Dynamic load matching charge pump for reduced current consumption

Information

  • Patent Grant
  • 9154027
  • Patent Number
    9,154,027
  • Date Filed
    Monday, December 9, 2013
    10 years ago
  • Date Issued
    Tuesday, October 6, 2015
    8 years ago
Abstract
A charge pump is regulated based up its output level. The regulation circuitry adjusts the frequency of the pump's clock based on feedback from pump's output. The pump's clock signal is generated by an oscillator whose frequency depends on a reference voltage level. The reference voltage level is dependent upon a regulation signal. In an example, a transistor whose gate is controlled by the regulation level is part of a series of elements in voltage divider, where the reference value is taken from a node of the divider.
Description
FIELD OF THE INVENTION

This invention pertains generally to the field of charge pumps and more particularly to techniques for regulating charge pumps.


BACKGROUND

Charge pumps use a switching process to provide a DC output voltage larger or lower than its DC input voltage. In general, a charge pump will have a capacitor coupled to switches between an input and an output. During one clock half cycle, the charging half cycle, the capacitor couples in parallel to the input so as to charge up to the input voltage. During a second clock cycle, the transfer half cycle, the charged capacitor couples in series with the input voltage so as to provide an output voltage twice the level of the input voltage. This process is illustrated in FIGS. 1a and 1b. In FIG. 1a, the capacitor 5 is arranged in parallel with the input voltage VIN to illustrate the charging half cycle. In FIG. 1b, the charged capacitor 5 is arranged in series with the input voltage to illustrate the transfer half cycle. As seen in FIG. 1b, the positive terminal of the charged capacitor 5 will thus be 2*VIN with respect to ground.


Charge pumps are used in many contexts. For example, they are used as peripheral circuits on flash and other non-volatile memories to generate many of the needed operating voltages, such as programming or erase voltages, from a lower power supply voltage. A number of charge pump designs, such as conventional Dickson-type pumps, are known in the art. But given the common reliance upon charge pumps, there is an ongoing need for improvements in pump design, particularly with respect to trying to save on current consumption.


SUMMARY OF THE INVENTION

A charge pump circuit system includes a charge pump circuit connected to receive a clock signal and generate from it an output voltage and regulation circuitry connected to receive the output voltage and generate a regulation signal based on the output voltage. The charge pump system also includes a clock generation circuit to generate the clock signal, where the clock generation circuit includes an oscillator and a reference voltage generating circuit. The oscillator is connected to receive a reference voltage and generate from it the clock signal, wherein the frequency of the clock signal is dependent upon the level of the reference voltage. The reference voltage generating circuit is connected to receive the regulation signal and generate from it the reference voltage, wherein the level of the reference voltage is dependent upon the regulation signal.


Various aspects, advantages, features and embodiments of the present invention are included in the following description of exemplary examples thereof, which description should be taken in conjunction with the accompanying drawings. All patents, patent applications, articles, other publications, documents and things referenced herein are hereby incorporated herein by this reference in their entirety for all purposes. To the extent of any inconsistency or conflict in the definition or use of terms between any of the incorporated publications, documents or things and the present application, those of the present application shall prevail.





BRIEF DESCRIPTION OF THE DRAWINGS

The various aspects and features of the present invention may be better understood by examining the following figures, in which:



FIG. 1
a is a simplified circuit diagram of the charging half cycle in a generic charge pump;



FIG. 1
b is a simplified circuit diagram of the transfer half cycle in a generic charge pump;



FIG. 2 illustrates the power efficiency of a charge pump system for various load levels;



FIG. 3 is a top-level block diagram for a regulated charge pump;



FIGS. 4A-D look at the regulation of a charge pump using a fixed pump clock value;



FIGS. 5A-E look at the regulation of a charge pump using a pump clock value that can be varied continuously by the regulation circuitry based on feedback from the pump's output; and



FIGS. 6A and 6B respectively look at the clock generation blocks of FIGS. 4A and 5A in more detail.



FIG. 6C is a more detailed version of FIG. 6B.





DETAILED DESCRIPTION

Charge pumps are often operating in a low efficient region. To maintain small ripple, amplitude control can be used to match charge pump's drivability to its load; and to handle the worst case loading condition, charge pumps are often operating in a low efficient region where pump's full strength drivability and its load are greatly mismatched. DC-DC converters such as charge pumps are typically optimized for power efficiency for the supplying large load currents. For example, on a non-volatile memory system this requirement is mainly related to AC capacitive current to needed charge up word lines. The efficiency of the system may drop to extremely low levels, less than 1% in some applications, after the capacitive load is charged up and the load current reduces to just what is needed due to leakage, as is the case during regulation to maintain word line voltages. Although performance requirements are based on the charging-up period, the system will typically be operating under regulation for a greater amount of time. To improve overall power efficiency, the power efficiency during regulation needs to be improved since it accounts for a significant amount of total operation time.



FIG. 2 illustrates the efficiency of a charge pump system for various load levels. As shown, the DC-DC converter is optimized for power efficiency for the certain large load current levels, IAC, mainly related to the main task for the pump, such as AC capacitive current to charge up word lines in a memory circuit example. Once this capacitance is charge up, the load current will reduce down to the leakage current, Ileakage, and the efficiency drops significantly, to possibly even below 1%. In the memory circuit example, Ileakage, is the level needed during regulation to maintain the word line voltage. To improve overall power efficiency for the system, power efficiency during regulation can be improved, since it accounts for a significant amount of total operation time.


The following presents techniques for maintaining a pump's output at a target value and pump strength, while power can be saved by dynamically adjust the clock frequency with full potential clock swing to match pump's driving strength to its DC load. A common application for charge pumps is in NAND flash memories that are often integrated into digital mobile devices where power consumption is one of the key features for performance. Outside of the actual memory array, charge pumps that generate supply voltage for peripheral circuits are significant power consumption blocks on the memory circuit. The pump systems presented below can help to maintain the output at a target value and pump strength while power is saved by dynamically adjusting the clock frequency with full potential clock swing to match pump's driving strength to the load.


The following is primarily concerned with the regulation circuitry of charge pump systems rather than the details of the pump itself. For example, the pump can be based on a Dickson-type pump, voltage doublers, four-phase, and so on. More detail on various pumps and pump system within which the following concepts can be applied can be found, for example, in “Charge Pump Circuit Design” by Pan and Samaddar, McGraw-Hill, 2006, or “Charge Pumps: An Overview”, Pylarinos and Rogers, Department of Electrical and Computer Engineering University of Toronto, available on the webpage “www.eecg.toronto.edu/˜kphang/ece1371/chargepumps.pdf”. Further information on various other charge pump aspects and designs can be found in U.S. Pat. Nos. 5,436,587; 6,370,075; 6,556,465; 6,760,262; 6,922,096; 7,030,683; 7,554,311; 7,368,979; 7,795,952; 7,135,910; 7,973,592; and 7,969,235; US Patent Publication numbers 2009-0153230-A1; 2009-0153232-A1; 2009-0315616-A1; 2009-0322413-A1; 2009-0058506-A1; US-2011-0148509-A1; 2007-0126494-A1; 2007-0139099-A1; 2008-0307342 A1; 2009-0058507 A1; 2012-0154023; 2012-0154022; and 2013-0063118; and U.S. patent application Ser. Nos. 13/618,482; 13/628,465; 13/886,066; 13/921,072; 13/926,442; and Ser. No. 13/929,197.


With respect to regulation, FIG. 3 is a simplified top-level block diagram of a typical charge pump using an output voltage based regulation scheme. As shown in FIG. 3, the pump 201 has as inputs a clock signal and a voltage Vreg and provides an output Vout. The clock generation circuit is not explicitly shown in FIG. 3, although it may be considered part of the charge pump system in some embodiments or taken as an external input. The high (Vdd) and low (ground) connections are also not explicitly shown. The voltage Vreg is provided by the regulator 203, which has as inputs a reference voltage Vref from an external voltage source and the output voltage Vout. The regulator block 203 generates feedback control signal Vreg such that the desired value of Vout can be obtained. The pump section 201 may have any of various designs for charge pumps, such as described in the various references cited above including charge doubler-type circuits with cross-coupled elements as well as the Dickson-type pumps described below for the exemplary embodiments. (A charge pump is typically taken to refer to both the pump portion 201 and the regulator 203, when a regulator is included, although in some usages “charge pump” refers to just the pump section 201. In the following, the terminology “charge pump system” will often be used to describe pump itself as well as any regulation or other peripheral elements.) The regulator block 203 typically compares the Vref to the Vout value by using a voltage divider circuit. The voltage divider can be a resistive divider, a capacitive divider, or some combination (see, for example, U.S. Pat. No. 7,554,311).



FIGS. 4A-D look at a regulated charge pump system in more detail. The block diagram of FIG. 4A includes pump 401 driving a load represented at 403. The pump is driven by a clock signal CLK from a clock generator circuit CLKGEN 405 that is supplied through a clock driver. The clock driver CLKDRV includes the buffer 407 that is supplied at a level VSUP from the VCC level by the transistor 409. The pump 401 then receives the clock signal of amplitude VSUP. In this example the clock can be supplied with a fast (1×) and a slow (2×) period. The gate of the driver's transistor 409 is controlled by the regulation circuitry, with the output REG of the comparator 411 connected to the control gate of transistor 409. The inputs of the comparator 411 are connected to receive a reference level REF and feedback from the pump's output VOUT taken from a node of, in this example, a resistive voltage divider formed from R0 413 and R1 415.


The operation of the circuit of FIG. 4A is described with respect to FIGS. 4B-D. In FIG. 4B, ILOAD is an example of a DC load current profile; FAST is the current for the pump operating at maximum driving strength; and SLOW is the current for the pump at maximum driving strength, but at a 2 times slower clock frequency from FAST. In the arrangement of FIG. 4A, the lock frequency is usually predetermined by considering worst case loading; however, it practice it is difficult to determine the exact timing and loading for the circuit due the many different factors that enter in to load variation.


In FIG. 4C, VCC is the external supply level; VSUP_FAST is the pump clock's supply level under regulation; and VSUP_SLOW is the pump clock's supply in regulation at a twice (2×) slower clock frequency relative to FAST. Matching pump's driving strength with the load is realized by a voltage drop to the clock supply, limiting the pump's strength. This results in large inefficiencies and power loss due to voltage drop, as illustrated by the gap between VCC and the VSUP levels.



FIG. 4D illustrates the target pump output VOUT along with the realistic pump outputs VOUT_FAST and VOUT_SLOW, where the SLOW value is the pump output at a 2× slower clock frequency relative to FAST. In FIG. 4D, both of VOUT_FAST and VOUT_SLOW rise to the target level and, mostly, stay there, except that at the highest load current VOUT_SLOW drops. This reflects that by not selecting the proper clock frequency (that is, in this example by selecting SLOW instead of FAST), VOUT can be out of the specification due to the pump's strength being too weak. If it is instead selected to the have proper clock frequency (here, FAST), the pump's ability and target load are can be greatly mismatched except for this peak current situation, resulting in a big Ice penalty.



FIGS. 5A-E illustrate an exemplary embodiment of a charge pump system to help reduce this sort of inefficiency. FIG. 5A is a schematic representation of a charge pump system, where similar elements are numbered similarly to those of FIG. 4A (501 versus 401 for the charge pump, and so on). In FIG. 5A, the regulation elements are now used to control the clock frequency, as illustrated the output REG of the comparator COMP 511 now being supplied to the clock generator block CLKGEN 505. This results in the clock period varying with the regulation level, as illustrated schematically in the output of CLKGEN 505 and also the clock driver 509 of the clock driver. (In this embodiment REG is also used to control the VSUP level provided the buffer 509 as in FIG. 4A, but this is optional in the embodiment of FIG. 5A.)


In FIG. 5B ILOAD is again the DC Load current profile, which is the same example as in FIG. 4b, and the line of larger squares is the pump maximum driving strength for the arrangement of FIG. 5A. This closely matches with the load, being a little stronger. At bottom, in FIG. 5E is the clock pump value CLK, showing how this varies with the requirements of the load.



FIG. 5C illustrate the relation of the external supply level VCC and the pump clock supply level VSUP under regulation. There is a relatively minimal voltage drop from VCC to VSUP. This matching of the pump's driving strength to the DC load with minimal voltage drop can allow for significant improvements in efficiency and power savings.


In FIG. 5D, the target VOUT level is compared to the level provided by the system of FIG. 5A. By maintain the pump's output at the target value and dynamically adjusting the clock frequency with full potential clock swing, the system can match pump's driving strength to the DC load.



FIGS. 6A and 6B look at an exemplary embodiment of how the clock frequency can be dynamically adjusted based on the VOUT level for the regulation. FIG. 6A is an example for a CLKGEN block 405 as in FIG. 4A. At right is an oscillator circuit 605 whose output frequency OSC depends on an input voltage level REF. Here REF is used as input to the detectors DT that provide the set/reset signals to the flip-flop SR, which in turn outputs OSC as well as the second inputs to the detectors. In this example, the oscillator is a relaxation RC oscillator, but ring oscillators or other circuits could be used. To provide the input voltage, a fixed resistance RF 601 is connected in series with a diode connected transistor 603 between and ground. The input voltage REF is taken from the node between resistance RF 601 and diode 603. As REF is fixed, the generated clock frequency OSC is fixed.



FIG. 6B gives an example of a CLKGEN block 505 such as could be used in FIG. 5A. Instead of a fixed REF value, REF is adjusted by the regulation circuitry to generate a clock frequency to match the pump's ability to drive the DC load it sees. The oscillator 707 is again taken as a relaxation RC oscillator, but ring oscillators or other circuits could be used. The divider circuit used to provide REF now uses the regulation signal REG based on feedback from VOUT to determine the REF level and, hence, the OSC frequency. The node from REF is taken in again connected to ground (or, more generally, the low voltage level) through the diode connected transistor 705. In other embodiments, a resistor could be used. Between VCC and the REF, a variable resistance whose value depends on REG is now included. Here this is implemented by the PMOS 701 whose gate is connected to receive the regulation signal. In this embodiment, a fixed resistance RF 703 is in series with the variable element. For references, FIG. 6C is a more detailed version of FIG. 6B that includes the capacitances and other elements in more detail. (In FIG. 6C, the resistance RF 703′ is illustrated as variable, indicating that it, or at least a portion of it, is adjustable in order to set the RC constant of the circuit; however, as far as the REG value, this is still a fixed value and does not vary with the regulation level.) Other embodiments could arrange the elements of divider supplying REF differently and use other element, such as an NMOS instead of the PMOS, for example. In this way, the clock frequency CLK for the pump can track the requirements of the load as described in FIGS. 5B-D.


For any of the variations, the arrangement described above can increase power savings and reduce current consumption of the charge pump block. By adjusting the pump clock frequency to regulate pump operations, the pump's maximum driving strength with full clock swing is matched to the pump's DC load for higher efficiency.


Although the invention has been described with reference to particular embodiments, the description is only an example of the invention's application and should not be taken as a limitation. Consequently, various adaptations and combinations of features of the embodiments disclosed are within the scope of the invention as encompassed by the following claims.

Claims
  • 1. A charge pump system, comprising: a charge pump circuit connected to receive a clock signal and generate therefrom an output voltage;regulation circuitry connected to receive the output voltage and generate a regulation voltage based on the output voltage;a clock generation circuit to generate the clock signal, including: an oscillator connected to receive a reference voltage and generate therefrom the clock signal, wherein the frequency of the clock signal is dependent upon the level of the reference voltage;a reference voltage generating circuit connected to receive the regulation voltage and generate therefrom the reference voltage, wherein the level of the reference voltage is dependent upon the regulation voltage, wherein the reference voltage generating circuit includes: a variable resistance element connected between a supply level and an internal node and having a resistance level dependent upon the regulation voltage, wherein the variable resistance includes a transistor whose gate is connected to receive the regulation voltage; anda diode connected between the internal node and ground, wherein the reference voltage is taken from the internal node; anda clock driver circuit connected to the clock generator to receive the clock signal therefrom and connected to the charge pump circuit to supply the clock signal thereto, wherein the clock driver circuit is connected to a power supply level through a power transistor having a gate connected to the regulation circuitry to receive the regulation voltage.
  • 2. The charge pump system of claim 1, wherein the transistor is a PMOS.
  • 3. The charge pump system of claim 1, wherein the transistor is an NMOS.
  • 4. The charge pump system of claim 1, wherein the variable resistance includes a fixed resistance in series with the transistor.
  • 5. The charge pump system of claim 1, wherein the oscillator is a relaxation oscillator.
  • 6. The charge pump system of claim 1, wherein the oscillator is a ring oscillator.
  • 7. The charge pump system of claim 1, wherein the charge pump circuit is a Dickson type charge pump.
  • 8. The charge pump system of claim 1, wherein the charge pump circuits a voltage doubler type charge pump.
  • 9. The charge pump system of claim 1, wherein the regulation circuitry includes: a voltage divider connected between the output voltage and ground; anda comparator having a first input connected to a node of the voltage divider, a second input connected to a reference voltage level, and an output supplying the regulation voltage.
  • 10. A charge pump system, comprising: a charge pump circuit connected to receive a clock signal and generate therefrom an output voltage;regulation circuitry connected to receive the output voltage and generate a regulation voltage based on the output voltage;a clock generation circuit to generate the clock signal, including: an oscillator connected to receive a reference voltage and generate therefrom the clock signal, wherein the frequency of the clock signal is dependent upon the level of the reference voltage;a reference voltage generating circuit connected to receive the regulation voltage and generate therefrom the reference voltage, wherein the level of the reference voltage is dependent upon the regulation voltage, wherein the reference voltage generating circuit includes: a variable resistance element connected between a supply level and an internal node and having a resistance level dependent upon the regulation voltage, wherein the variable resistance includes a transistor whose gate is connected to receive the regulation voltage; anda first fixed resistance connected between the internal node and ground, wherein the reference voltage is taken from the internal node; anda clock driver circuit connected to the clock generator to receive the clock signal therefrom and connected to the charge pump circuit to supply the clock signal thereto, wherein the clock driver circuit is connected to a power supply level through a power transistor having a gate connected to the regulation circuitry to receive the regulation voltage.
  • 11. The charge pump system of claim 10, wherein the transistor is a PMOS.
  • 12. The charge pump system of claim 10, wherein the transistor is an NMOS.
  • 13. The charge pump system of claim 10, wherein the variable resistance includes a second fixed resistance in series with the transistor.
  • 14. The charge pump system of claim 10, wherein the oscillator is a relaxation oscillator.
  • 15. The charge pump system of claim 10, wherein the oscillator is a ring oscillator.
  • 16. The charge pump system of claim 10, wherein the charge pump circuit is a Dickson type charge pump.
  • 17. The charge pump system of claim 10, wherein the charge pump circuits a voltage doubler type charge pump.
  • 18. The charge pump system of claim 10, wherein the regulation circuitry includes: a voltage divider connected between the output voltage and ground; anda comparator having a first input connected to a node of the voltage divider, a second input connected to a reference voltage level, and an output supplying the regulation voltage.
US Referenced Citations (274)
Number Name Date Kind
3697860 Baker Oct 1972 A
4271461 Hoffmann et al. Jun 1981 A
4511811 Gupta Apr 1985 A
4583157 Kirsch et al. Apr 1986 A
4621315 Vaughn et al. Nov 1986 A
4636748 Latham Jan 1987 A
4736121 Cini et al. Apr 1988 A
4888738 Wong et al. Dec 1989 A
5140182 Ichimura Aug 1992 A
5168174 Naso et al. Dec 1992 A
5175706 Edme Dec 1992 A
5263000 Van Buskirk et al. Nov 1993 A
5335198 Van Buskirk et al. Aug 1994 A
5392205 Zavaleta Feb 1995 A
5432469 Tedrow et al. Jul 1995 A
5436587 Cernea Jul 1995 A
5483434 Seesink Jan 1996 A
5508971 Cernea et al. Apr 1996 A
5521547 Tsukada May 1996 A
5532653 Adkins Jul 1996 A
5539351 Gilsdorf et al. Jul 1996 A
5553030 Tedrow et al. Sep 1996 A
5563779 Cave et al. Oct 1996 A
5563825 Cernea et al. Oct 1996 A
5568424 Cernea et al. Oct 1996 A
5570315 Tanaka et al. Oct 1996 A
5592420 Cernea et al. Jan 1997 A
5596532 Cernea et al. Jan 1997 A
5602794 Javanifard et al. Feb 1997 A
5621685 Cernea et al. Apr 1997 A
5625544 Kowshik et al. Apr 1997 A
5644534 Soejima Jul 1997 A
5693570 Cernea et al. Dec 1997 A
5712778 Moon Jan 1998 A
5732039 Javanifard et al. Mar 1998 A
5734286 Takeyama et al. Mar 1998 A
5767735 Javanifard et al. Jun 1998 A
5781473 Javanifard et al. Jul 1998 A
5801987 Dinh Sep 1998 A
5812017 Golla et al. Sep 1998 A
5818766 Song Oct 1998 A
5828596 Takata et al. Oct 1998 A
5903495 Takeuchi et al. May 1999 A
5943226 Kim Aug 1999 A
5945870 Chu et al. Aug 1999 A
5969565 Naganawa Oct 1999 A
5969988 Tanzawa et al. Oct 1999 A
5973546 Le et al. Oct 1999 A
5982222 Kyung Nov 1999 A
6008690 Takeshima et al. Dec 1999 A
6016073 Ghilardelli et al. Jan 2000 A
6018264 Jin Jan 2000 A
6023187 Camacho et al. Feb 2000 A
6026002 Viehmann Feb 2000 A
6046935 Takeuchi et al. Apr 2000 A
6104225 Taguchi et al. Aug 2000 A
6107862 Mukainakano et al. Aug 2000 A
6134145 Wong Oct 2000 A
6147566 Pizzuto et al. Nov 2000 A
6151229 Taub et al. Nov 2000 A
6154088 Chevallier et al. Nov 2000 A
6157242 Fukui Dec 2000 A
6188590 Chang et al. Feb 2001 B1
6198645 Kotowski et al. Mar 2001 B1
6208198 Lee Mar 2001 B1
6249445 Sugasawa Jun 2001 B1
6249898 Koh et al. Jun 2001 B1
6275096 Hsu et al. Aug 2001 B1
6278294 Taniguchi Aug 2001 B1
6285622 Haraguchi et al. Sep 2001 B1
6288601 Tomishima Sep 2001 B1
6297687 Sugimura Oct 2001 B1
6307425 Chevallier et al. Oct 2001 B1
6314025 Wong Nov 2001 B1
6320428 Atsumi et al. Nov 2001 B1
6320796 Voo et al. Nov 2001 B1
6320797 Liu Nov 2001 B1
6329869 Matano Dec 2001 B1
6344959 Milazzo Feb 2002 B1
6344984 Miyazaki Feb 2002 B1
6356062 Elmhurst et al. Mar 2002 B1
6356499 Banba et al. Mar 2002 B1
6359798 Han et al. Mar 2002 B1
6369642 Zeng et al. Apr 2002 B1
6370075 Haeberli et al. Apr 2002 B1
6385107 Bedarida et al. May 2002 B1
6400202 Fifield et al. Jun 2002 B1
6404274 Hosono et al. Jun 2002 B1
6411157 Hsu et al. Jun 2002 B1
6424570 Le et al. Jul 2002 B1
6445243 Myono Sep 2002 B2
6456154 Sugimura Sep 2002 B2
6456170 Segawa et al. Sep 2002 B1
6476666 Palusa et al. Nov 2002 B1
6486728 Kleveland Nov 2002 B2
6518830 Gariboldi et al. Feb 2003 B2
6522191 Cha et al. Feb 2003 B1
6525614 Tanimoto Feb 2003 B2
6525949 Johnson et al. Feb 2003 B1
6531792 Oshio Mar 2003 B2
6538930 Ishii et al. Mar 2003 B2
6545529 Kim Apr 2003 B2
6556465 Haeberli et al. Apr 2003 B2
6577535 Pasternak Jun 2003 B2
6606267 Wong Aug 2003 B2
6661682 Kim et al. Dec 2003 B2
6703891 Tanaka Mar 2004 B2
6724241 Bedarida et al. Apr 2004 B1
6734718 Pan May 2004 B1
6737907 Hsu et al. May 2004 B2
6760262 Haeberli et al. Jul 2004 B2
6762640 Katsuhisa Jul 2004 B2
6781440 Huang Aug 2004 B2
6798274 Tanimoto Sep 2004 B2
6819162 Pelliconi Nov 2004 B2
6834001 Myono Dec 2004 B2
6859091 Nicholson et al. Feb 2005 B1
6878981 Eshel Apr 2005 B2
6891764 Li May 2005 B2
6894554 Ito May 2005 B2
6922096 Cernea Jul 2005 B2
6927441 Pappalardo et al. Aug 2005 B2
6933768 Hausmann Aug 2005 B2
6944058 Wong Sep 2005 B2
6954386 Narui et al. Oct 2005 B2
6975135 Bui Dec 2005 B1
6985397 Tokui et al. Jan 2006 B2
6990031 Hashimoto et al. Jan 2006 B2
6995603 Chen et al. Feb 2006 B2
7002381 Chung Feb 2006 B1
7023260 Thorp et al. Apr 2006 B2
7030683 Pan et al. Apr 2006 B2
7092263 Chang Aug 2006 B2
7113023 Cernea Sep 2006 B2
7116154 Guo Oct 2006 B2
7116155 Pan Oct 2006 B2
7120051 Gorobets et al. Oct 2006 B2
7123078 Seo Oct 2006 B2
7129538 Lee et al. Oct 2006 B2
7129759 Fukami Oct 2006 B2
7135910 Cernea Nov 2006 B2
7135911 Imamiya Nov 2006 B2
7180794 Matsue Feb 2007 B2
7205682 Kuramori Apr 2007 B2
7208996 Suzuki et al. Apr 2007 B2
7215179 Yamazoe et al. May 2007 B2
7224591 Kaishita et al. May 2007 B2
7227780 Komori et al. Jun 2007 B2
7239192 Tailliet Jul 2007 B2
7253675 Aksin et al. Aug 2007 B2
7253676 Fukuda et al. Aug 2007 B2
7259612 Saether Aug 2007 B2
7276960 Peschke Oct 2007 B2
7279957 Yen Oct 2007 B2
7345928 Li Mar 2008 B2
7368979 Govindu et al. May 2008 B2
7397677 Collins et al. Jul 2008 B1
7466188 Fifield Dec 2008 B2
7468628 Im et al. Dec 2008 B2
7495500 Al-Shamma et al. Feb 2009 B2
7521978 Kim et al. Apr 2009 B2
7545684 Nakagawa et al. Jun 2009 B2
7554311 Pan Jun 2009 B2
7579902 Frulio et al. Aug 2009 B2
7579903 Oku Aug 2009 B2
7602233 Pietri et al. Oct 2009 B2
7667529 Consuelo et al. Feb 2010 B2
7671572 Chung Mar 2010 B2
7696812 Al-Shamma et al. Apr 2010 B2
7772914 Jung Aug 2010 B2
7795952 Lui et al. Sep 2010 B2
7830203 Chang et al. Nov 2010 B2
7928796 Namekawa Apr 2011 B2
7944277 Sinitsky et al. May 2011 B1
7956675 Saitoh et al. Jun 2011 B2
8040174 Likhterov Oct 2011 B2
8040184 Tsuchiya Oct 2011 B2
8093953 Pierdomenico et al. Jan 2012 B2
8159091 Yeates Apr 2012 B2
8193853 Hsieh et al. Jun 2012 B2
8242834 Chuang et al. Aug 2012 B2
8339183 Htoo et al. Dec 2012 B2
8395440 Sandhu et al. Mar 2013 B2
8604868 Ucciardello et al. Dec 2013 B2
8643358 Yoon Feb 2014 B2
20020008566 Taito et al. Jan 2002 A1
20020014908 Lauterbach Feb 2002 A1
20020075063 Hwang Jun 2002 A1
20020075706 Foss et al. Jun 2002 A1
20020101744 DeMone Aug 2002 A1
20020130701 Kleveland Sep 2002 A1
20020130704 Myono et al. Sep 2002 A1
20020140463 Cheung Oct 2002 A1
20020163376 Pappalardo et al. Nov 2002 A1
20030128560 Saiki et al. Jul 2003 A1
20030214346 Pelliconi Nov 2003 A1
20040046603 Bedarida et al. Mar 2004 A1
20050024125 McNitt et al. Feb 2005 A1
20050030088 Cernea Feb 2005 A1
20050093614 Lee May 2005 A1
20050195017 Chen et al. Sep 2005 A1
20050237103 Cernea Oct 2005 A1
20050248386 Pan et al. Nov 2005 A1
20060098505 Cho et al. May 2006 A1
20060114053 Sohara et al. Jun 2006 A1
20060119393 Hua et al. Jun 2006 A1
20060244518 Byeon et al. Nov 2006 A1
20060250177 Thorp et al. Nov 2006 A1
20070001745 Yen Jan 2007 A1
20070053216 Alenin Mar 2007 A1
20070069805 Choi et al. Mar 2007 A1
20070126494 Pan Jun 2007 A1
20070139099 Pan Jun 2007 A1
20070139100 Pan Jun 2007 A1
20070152738 Stopel et al. Jul 2007 A1
20070210853 Maejima Sep 2007 A1
20070211502 Komiya Sep 2007 A1
20070222498 Choy et al. Sep 2007 A1
20070229149 Pan et al. Oct 2007 A1
20080012627 Kato Jan 2008 A1
20080024096 Pan Jan 2008 A1
20080024198 Bitonti et al. Jan 2008 A1
20080042731 Daga et al. Feb 2008 A1
20080068067 Govindu et al. Mar 2008 A1
20080111604 Boerstler et al. May 2008 A1
20080116963 Jung May 2008 A1
20080136500 Frulio et al. Jun 2008 A1
20080157731 Pan Jul 2008 A1
20080157852 Pan Jul 2008 A1
20080157859 Pan Jul 2008 A1
20080218134 Kawakami Sep 2008 A1
20080239802 Thorp Oct 2008 A1
20080239856 Thorp Oct 2008 A1
20080278222 Conte et al. Nov 2008 A1
20080307342 Furches et al. Dec 2008 A1
20090033306 Tanzawa Feb 2009 A1
20090051413 Chu et al. Feb 2009 A1
20090058506 Nandi et al. Mar 2009 A1
20090058507 Nandi et al. Mar 2009 A1
20090063918 Chen et al. Mar 2009 A1
20090091366 Baek et al. Apr 2009 A1
20090121780 Chen et al. May 2009 A1
20090121782 Oyama et al. May 2009 A1
20090153230 Pan et al. Jun 2009 A1
20090153231 Pan et al. Jun 2009 A1
20090153232 Fort et al. Jun 2009 A1
20090167418 Raghavan Jul 2009 A1
20090174441 Gebara et al. Jul 2009 A1
20090184697 Park Jul 2009 A1
20090219077 Pietri et al. Sep 2009 A1
20090315598 Namekawa Dec 2009 A1
20090315616 Nguyen et al. Dec 2009 A1
20090322413 Huynh et al. Dec 2009 A1
20100019832 Pan Jan 2010 A1
20100033232 Pan Feb 2010 A1
20100074034 Cazzaniga Mar 2010 A1
20100085794 Chen et al. Apr 2010 A1
20100118625 Matano May 2010 A1
20100127761 Matano May 2010 A1
20100244935 Kim et al. Sep 2010 A1
20100283549 Wang Nov 2010 A1
20100302877 Bang Dec 2010 A1
20110026329 Wada Feb 2011 A1
20110133821 Honda Jun 2011 A1
20110148509 Pan Jun 2011 A1
20110156803 Yap et al. Jun 2011 A1
20110176370 Izumi et al. Jul 2011 A1
20110254615 Raghunathan et al. Oct 2011 A1
20120230071 Kaneda Sep 2012 A1
20120274394 Chan Nov 2012 A1
20130162229 Chan Jun 2013 A1
20130181521 Khlat Jul 2013 A1
20140085985 Pan et al. Mar 2014 A1
20140375293 Pan et al. Dec 2014 A1
Foreign Referenced Citations (8)
Number Date Country
101764518 Jun 2010 CN
101902059 Dec 2010 CN
10 2007 02629 Jul 2008 DE
0 382 929 Aug 1990 EP
0 780 515 Jun 1997 EP
2007-020268 Jan 2007 JP
0106336 Jan 2001 WO
WO 2006132757 Dec 2006 WO
Non-Patent Literature Citations (9)
Entry
U.S. Appl. No. 12/973,641, filed Dec. 20, 2010, 26 pages.
U.S. Appl. No. 12/973,493, filed Dec. 20, 2010, 28 pages.
U.S. Appl. No. 13/228,605, filed Sep. 9, 2011, 21 pages.
Louie Pylarinos et al., “Charge Pumps: An Overview”, Department of Electrical and Computer Engineering University of Toronto, 7 pages.
Ang et al., “An On-Chip Voltage Regulator Using Switched Decoupling Capacitors,” 2000 IEEE International Solid-State Circuits Conference, 2 pages.
U.S. Appl. No. 12/506,998 entitled “Charge Pump with Current Based Regulation” filed Jul. 21, 2009, 21 pages.
U.S. Appl. No. 12/634,385 entitled “Multi-Stage Charge Pump with Variable Number of Boosting Stages” filed Dec. 9, 2009, 33 pages.
Notice of Allowance in U.S. Appl. No. 13/926,442, mailed May 13, 2015, 9 pages.
First Office Action issued for Chinese Patent Application No. 2011800614031 mailed on Feb. 3, 2015, 4 pages.
Related Publications (1)
Number Date Country
20150162825 A1 Jun 2015 US