated Aug. 9, 2013. |
U.S. Appl. No. 14/069,694, now U.S. Pat. No.9,271,015, the Office Actions dated Apr. 27, 2015 and Aug. 31, 2015, the Notice of Allwance dated Oct. 13, 2015. |
U.S. Appl. No. 13/622,780, now U.S. Pat. No. 8,860,882, the Offce Acion dated Jan. 16, 2014, the Notice of Allowance dated Aug. 4, 2014. |
U.S. Appl. No. 13/622,795, now U.S. Pat. No. 9,009,619, the Office Actions dated May 23, 2014 and Dec. 1, 2014, the Notice of Allowance dated Jan. 9, 2015. |
U.S. Appl. No. 14/639,579, now U.S. Pat. No. 10,474,334, the Office Actions dated May 3, 2017, Nov. 22, 2017, and Jun. 26, 2018, the Notices of Allowances dated Feb. 8, 2019 and Jul. 11, 2019. |
U.S. Appl. No. 13/838,830, now U.S. Pat. No. 9,257,148, the Office Action dated May 7, 2015, Notices of Allowance dated Nov. 6, 2015. |
U.S. Appl. No. 14/984,821, now U.S. Pat. No. 10,418,066, the Office Actions dated Jun. 1, 2017, Dec. 6, 2017, and Oct. 5, 2018; the Notice of Allowance dated May 7, 2019. |
U.S. Appl. No. 13/921,536, now U.S. Pat. No. 9,832,516, the Office Actions dated Feb. 25, 2015, Oct. 20, 2015, Aug. 26, 2016 and Mar. 8, 2017, the Advisory Action dated Jun. 21, 2017, and Notice of Allowance dated Sep. 12, 2017. |
U.S. Appl. No. 14/107,600, now U.S. Pat. No. 10,448,119, the Office Actions dated Dec. 19, 2014, Jul. 8, 2015, Jun. 3, 2016, Mar. 8, 2017, Oct. 10, 2017 and Jul. 25, 2018, and the Notices of Allowance dated Dec. 31, 2018 and Apr. 25, 2019. |
U.S. Appl. No. 14/335,381, now U.S. Pat. No. 9,530,454, the Office Action dated Feb. 12, 2016; and the Notice of Allowance dated Aug. 25, 2016. |
U.S. Appl. No. 14/139,996, now U.S. Pat. No. 9,641,898, the Office Actions dated Jun. 18, 2015, Feb. 3, 2016 and May 4, 2016; and the Notice of Allowance dated Dec. 23, 2016. |
U.S. Appl. No. 14/140,007, now U.S. Pat. No. 9,520,155, the Office Actions dated Sep. 8, 2015 and Apr. 26, 2016; and the Notice of Allowance dated Oct. 11, 2016. |
U.S. Appl. No. 14/249,627, now U.S. Pat. No. 9,653,115, the Office Actions dated Jan. 14, 2016 and Aug. 9, 2016; and the Notice of Allowance dated Jan. 13, 2017. |
U.S. Appl. No. 15/481,916, the Office Actions dated Oct. 6, 2017, Aug. 6, 2018, Mar. 8, 2019, Nov. 27, 2019, and the Notice of Allowance dated Apr. 21, 2020. |
U.S. Appl. No. 14/249,665, now U.S. Pat. No. 9,792,026, the Office Actions dated May 16, 2016 and Feb. 22, 2017; and the Notices of Allowance dated Jun. 2, 2017 and Jul. 24, 2017. |
U.S. Appl. No. 14/509,700, now U.S. Pat. No. 9,792,957, the Office Action dated Oct. 28, 2016; and the Notice of Allowance dated Jun. 15, 2017. |
U.S. Appl. No. 15/703,462, the Office Action dated Jun. 21, 2019, and Dec. 27, 2019; and the Notice of Allowance dated Feb. 10, 2020. |
U.S. Appl. No. 14/534,626, the Office Actions dated Nov. 25, 2015, Jul. 5, 2016, Jun. 5, 2017, Mar. 2, 2018, Sep. 26, 2018, May 8, 2019, Dec. 27, 2019; and Aug. 19, 2020. |
U.S. Appl. No. 14/700,845, now U.S. Pat. No. 9,653,115, the Office Actions dated May 20, 2016, Dec. 2, 2016, May 22, 2017, Nov. 28, 2017, Jun. 27, 2018 and Feb. 19, 2019 and the Notice of Allowance dated Oct. 21, 2019. |
U.S. Appl. No. 14/700,862, now U.S. Pat. No. 9,672,868, the Office Action dated Aug. 26, 2016; and the Notice of Allowance dated Mar. 9, 2017. |
U.S. Appl. No. 14/835,857, now U.S. Pat. No. 10,460,765, the Office Actions dated Sep. 23, 2016, Jun. 5, 2017 and Aug. 9, 2018, and the Advisory Action dated Oct. 20, 2017; Notice of Allowances dated Feb. 25, 2019 and Jun. 7, 2019. |
U.S. Appl. No. 16/559,082, the Office Action dated Feb. 2, 2020 and Jul. 23, 2020. |
U.S. Appl. No. 16/800,994, the Office Action dated Apr. 15, 2020. |
U.S. Appl. No. 14/978,464, the Office Actions dated Jul. 25, 2019, Dec. 14, 2018, May 18, 2018, Sep. 8, 2017, Dec. 14, 2018, Jul. 25, 2019, Nov. 18, 2019, Jul. 23, 2020. |
U.S. Appl. No. 14/978,491, the Office Actions dated Sep. 8, 2017, May 25, 2018, Dec. 14, 2018, Aug. 12, 2019; Dec. 23, 2019; and Jul. 23, 2020. |
U.S. Appl. No. 15/085,209, now U.S. Pat. No. 10,462,262, the Office Actions dated Feb. 26, 2018 and Dec. 31, 2018; the Notice of Allowance dated Aug. 12, 2019. |
U.S. Appl. No. 15/165,373, the Office Actions dated Mar. 24, 2017, Oct. 11, 2017, May 18, 2018, Feb. 1, 2019, Aug. 8, 2019, and Jan. 3, 2020. |
U.S. Appl. No. 15/189,931, now U.S. Pat. No. 10,218,760, the Office Actions dated Apr. 6, 2018, Notice of Allowance dated Oct. 24, 2018. |
U.S. Appl. No. 15/395,477, the Office Actions dated Nov. 2, 2018, Aug. 16, 2019, and Apr. 15, 2019. |
U.S. Appl. No. 15/997,284, the Office Actions dated Aug. 1, 2019, Nov. 21, 2019 and Apr. 28, 2020. |
U.S. Appl. No. 15/863,191, now U.S. Pat. No. 10,257,578, the Notices of Allowance dated Jul. 5, 2018 and Nov. 23, 2018. |
U.S. Appl. No. 16/591,103, the Office Action dated Apr. 22, 2020. |
An ffmpeg and SDL Tutorial, “Tutorial 05: Synching Video,” Retrieved from Internet on Mar. 15, 2013: <http://dranqer.com/ffmpeg/tutorial05.html>, (4 pages). |
Archos Gen 5 English User Manual Version 3.0, Jul. 26, 2007, p. 1-81. |
Bartlett, “iTunes 11: How to Queue Next Song,” Technipages, Oct. 6, 2008, pp. 1-8, Retrieved from the Internet on Dec. 26, 2013, http://www.technipages.com/itunes-queue-next-song.html. |
International Search Report and Written Opinion for International Patent Application PCT/IB2013/001000 dated Jul. 31, 2013 (11 pages). |
International Search Report for International Application PCT/IL2010/000362 dated Aug. 25, 2010 (6 pages). |
International Search Report for International Patent Application PCT/IL2012/000080 dated Aug. 9, 2012 (4 pages). |
International Search Report for International Patent Application PCT/IL2012/000081 dated Jun. 28, 2012 (4 pages). |
Labs.byHook: “Ogg Vorbis Encoder for Flash: Alchemy Series Part 1,” Retrieved from Internet on on Dec. 17, 2012: URl:http://labs.byhook.com/2011/02/15/ogg-vorbis-encoder-for-flash-alchem- y-series-part-1/, 2011, 6 pages. |
Miller, Gregor et al., “MiniDiver: A Novel Mobile Media Playback Interface for Rich Video Content on an iPhone™”, Entertainment Computing A ICEV 2009, Sep. 3, 2009, pp. 98-109. |
Sodagar, I., “The MPEG-DASH Standard for Multimedia Streaming Over the Internet”, IEEE Multimedia, IEEE Service Center, New York, NY US, (2011) 18(4): 62-67. |
Supplemental European Search Report for EP10774637.2 (PCT/IL2010/000362) dated Jun. 28, 2012 (6 pages). |
Supplemental European Search Report for EP13184145 dated Jan. 30, 2014 (5 pages). |
Yang, H, et al., “Time Stamp Synchronization in Video Systems,” Teletronics Technology Corporation, <http://www.ttcdas.com/products/daus_encoders/pdf/_tech_papers/tp_2010_time_stamp_video_system.pdf>, Abstract, (8 pages). |
U.S. Appl. No. 12/706,721 U.S. Pat. No. 9,190,110 Published as US2010/0293455, System and Method for Assembling a Recorded Composition, filed Feb. 17, 2010. |
U.S. Appl. No. 14/884,285 Published as US2017/0178601, Systems and Method for Assembling a Recorded Composition, filed Oct. 15, 2015. |
U.S. Appl. No. 13/033,916 U.S. Pat. No. 9,607,655 Published as US2011/0200116, System and Method for Seamless Multimedia Assembly, filed Feb. 24, 2011. |
U.S. Appl. No. 13/034,645 U.S. Pat. No. 11,232,458 Published as US2011/0202562, System and Method for Data Mining Within Interactive Multimedia, filed Feb. 24, 2011. |
U.S. Appl. No. 17/551,847 Published as US2021/0366520, Systems and Methods for Data Mining Within Interactive Multimedia, filed Dec. 15, 2021. |
U.S. Appl. No. 13/437,164 U.S. Pat. No. 8,600,220 Published as US2013/0259442, Systems and Methods for Loading More Than One Video Content at a Time, filed Apr. 2, 2012. |
U.S. Appl. No. 14/069,694 U.S. Pat. No. 9,271,015 Published as US2014/0178051, Systems and Methods for Loading More Than One Video Content at a Time, filed Nov. 1, 2013. |
U.S. Appl. No. 13/622,780 U.S. Pat. No. 8,860,882 Published as US2014/0078397, Systems and Methods for Constructing Multimedia Content Modules, filed Sep. 19, 2012. |
U.S. Appl. No. 13/622,795 U.S. Pat. No. 9,009,619 Published as US2014/0082666, Progress Bar for Branched Videos, filed Sep. 19, 2012. |
U.S. Appl. No. 14/639,579 U.S. Pat. No. 10,474,334 Published as US2015/0199116, Progress Bar for Branched Videos, filed Mar. 5, 2015. |
U.S. Appl. No. 13/838,830 U.S. Pat. No. 9,257,148 Published as US2014/0270680, System and Method for Synchronization of Selectably Presentable Media Streams, filed Mar. 15, 2013. |
U.S. Appl. No. 14/984,821 U.S. Pat. No. 10,418,066 Published as US2016/0217829, System and Method for Synchronization of Selectably Presentable Media Streams, filed Dec. 30, 2015. |
U.S. Appl. No. 13/921,536 U.S. Pat. No. 9,832,516 Published as US2014/0380167, Systems and Methods for Multiple Device Interaction with Selectably Presentable Media Streams, filed Jun. 19, 2013. |
U.S. Appl. No. 14/107,600 U.S. Pat. No. 10,448,119 Published as US2015/0067723, Methods and Systems for Unfolding Video Pre-Roll, filed Dec. 16, 2013. |
U.S. Appl. No. 14/335,381 U.S. Pat. No. 9,530,454 Published as US2015/0104155, Systems and Methods for Real-Time Pixel Switching, filed Jul. 18, 2014. |
U.S. Appl. No. 14/139,996 U.S. Pat. No. 9,641,898 Published as US2015/0181301, Methods and Systems for In-Video Library, filed Dec. 24, 2013. |
U.S. Appl. No. 14/140,007 U.S. Pat. No. 9,520,155 Published as US2015/0179224, Methods and Systems for Seeking to Non-Key Frames, filed Dec. 24, 2013. |
U.S. Appl. No. 14/249,627 U.S. Pat. No. 9,653,115 Published as US2015-0294685, Systems and Methods for Creating Linear Video From Branched Video, filed Apr. 10, 2014. |
U.S. Appl. No. 15/481,916 U.S. Pat. No. 10,755,747 Published as US2017-0345460, Systems and Methods for Creating Linear Video From Branched Video, filed Apr. 7, 2017. |
U.S. Appl. No. 16/986,977 Published as US2020/0365187, Systems and Methods for Creating Linear Video From Branched Video, filed Aug. 6, 2020. |
U.S. Appl. No. 14/249,665 U.S. Pat. No. 9,792,026 Published as US2015/0293675, Dynamic Timeline for Branched Video, filed Apr. 10, 2014. |
U.S. Appl. No. 14/509,700 U.S. Pat. No. 9,792,957 Published as US2016/0104513, Systems and Methods for Dynamic Video Bookmarking, filed Oct. 8, 2014. |
U.S. Appl. No. 14/534,626 U.S. Pat. No. 10,692,540 Published as US-2018-0130501-A1, Systems and Methods for Dynamic Video Bookmarking, filed Sep. 13, 2017. |
U.S. Appl. No. 16/865,896 U.S. Pat. No. 10,885,944 Published as US2020/0265870, Systems and Methods for Dynamic Video Bookmarking, filed May 4, 2020. |
U.S. Appl. No. 17/138,434 Published as US2021/0366520, Systems and Methods for Dynamic Video Bookmarking, filed Dec. 30, 2020. |
U.S. Appl. No. 17/701,168, Systems and Methods for Dynamic Video Bookmarking, filed Mar. 22, 2022. |
U.S. Appl. No. 14/534,626 Published as US2016/0105724, Systems and Methods for Parallel Track Transitions, filed Nov. 6, 2014. |
U.S. Appl. No. 14/700,845 U.S. Pat. No. 10,582,265 Published as US2016/0323608, Systems and Methods for Nonlinear Video Playback Using Linear Real-Time Video Players, filed Apr. 30, 2015. |
U.S. Appl. No. 16/752,193 Published as US2020/0404382, Systems and Methods for Nonlinear Video Playback Using Linear Real-Time Video Players, filed Jan. 24, 2020. |
U.S. Appl. No. 14/700,862 U.S. Pat. No. 9,672,868 Published as US2016/0322054, Systems and Methods for Seamless Media Creation, filed Apr. 30, 2015. |
U.S. Appl. No. 14/835,857 U.S. Pat. No. 10,460,765 Published as US2017/0062012, Systems and Methods for Adaptive and Responsive Video, filed Aug. 26, 2015. |
U.S. Appl. No. 16/559,082 Published as US2019/0392868, Systems and Methods for Adaptive and Responsive Video, filed Sep. 3, 2019. |
U.S. Appl. No. 14/978,464 U.S. Pat. No. 11,164,548 Published as US2017/0178601, Intelligent Buffering of Large-Scale Video, filed Dec. 22, 2015. |
U.S. Appl. No. 14/978,491 U.S. Pat. No. 11,128,853 Published as US2017/0178409, Seamless Transitions in Large-Scale Video, filed Dec. 22, 2015. |
U.S. Appl. No. 17/403,703 Published as US2022/0038673, Seamless Transitions in Large-Scale Video, filed Aug. 16, 2021. |
U.S. Appl. No. 15/085,209 U.S. Pat. No. 10,462,202 Published as US2017/0289220, Media Stream Rate Synchronization, filed Mar. 30, 2016. |
U.S. Appl. No. 15/165,373 Published as US2017/0295410, Symbiotic Interactive Video, filed May 26, 2016. |
U.S. Appl. No. 15/189,931 U.S. Pat. No. 10,218,760 Published as US2017/0374120, Dynamic Summary Generation for Real-time Switchable Videos, filed Jun. 22, 2016. |
U.S. Appl. No. 15/395,477 U.S. Pat. No. 11,050,809 Published as US2018/0191574, Systems and Methods for Dynamic Weighting of Branched Video Paths, filed Dec. 30, 2016. |
U.S. Appl. No. 15/395,477 Published as US2021/0281626, Systems and Methods for Dynamic Weighting of Branched Video Paths, filed Dec. 30, 2016. |
U.S. Appl. No. 15/997,284 Published as US2019/0373330, Interactive Video Dynamic Adaptation and User Profiling, filed Jun. 4, 2018. |
U.S. Appl. No. 15/863,191 U.S. Pat. No. 10,257,578, Dynamic Library Display for Interactive Videos, filed Jan. 5, 2018. |
U.S. Appl. No. 16/283,066 U.S. Pat. No. 10,856,049 Published as US2019/0349637, Dynamic Library Display for Interactive Videos, filed Feb. 22, 2019. |
U.S. Appl. No. 16/591,103 Published as US2021/0105433, Systems and Methods for Dynamically Adjusting Video Aspect Ratios, filed Oct. 2, 2019. |
U.S. Appl. No. 16/793,205 Published as US2021/0258647, Dynamic Adaptation of Interactive Video Players Using Behavioral Analytics, filed Feb. 18, 2020. |
U.S. Appl. No. 16/793,201 Published as US2021/0258640, Systems and Methods for Detecting Anomalous Activities for Interactive Videos, filed Feb. 18, 2020. |
U.S. Appl. No. 16/922,540 Published as US2022/0014817, Systems and Methods for Seamless Audio and Video Endpoint Transitions, filed Jul. 7, 2020. |
U.S. Appl. No. 17/462,199, Shader-based dynamic video manipulation, filed Aug. 31, 2021. |
U.S. Appl. No. 17/462,222, Shader-based dynamic video manipulation, filed Aug. 31, 2021. |
U.S. Appl. No. 17/334,027, Automated platform for generating interactive videos, filed May 28, 2021. |
U.S. Appl. No. 17/484,604, Discovery engine for interactive videos, filed Sep. 24, 2021. |
U.S. Appl. No. 17/484,635, Video player integration within websites, filed Sep. 24, 2021. |
Google Scholar search, “Inserting metadata inertion advertising video”, Jul. 16, 2021, 2 pages. |
Marciel, M. et al., “Understanding the Detection of View Fraud in Video Content Portals”, (Feb. 5, 2016), Cornell University, pp. 1-13. |
International Preliminary Report and Written Opinion of PCT/IL2012/000080 dated Aug. 27, 2013, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20210306707 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16283066 | Feb 2019 | US |
Child | 17091149 | US | |
Parent | 15863191 | Jan 2018 | US |
Child | 16283066 | US |