This invention pertains generally to the field of charge pumps and more particularly to techniques for regulating charge pumps.
Charge pumps use a switching process to provide a DC output voltage larger or lower than its DC input voltage. In general, a charge pump will have a capacitor coupled to switches between an input and an output. During one clock half cycle, the charging half cycle, the capacitor couples in parallel to the input so as to charge up to the input voltage. During a second clock cycle, the transfer half cycle, the charged capacitor couples in series with the input voltage so as to provide an output voltage twice the level of the input voltage. This process is illustrated in
Charge pumps are used in many contexts. For example, they are used as peripheral circuits on flash and other non-volatile memories to generate many of the needed operating voltages, such as programming or erase voltages, from a lower power supply voltage. A number of charge pump designs, such as conventional Dickson-type pumps, are known in the art. But given the common reliance upon charge pumps, there is an ongoing need for improvements in pump design, particularly with respect to trying to save on current consumption.
A charge pump circuit system includes a charge pump circuit connected to receive a clock signal and generate from it an output voltage and regulation circuitry connected to receive the output voltage and generate a regulation signal based on the output voltage. The charge pump system also includes a clock generation circuit to generate the clock signal, where the clock generation circuit includes an oscillator and a reference voltage generating circuit. The oscillator is connected to receive a reference voltage and generate from it the clock signal, wherein the frequency of the clock signal is dependent upon the level of the reference voltage. The reference voltage generating circuit is connected to receive the regulation signal and generate from it the reference voltage, wherein the level of the reference voltage is dependent upon the regulation signal.
Various aspects, advantages, features and embodiments of the present invention are included in the following description of exemplary examples thereof, which description should be taken in conjunction with the accompanying drawings. All patents, patent applications, articles, other publications, documents and things referenced herein are hereby incorporated herein by this reference in their entirety for all purposes. To the extent of any inconsistency or conflict in the definition or use of terms between any of the incorporated publications, documents or things and the present application, those of the present application shall prevail.
The various aspects and features of the present invention may be better understood by examining the following figures, in which:
a is a simplified circuit diagram of the charging half cycle in a generic charge pump;
b is a simplified circuit diagram of the transfer half cycle in a generic charge pump;
Charge pumps are often operating in a low efficient region. To maintain small ripple, amplitude control can be used to match charge pump's drivability to its load; and to handle the worst case loading condition, charge pumps are often operating in a low efficient region where pump's full strength drivability and its load are greatly mismatched. DC-DC converters such as charge pumps are typically optimized for power efficiency for the supplying large load currents. For example, on a non-volatile memory system this requirement is mainly related to AC capacitive current to needed charge up word lines. The efficiency of the system may drop to extremely low levels, less than 1% in some applications, after the capacitive load is charged up and the load current reduces to just what is needed due to leakage, as is the case during regulation to maintain word line voltages. Although performance requirements are based on the charging-up period, the system will typically be operating under regulation for a greater amount of time. To improve overall power efficiency, the power efficiency during regulation needs to be improved since it accounts for a significant amount of total operation time.
The following presents techniques for maintaining a pump's output at a target value and pump strength, while power can be saved by dynamically adjust the clock frequency with full potential clock swing to match pump's driving strength to its DC load. A common application for charge pumps is in NAND flash memories that are often integrated into digital mobile devices where power consumption is one of the key features for performance. Outside of the actual memory array, charge pumps that generate supply voltage for peripheral circuits are significant power consumption blocks on the memory circuit. The pump systems presented below can help to maintain the output at a target value and pump strength while power is saved by dynamically adjusting the clock frequency with full potential clock swing to match pump's driving strength to the load.
The following is primarily concerned with the regulation circuitry of charge pump systems rather than the details of the pump itself. For example, the pump can be based on a Dickson-type pump, voltage doublers, four-phase, and so on. More detail on various pumps and pump system within which the following concepts can be applied can be found, for example, in “Charge Pump Circuit Design” by Pan and Samaddar, McGraw-Hill, 2006, or “Charge Pumps: An Overview”, Pylarinos and Rogers, Department of Electrical and Computer Engineering University of Toronto, available on the webpage “www.eecg.toronto.edu/˜kphang/ece1371/chargepumps.pdf”. Further information on various other charge pump aspects and designs can be found in U.S. Pat. Nos. 5,436,587; 6,370,075; 6,556,465; 6,760,262; 6,922,096; 7,030,683; 7,554,311; 7,368,979; 7,795,952; 7,135,910; 7,973,592; and 7,969,235; US Patent Publication numbers 2009-0153230-A1; 2009-0153232-A1; 2009-0315616-A1; 2009-0322413-A1; 2009-0058506-A1; US-2011-0148509-A1; 2007-0126494-A1; 2007-0139099-A1; 2008-0307342 A1; 2009-0058507 A1; 2012-0154023; 2012-0154022; and 2013-0063118; and U.S. patent application Ser. Nos. 13/618,482; 13/628,465; 13/886,066; 13/921,072; 13/926,442; and Ser. No. 13/929,197.
With respect to regulation,
The operation of the circuit of
In
In
In
For any of the variations, the arrangement described above can increase power savings and reduce current consumption of the charge pump block. By adjusting the pump clock frequency to regulate pump operations, the pump's maximum driving strength with full clock swing is matched to the pump's DC load for higher efficiency.
Although the invention has been described with reference to particular embodiments, the description is only an example of the invention's application and should not be taken as a limitation. Consequently, various adaptations and combinations of features of the embodiments disclosed are within the scope of the invention as encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3697860 | Baker | Oct 1972 | A |
4271461 | Hoffmann et al. | Jun 1981 | A |
4511811 | Gupta | Apr 1985 | A |
4583157 | Kirsch et al. | Apr 1986 | A |
4621315 | Vaughn et al. | Nov 1986 | A |
4636748 | Latham | Jan 1987 | A |
4736121 | Cini et al. | Apr 1988 | A |
4888738 | Wong et al. | Dec 1989 | A |
5140182 | Ichimura | Aug 1992 | A |
5168174 | Naso et al. | Dec 1992 | A |
5175706 | Edme | Dec 1992 | A |
5263000 | Van Buskirk et al. | Nov 1993 | A |
5335198 | Van Buskirk et al. | Aug 1994 | A |
5392205 | Zavaleta | Feb 1995 | A |
5432469 | Tedrow et al. | Jul 1995 | A |
5436587 | Cernea | Jul 1995 | A |
5483434 | Seesink | Jan 1996 | A |
5508971 | Cernea et al. | Apr 1996 | A |
5521547 | Tsukada | May 1996 | A |
5532653 | Adkins | Jul 1996 | A |
5539351 | Gilsdorf et al. | Jul 1996 | A |
5553030 | Tedrow et al. | Sep 1996 | A |
5563779 | Cave et al. | Oct 1996 | A |
5563825 | Cernea et al. | Oct 1996 | A |
5568424 | Cernea et al. | Oct 1996 | A |
5570315 | Tanaka et al. | Oct 1996 | A |
5592420 | Cernea et al. | Jan 1997 | A |
5596532 | Cernea et al. | Jan 1997 | A |
5602794 | Javanifard et al. | Feb 1997 | A |
5621685 | Cernea et al. | Apr 1997 | A |
5625544 | Kowshik et al. | Apr 1997 | A |
5644534 | Soejima | Jul 1997 | A |
5693570 | Cernea et al. | Dec 1997 | A |
5712778 | Moon | Jan 1998 | A |
5732039 | Javanifard et al. | Mar 1998 | A |
5734286 | Takeyama et al. | Mar 1998 | A |
5767735 | Javanifard et al. | Jun 1998 | A |
5781473 | Javanifard et al. | Jul 1998 | A |
5801987 | Dinh | Sep 1998 | A |
5812017 | Golla et al. | Sep 1998 | A |
5818766 | Song | Oct 1998 | A |
5828596 | Takata et al. | Oct 1998 | A |
5903495 | Takeuchi et al. | May 1999 | A |
5943226 | Kim | Aug 1999 | A |
5945870 | Chu et al. | Aug 1999 | A |
5969565 | Naganawa | Oct 1999 | A |
5969988 | Tanzawa et al. | Oct 1999 | A |
5973546 | Le et al. | Oct 1999 | A |
5982222 | Kyung | Nov 1999 | A |
6008690 | Takeshima et al. | Dec 1999 | A |
6016073 | Ghilardelli et al. | Jan 2000 | A |
6018264 | Jin | Jan 2000 | A |
6023187 | Camacho et al. | Feb 2000 | A |
6026002 | Viehmann | Feb 2000 | A |
6046935 | Takeuchi et al. | Apr 2000 | A |
6104225 | Taguchi et al. | Aug 2000 | A |
6107862 | Mukainakano et al. | Aug 2000 | A |
6134145 | Wong | Oct 2000 | A |
6147566 | Pizzuto et al. | Nov 2000 | A |
6151229 | Taub et al. | Nov 2000 | A |
6154088 | Chevallier et al. | Nov 2000 | A |
6157242 | Fukui | Dec 2000 | A |
6188590 | Chang et al. | Feb 2001 | B1 |
6198645 | Kotowski et al. | Mar 2001 | B1 |
6208198 | Lee | Mar 2001 | B1 |
6249445 | Sugasawa | Jun 2001 | B1 |
6249898 | Koh et al. | Jun 2001 | B1 |
6275096 | Hsu et al. | Aug 2001 | B1 |
6278294 | Taniguchi | Aug 2001 | B1 |
6285622 | Haraguchi et al. | Sep 2001 | B1 |
6288601 | Tomishima | Sep 2001 | B1 |
6297687 | Sugimura | Oct 2001 | B1 |
6307425 | Chevallier et al. | Oct 2001 | B1 |
6314025 | Wong | Nov 2001 | B1 |
6320428 | Atsumi et al. | Nov 2001 | B1 |
6320796 | Voo et al. | Nov 2001 | B1 |
6320797 | Liu | Nov 2001 | B1 |
6329869 | Matano | Dec 2001 | B1 |
6344959 | Milazzo | Feb 2002 | B1 |
6344984 | Miyazaki | Feb 2002 | B1 |
6356062 | Elmhurst et al. | Mar 2002 | B1 |
6356499 | Banba et al. | Mar 2002 | B1 |
6359798 | Han et al. | Mar 2002 | B1 |
6369642 | Zeng et al. | Apr 2002 | B1 |
6370075 | Haeberli et al. | Apr 2002 | B1 |
6385107 | Bedarida et al. | May 2002 | B1 |
6400202 | Fifield et al. | Jun 2002 | B1 |
6404274 | Hosono et al. | Jun 2002 | B1 |
6411157 | Hsu et al. | Jun 2002 | B1 |
6424570 | Le et al. | Jul 2002 | B1 |
6445243 | Myono | Sep 2002 | B2 |
6456154 | Sugimura | Sep 2002 | B2 |
6456170 | Segawa et al. | Sep 2002 | B1 |
6476666 | Palusa et al. | Nov 2002 | B1 |
6486728 | Kleveland | Nov 2002 | B2 |
6518830 | Gariboldi et al. | Feb 2003 | B2 |
6522191 | Cha et al. | Feb 2003 | B1 |
6525614 | Tanimoto | Feb 2003 | B2 |
6525949 | Johnson et al. | Feb 2003 | B1 |
6531792 | Oshio | Mar 2003 | B2 |
6538930 | Ishii et al. | Mar 2003 | B2 |
6545529 | Kim | Apr 2003 | B2 |
6556465 | Haeberli et al. | Apr 2003 | B2 |
6577535 | Pasternak | Jun 2003 | B2 |
6606267 | Wong | Aug 2003 | B2 |
6661682 | Kim et al. | Dec 2003 | B2 |
6703891 | Tanaka | Mar 2004 | B2 |
6724241 | Bedarida et al. | Apr 2004 | B1 |
6734718 | Pan | May 2004 | B1 |
6737907 | Hsu et al. | May 2004 | B2 |
6760262 | Haeberli et al. | Jul 2004 | B2 |
6762640 | Katsuhisa | Jul 2004 | B2 |
6781440 | Huang | Aug 2004 | B2 |
6798274 | Tanimoto | Sep 2004 | B2 |
6819162 | Pelliconi | Nov 2004 | B2 |
6834001 | Myono | Dec 2004 | B2 |
6859091 | Nicholson et al. | Feb 2005 | B1 |
6878981 | Eshel | Apr 2005 | B2 |
6891764 | Li | May 2005 | B2 |
6894554 | Ito | May 2005 | B2 |
6922096 | Cernea | Jul 2005 | B2 |
6927441 | Pappalardo et al. | Aug 2005 | B2 |
6933768 | Hausmann | Aug 2005 | B2 |
6944058 | Wong | Sep 2005 | B2 |
6954386 | Narui et al. | Oct 2005 | B2 |
6975135 | Bui | Dec 2005 | B1 |
6985397 | Tokui et al. | Jan 2006 | B2 |
6990031 | Hashimoto et al. | Jan 2006 | B2 |
6995603 | Chen et al. | Feb 2006 | B2 |
7002381 | Chung | Feb 2006 | B1 |
7023260 | Thorp et al. | Apr 2006 | B2 |
7030683 | Pan et al. | Apr 2006 | B2 |
7092263 | Chang | Aug 2006 | B2 |
7113023 | Cernea | Sep 2006 | B2 |
7116154 | Guo | Oct 2006 | B2 |
7116155 | Pan | Oct 2006 | B2 |
7120051 | Gorobets et al. | Oct 2006 | B2 |
7123078 | Seo | Oct 2006 | B2 |
7129538 | Lee et al. | Oct 2006 | B2 |
7129759 | Fukami | Oct 2006 | B2 |
7135910 | Cernea | Nov 2006 | B2 |
7135911 | Imamiya | Nov 2006 | B2 |
7180794 | Matsue | Feb 2007 | B2 |
7205682 | Kuramori | Apr 2007 | B2 |
7208996 | Suzuki et al. | Apr 2007 | B2 |
7215179 | Yamazoe et al. | May 2007 | B2 |
7224591 | Kaishita et al. | May 2007 | B2 |
7227780 | Komori et al. | Jun 2007 | B2 |
7239192 | Tailliet | Jul 2007 | B2 |
7253675 | Aksin et al. | Aug 2007 | B2 |
7253676 | Fukuda et al. | Aug 2007 | B2 |
7259612 | Saether | Aug 2007 | B2 |
7276960 | Peschke | Oct 2007 | B2 |
7279957 | Yen | Oct 2007 | B2 |
7345928 | Li | Mar 2008 | B2 |
7368979 | Govindu et al. | May 2008 | B2 |
7397677 | Collins et al. | Jul 2008 | B1 |
7466188 | Fifield | Dec 2008 | B2 |
7468628 | Im et al. | Dec 2008 | B2 |
7495500 | Al-Shamma et al. | Feb 2009 | B2 |
7521978 | Kim et al. | Apr 2009 | B2 |
7545684 | Nakagawa et al. | Jun 2009 | B2 |
7554311 | Pan | Jun 2009 | B2 |
7579902 | Frulio et al. | Aug 2009 | B2 |
7579903 | Oku | Aug 2009 | B2 |
7602233 | Pietri et al. | Oct 2009 | B2 |
7667529 | Consuelo et al. | Feb 2010 | B2 |
7671572 | Chung | Mar 2010 | B2 |
7696812 | Al-Shamma et al. | Apr 2010 | B2 |
7772914 | Jung | Aug 2010 | B2 |
7795952 | Lui et al. | Sep 2010 | B2 |
7830203 | Chang et al. | Nov 2010 | B2 |
7928796 | Namekawa | Apr 2011 | B2 |
7944277 | Sinitsky et al. | May 2011 | B1 |
7956675 | Saitoh et al. | Jun 2011 | B2 |
8040174 | Likhterov | Oct 2011 | B2 |
8040184 | Tsuchiya | Oct 2011 | B2 |
8093953 | Pierdomenico et al. | Jan 2012 | B2 |
8159091 | Yeates | Apr 2012 | B2 |
8193853 | Hsieh et al. | Jun 2012 | B2 |
8242834 | Chuang et al. | Aug 2012 | B2 |
8339183 | Htoo et al. | Dec 2012 | B2 |
8395440 | Sandhu et al. | Mar 2013 | B2 |
8604868 | Ucciardello et al. | Dec 2013 | B2 |
8643358 | Yoon | Feb 2014 | B2 |
20020008566 | Taito et al. | Jan 2002 | A1 |
20020014908 | Lauterbach | Feb 2002 | A1 |
20020075063 | Hwang | Jun 2002 | A1 |
20020075706 | Foss et al. | Jun 2002 | A1 |
20020101744 | DeMone | Aug 2002 | A1 |
20020130701 | Kleveland | Sep 2002 | A1 |
20020130704 | Myono et al. | Sep 2002 | A1 |
20020140463 | Cheung | Oct 2002 | A1 |
20020163376 | Pappalardo et al. | Nov 2002 | A1 |
20030128560 | Saiki et al. | Jul 2003 | A1 |
20030214346 | Pelliconi | Nov 2003 | A1 |
20040046603 | Bedarida et al. | Mar 2004 | A1 |
20050024125 | McNitt et al. | Feb 2005 | A1 |
20050030088 | Cernea | Feb 2005 | A1 |
20050093614 | Lee | May 2005 | A1 |
20050195017 | Chen et al. | Sep 2005 | A1 |
20050237103 | Cernea | Oct 2005 | A1 |
20050248386 | Pan et al. | Nov 2005 | A1 |
20060098505 | Cho et al. | May 2006 | A1 |
20060114053 | Sohara et al. | Jun 2006 | A1 |
20060119393 | Hua et al. | Jun 2006 | A1 |
20060244518 | Byeon et al. | Nov 2006 | A1 |
20060250177 | Thorp et al. | Nov 2006 | A1 |
20070001745 | Yen | Jan 2007 | A1 |
20070053216 | Alenin | Mar 2007 | A1 |
20070069805 | Choi et al. | Mar 2007 | A1 |
20070126494 | Pan | Jun 2007 | A1 |
20070139099 | Pan | Jun 2007 | A1 |
20070139100 | Pan | Jun 2007 | A1 |
20070152738 | Stopel et al. | Jul 2007 | A1 |
20070210853 | Maejima | Sep 2007 | A1 |
20070211502 | Komiya | Sep 2007 | A1 |
20070222498 | Choy et al. | Sep 2007 | A1 |
20070229149 | Pan et al. | Oct 2007 | A1 |
20080012627 | Kato | Jan 2008 | A1 |
20080024096 | Pan | Jan 2008 | A1 |
20080024198 | Bitonti et al. | Jan 2008 | A1 |
20080042731 | Daga et al. | Feb 2008 | A1 |
20080068067 | Govindu et al. | Mar 2008 | A1 |
20080111604 | Boerstler et al. | May 2008 | A1 |
20080116963 | Jung | May 2008 | A1 |
20080136500 | Frulio et al. | Jun 2008 | A1 |
20080157731 | Pan | Jul 2008 | A1 |
20080157852 | Pan | Jul 2008 | A1 |
20080157859 | Pan | Jul 2008 | A1 |
20080218134 | Kawakami | Sep 2008 | A1 |
20080239802 | Thorp | Oct 2008 | A1 |
20080239856 | Thorp | Oct 2008 | A1 |
20080278222 | Conte et al. | Nov 2008 | A1 |
20080307342 | Furches et al. | Dec 2008 | A1 |
20090033306 | Tanzawa | Feb 2009 | A1 |
20090051413 | Chu et al. | Feb 2009 | A1 |
20090058506 | Nandi et al. | Mar 2009 | A1 |
20090058507 | Nandi et al. | Mar 2009 | A1 |
20090063918 | Chen et al. | Mar 2009 | A1 |
20090091366 | Baek et al. | Apr 2009 | A1 |
20090121780 | Chen et al. | May 2009 | A1 |
20090121782 | Oyama et al. | May 2009 | A1 |
20090153230 | Pan et al. | Jun 2009 | A1 |
20090153231 | Pan et al. | Jun 2009 | A1 |
20090153232 | Fort et al. | Jun 2009 | A1 |
20090167418 | Raghavan | Jul 2009 | A1 |
20090174441 | Gebara et al. | Jul 2009 | A1 |
20090184697 | Park | Jul 2009 | A1 |
20090219077 | Pietri et al. | Sep 2009 | A1 |
20090315598 | Namekawa | Dec 2009 | A1 |
20090315616 | Nguyen et al. | Dec 2009 | A1 |
20090322413 | Huynh et al. | Dec 2009 | A1 |
20100019832 | Pan | Jan 2010 | A1 |
20100033232 | Pan | Feb 2010 | A1 |
20100074034 | Cazzaniga | Mar 2010 | A1 |
20100085794 | Chen et al. | Apr 2010 | A1 |
20100118625 | Matano | May 2010 | A1 |
20100127761 | Matano | May 2010 | A1 |
20100244935 | Kim et al. | Sep 2010 | A1 |
20100283549 | Wang | Nov 2010 | A1 |
20100302877 | Bang | Dec 2010 | A1 |
20110026329 | Wada | Feb 2011 | A1 |
20110133821 | Honda | Jun 2011 | A1 |
20110148509 | Pan | Jun 2011 | A1 |
20110156803 | Yap et al. | Jun 2011 | A1 |
20110176370 | Izumi et al. | Jul 2011 | A1 |
20110254615 | Raghunathan et al. | Oct 2011 | A1 |
20120230071 | Kaneda | Sep 2012 | A1 |
20120274394 | Chan | Nov 2012 | A1 |
20130162229 | Chan | Jun 2013 | A1 |
20130181521 | Khlat | Jul 2013 | A1 |
20140085985 | Pan et al. | Mar 2014 | A1 |
20140375293 | Pan et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
101764518 | Jun 2010 | CN |
101902059 | Dec 2010 | CN |
10 2007 02629 | Jul 2008 | DE |
0 382 929 | Aug 1990 | EP |
0 780 515 | Jun 1997 | EP |
2007-020268 | Jan 2007 | JP |
0106336 | Jan 2001 | WO |
WO 2006132757 | Dec 2006 | WO |
Entry |
---|
U.S. Appl. No. 12/973,641, filed Dec. 20, 2010, 26 pages. |
U.S. Appl. No. 12/973,493, filed Dec. 20, 2010, 28 pages. |
U.S. Appl. No. 13/228,605, filed Sep. 9, 2011, 21 pages. |
Louie Pylarinos et al., “Charge Pumps: An Overview”, Department of Electrical and Computer Engineering University of Toronto, 7 pages. |
Ang et al., “An On-Chip Voltage Regulator Using Switched Decoupling Capacitors,” 2000 IEEE International Solid-State Circuits Conference, 2 pages. |
U.S. Appl. No. 12/506,998 entitled “Charge Pump with Current Based Regulation” filed Jul. 21, 2009, 21 pages. |
U.S. Appl. No. 12/634,385 entitled “Multi-Stage Charge Pump with Variable Number of Boosting Stages” filed Dec. 9, 2009, 33 pages. |
Notice of Allowance in U.S. Appl. No. 13/926,442, mailed May 13, 2015, 9 pages. |
First Office Action issued for Chinese Patent Application No. 2011800614031 mailed on Feb. 3, 2015, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20150162825 A1 | Jun 2015 | US |