The invention relates in general to spine stabilization, and in particular to dynamic spine stabilization systems.
The human spine is a complex structure designed to achieve a myriad of tasks, many of them of a complex kinematic nature. The spinal vertebrae allow the spine to flex in three axes of movement relative to the portion of the spine in motion. These axes include the horizontal (bending either forward/anterior or aft/posterior), roll (bending to either left or right side) and vertical (twisting of the shoulders relative to the pelvis).
In flexing about the horizontal axis, into flexion (bending forward or anterior) and extension (bending backward or posterior), vertebrae of the spine must rotate about the horizontal axis to various degrees of rotation. The sum of all such movement about the horizontal axis of produces the overall flexion or extension of the spine. For example, the vertebrae that make up the lumbar region of the human spine move through roughly an arc of 15° relative to its adjacent or neighboring vertebrae. Vertebrae of other regions of the human spine (e.g., the thoracic and cervical regions) have different ranges of movement. Thus, if one were to view the posterior edge of a healthy vertebrae, one would observe that the edge moves through an arc of some degree (e.g., of about 15° in flexion and about 5° in extension if in the lumbar region) centered around an elliptical center of rotation. During such rotation, the anterior (front) edges of neighboring vertebrae move closer together, while the posterior edges move farther apart, compressing the anterior of the spine Similarly, during extension, the posterior edges of neighboring vertebrae move closer together, while the anterior edges move farther apart, compressing the posterior of the spine. Also during flexion and extension, the vertebrae move in horizontal relationship to each other, providing up to 2-3 mm of translation.
In a normal spine, the vertebrae also permit right and left lateral bending. Accordingly, right lateral bending indicates the ability of the spine to bend over to the right by compressing the right portions of the spine and reducing the spacing between the right edges of associated vertebrae. Similarly, left lateral bending indicates the ability of the spine to bend over to the left by compressing the left portions of the spine and reducing the spacing between the left edges of associated vertebrae. The side of the spine opposite that portion compressed is expanded, increasing the spacing between the edges of vertebrae comprising that portion of the spine. For example, the vertebrae that make up the lumbar region of the human spine rotate about an axis of roll, moving through roughly an arc of 10° relative to its neighbor vertebrae, throughout right and left lateral bending.
Rotational movement about a vertical axis relative to the portion of the spine moving is also desirable. For example, rotational movement can be described as the clockwise or counter-clockwise twisting rotation of the vertebrae, such as during a golf swing.
The inter-vertebral spacing (between neighboring vertebrae) in, a healthy spine is maintained by a compressible and somewhat elastic disc. The disc serves to allow the spine to move about the various axes of rotation and through the various arcs and movements required for normal mobility. The elasticity of the disc maintains spacing between the vertebrae, allowing room or clearance for compression of neighboring vertebrae during flexion and lateral bending of the spine. In addition, the disc allows relative rotation about the vertical axis of neighboring vertebrae, allowing twisting of the shoulders relative to the hips and pelvis. Clearance between neighboring vertebrae maintained by a healthy disc is also important to allow nerves from the spinal chord to extend out of the spine, between neighboring vertebrae, without being squeezed or impinged by the vertebrae.
In situations (based upon injury or otherwise) where a disc is not functioning properly, the inter-vertebral disc tends to compress or become degenerated. The compressed or degenerated disc may cause pressure to be exerted on nerves extending from the spinal cord by this reduced inter-vertebral spacing. Various other types of nerve problems may be experienced in the spine, such as exiting nerve root compression in the neural foramen, passing nerve root compression, and ennervated annulus (where nerves grow into a cracked/compromised annulus, causing pain every time the disc/annulus is compressed), as examples. Many medical procedures have been devised to alleviate such nerve compression and the pain that results from nerve pressure. Many of these procedures revolve around attempts to prevent the vertebrae from moving too close to each other, thereby maintaining space for the nerves to exit without being impinged upon by movements of the spine.
In one such procedure, screws are embedded in adjacent vertebrae pedicles and rigid rods or plates are then secured between the screws. In such a situation, the pedicle screws (which are in effect extensions of the vertebrae) then press against the rigid spacer which serves to distract the degenerated disc space, maintaining adequate separation between the neighboring vertebrae so as to prevent the vertebrae from compressing the nerves. This prevents nerve pressure due to extension of the spine; however, when the patient then tries to bend forward (putting the spine in flexion), the posterior portions of at least two vertebrae are effectively held together. Furthermore, the lateral bending or rotational movement between the affected vertebrae is significantly reduced due to the rigid connection of the spacers. Overall movement of the spine is reduced as more vertebrae are distracted by such rigid spacers. This type of spacer not only limits the patient's movements, but also places additional stress on other portions of the spine (typically, the stress placed on adjacent vertebrae without spacers being the worse), often leading to further complications at a later date.
Current dynamic spinal implant systems do not control vertebral movement about all three axis to emulate a healthy spine. Current systems also do not offer a force control mechanism that works in conjunction with a spinal implant system that controls movement about all three axis to emulate a healthy spine. For a dynamic spinal implant system to be oriented properly the height of the implant, or the distance from an area between the spinal disc to the spinal implant may need to be adjusted. Current systems do not allow for this height adjustment of the spinal implant in-between two pedicle screws.
These and other features, and advantages, will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings. It is important to note the drawings are not intended to represent the only aspect of the invention. Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized. Accordingly, the invention is intended to encompass within its scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
For a more complete understanding of the present invention and the advantages thereof, reference is now made to the following Detailed Description taken in conjunction with the accompanying drawings, in which:
Referring now to
Referring to
The first linking member 2 may have a second shaped end 44 connected to first shaped end 20. A groove or attachment feature 45 may be positioned between the first shaped end 20 and the second shaped end 44. The feature 45 may aid in attachment of a cover (not shown). The second shaped end 44 may have a generally rectangular shape having a top surface, a bottom surface. A passage 48 may extend through the top and bottom surfaces of the second shaped end 44. The passage 48 may have a dovetail shape with an open front section and two non parallel side walls. As will be described in greater detail below the passage 48 of the second shaped end 44 may be dimensioned to mate with the height adjustment mechanism 6.
Referring to
In certain embodiments, the second linking member 4 may have a second shaped end 50. The second shaped end 50 may be connected to the first shaped end 36. The second shaped end 50 may have a generally rectangular shape with a top surface and a bottom surface. A passage 52 may extend through the top and bottom surfaces of the second shaped end 44. The passage 52 may have a dovetail shape with an open front section and two non parallel side walls. As will be described in greater detail below the passage 52 of the second shaped end 50 may be dimensioned to mate with the height adjustment mechanism 8. In the present example, the top surface of second linking member 4 may have a hole 54 that is located between the first shaped end 36 and second shaped end 50. In certain embodiments the hole 54 may have a threaded internal surface which may couple to an adjustment member (not shown) of the a force control mechanism of
Referring now to
The dampening members 72 and 70 may exert a force against protrusions 42a and 42b, respectively as a spine moves in flexion or extension. As the first and second linking members 2 and 4 move in a first direction (as shown by large arrow in
In certain embodiments, the height adjustment mechanism 6 and 8 may include the brackets 60 and 62 which may incorporate various features to adjust and/or secure brackets 60 and 62 to linking members 2 and 4. The brackets 60 and 62 may be identical in structure and function, thus only the bracket 60 will be described in detail. Referring to
Referring to
As previously described above, the position or height of the brackets 60 and 62 may be adjusted relative to the linking members 2 and 4. The height adjustment mechanism 6 and 8 may allow the dynamic linking implant 1 to be adjusted independently of a bone anchor, such as a pedicle screw, to which the dynamic implant 1 is coupled to. There may be several drawbacks to a surgeon adjusting the height of an implant by changing the depth of a pedicle screw. First, the pedicle screw may loosen from the bone if the screw is not inserted to a certain depth and second if the pedicle screw is inserted to deep into the pedicle the screw may exit the pedicle and impinge or damage neighboring anatomy.
Turning to
Dynamic linking implants 1 or 100 may incorporate different biocompatible materials, for example the various components may be manufactured from polymers such as PEEK or UHMWPE. Filled materials may be used such as carbon filled peek. Various metals may also be used such as stainless steel, nitinol or titanium. Bearing or moving surfaces, for example the first ends 20 and 36 may be manufactured from cobalt chrome or may be chrome plated. Surfaces that bear on one another may be manufactured from different materials to reduce wear and friction, for example, a carbon filled PEEK surface of one component may act as a bearing against a cobalt chrome surface of another component. Dynamic linking implant 1 or 100 may also have an elastomeric or fabric covering (not shown).
This application relates to, and claims the benefit of the filing date of: co-pending U.S. provisional patent application Ser. No. 60/883,314 entitled “Dynamic Linking Member for Spine Stabilization System” filed Jan. 3, 2007 the entire contents of which are incorporated herein by reference for all purposes. This application is also commonly owned with U.S. application Ser. No. 11/467,798, filed on Aug. 28, 2006, entitled “Alignment Instrument for Dynamic Spinal Stabilization Systems; Ser. No. 11/443,236, filed on May 30, 2006, entitled “System and Method for Dynamic Skeletal Stabilization”; Ser. No. 11/303,138, filed on Dec. 16, 2005, entitled “Three Column Support Dynamic Stabilization System and Method; Ser. No. 60/825,078, filed on Sep. 8, 2006, entitled “Offset Adjustable Dynamic Stabilization System”; Ser. No. 60/826,807, filed on Sep. 25, 2006, entitled “Offset Adjustable Dynamic Stabilization System”; Ser. No. 60/826,817, filed on Sep. 25, 2006, entitled “Offset Adjustable Dynamic Stabilization System”; Ser. No. 60/863,284, filed on Oct. 27, 2006, entitled “Alignment Instrument for Dynamic Spinal Stabilization Systems”; Ser. No. 60/826,763, filed on Sep. 25, 2006, entitled “Alignment Instrument for Dynamic Spinal Stabilization Systems”; Ser. No. 60/786,898, filed on Mar. 29, 2006, entitled “Full Motion Spherical Linkage Implant System”; Ser. No. 60/831,879, filed on Jul. 19, 2006, entitled “Locking Assembly” Ser. No. 60/793,829, filed on Apr. 21, 2006, entitled “Micro Motion Spherical Linkage Implant System”; Ser. No. 60/814,753, filed on Jun. 19, 2006, entitled “Multi-Level Spherical Linkage Implant System”; Ser. No. 10/914,751, filed on Aug. 9, 2004, entitled “System and Method for Dynamic Skeletal Stabilization”, the disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60883314 | Jan 2007 | US |