The disclosure relates to the field of audio signal processing technologies, and in particular to a dynamic low-frequency enhancement method based on equal loudness contour and a dynamic low-frequency enhancement system based on equal loudness contour.
Audio stream output by earphone can be viewed as the superposition of many sine waves of different frequencies; low-frequency enhancement is to improve the sound pressure level of low-frequency components in the audio stream by filtering and other methods, so that the voice sounds more vigorous.
The low-frequency enhancement in existing technologies mainly adopts filter technologies, and combines different filters and other components to meet different requirements. However, adopting pure filter technologies to perform low-frequency enhancement has certain limitation: it is cumbersome to adjust voice volume (actually to amplify/reduce the amplitude of the waveform of an audio signal so as to change the sound pressure) in the normal use of earphone, it can be known from the description of an equal loudness contour that pure tones of different frequencies have different loudness at different sound pressure levels; therefore, in actual application, when low-frequency enhancement is performed on the audio stream output by an earphone, different gains need to be added to signals of different frequencies at different sound pressure levels, so that gains of signals of different frequencies in the output audio signal all meet the tendency of the equal loudness contour when voice volume is adjusted and an optimal low-frequency enhancement effect is achieved; however, this requirement cannot be met in static filter combination in existing technologies.
The purpose of the embodiment of the disclosure is to provide a dynamic low-frequency enhancement system and method based on equal loudness contour so as to solve the above problem that different gains cannot be added to signals of different frequencies at different sound pressure levels in static filter combination.
The embodiment of the disclosure is realized as follows: a dynamic low-frequency enhancement method based on equal loudness contour includes:
In the dynamic low-frequency enhancement method based on equal loudness contour described in the embodiment of the disclosure, performing dynamic gain processing on the low-frequency signal adopting an AGC algorithm specifically includes:
In the dynamic low-frequency enhancement method based on equal loudness contour described in the embodiment of the disclosure, the range of the sound pressure level of the noise domain is less than or equal to −80 dB, the range of the sound pressure level of the general signal domain is −80 dB to −56 dB, and the range of the sound pressure level of the expected sound pressure domain is −56 dB to −24 dB.
In the dynamic low-frequency enhancement method based on equal loudness contour described in the embodiment of the disclosure, the weight coefficients a, b, c of the high frequency signal, the processed low-frequency signal and the processed original audio signal all have a value of ⅓.
In the dynamic low-frequency enhancement method based on equal loudness contour described in the embodiment of the disclosure, the low-frequency signal is a low-frequency band signal with frequency less than or equal to 130 HZ in the input audio signal, and the high-frequency signal is a high-frequency band signal with frequency greater than or equal to 1500 HZ in the input audio signal.
Another purpose of the embodiment of the disclosure is to provide a dynamic low-frequency enhancement system based on equal loudness contour, including: an audio sampling module, a frequency-division processing module, a low-frequency band pass filter, a high-frequency band pass filter, an original-audio frequency band pass filter, an AGC module, a low-pass filtering enhancement module and a mixer; an input end, a low-frequency output end, a high-frequency output end and an original-audio frequency output end of the frequency-division processing module are respectively connected to the audio sampling module, the low-frequency band pass filter, the high-frequency band pass filter and the original-audio frequency band pass filter correspondingly; the low-frequency band pass filter is further connected to the mixer through the AGC module, the high-frequency band pass filter is directly connected to the mixer, and the original-audio frequency band pass filter is connected to the mixer through the low-pass filtering enhancement module; wherein
In the dynamic low-frequency enhancement system based on equal loudness contour described in the embodiment of the disclosure, the AGC module includes:
In the dynamic low-frequency enhancement system based on equal loudness contour described in the embodiment of the disclosure, the range of the sound pressure level of the noise domain is less than or equal to −80 dB, the range of the sound pressure level of the general signal domain is −80 dB to −56 dB, and the range of the sound pressure level of the expected sound pressure domain is −56 dB to −24 dB.
In the dynamic low-frequency enhancement system based on equal loudness contour described in the embodiment of the disclosure, the weight coefficients a, b, c of the high frequency signal, the processed low-frequency signal and the processed original audio signal all have a value of ⅓.
In the dynamic low-frequency enhancement system based on equal loudness contour described in the embodiment of the disclosure, the low-frequency signal is a low-frequency band signal with frequency less than or equal to 130 HZ in the input audio signal, and the high-frequency signal is a high-frequency band signal with frequency greater than or equal to 1500 HZ in the input audio signal.
The dynamic low-frequency enhancement method and system based on equal loudness contour provided by the embodiment of the disclosure have benefits as follows:
The embodiment of the disclosure first performs frequency-division processing on an input audio signal after collecting the input audio signal, extracts a high-frequency signal and a low-frequency signal to transmit respectively, and reserves one path of original audio signal; then performs dynamic gain processing on the low-frequency signal adopting an AGC algorithm, and performs low-pass filtering enhancement processing on the original audio signal adopting a static low-frequency enhancement algorithm; and finally subjects the high-frequency signal, the processed low-frequency signal and the processed original audio signal to weighted summation to obtain a final output audio signal, the weight coefficients of the high frequency signal, the processed low-frequency signal and the processed original audio signal being a, b and c respectively, where the values of a, b and c range from 0 to 1, and a+b+c=1. Thus, different gains can be added to signals of different frequencies at different sound pressure levels, so that gains of signals of different frequencies in the output audio signal all meet the tendency of a equal loudness contour when voice volume is adjusted, an optimal low-frequency enhancement effect can be achieved, and the stability of the low-frequency enhancement effect can be ensured.
To make the purpose, technical scheme and advantages of the disclosure more clearly understood, the disclosure is described in further detail below in conjunction with accompanying drawings and embodiments. It should be understood that the specific embodiments described below are merely to illustrate, but not to limit, the disclosure.
In S101: collecting an input audio signal.
In S102: performing frequency-division processing on the input audio signal, extracting a high-frequency signal and a low-frequency signal to transmit respectively, and reserving one path of original audio signal.
In this embodiment, the low-frequency signal is a low-frequency band pure tone signal with frequency less than or equal to 130 HZ in the input audio signal, and the high-frequency signal is a high-frequency band pure tone signal with frequency greater than or equal to 1500 HZ in the input audio signal; in this embodiment, the low-frequency signal, the high-frequency signal and the original audio signal obtained after the frequency-division processing are correspondingly transmitted through three paths of different band pass filters, respectively.
In S103: performing dynamic gain processing on the low-frequency signal adopting an AGC algorithm, and performing low-pass filtering enhancement processing on the original audio signal adopting a static low-frequency enhancement algorithm.
In this embodiment, since the AGC algorithm will perform gain adjustment for the full frequency domain, the low-frequency signal is extracted before the low-frequency enhancement is performed on the input audio signal, to prevent the AGC algorithm enhancing the high-frequency signal in the input audio signal concurrently, so that different gains can be superposed for pure tones of different frequencies on the equal loudness contour. In this embodiment, when performing low-pass filtering enhancement processing on the original audio signal adopting a static low-frequency enhancement algorithm, the gain applied to the original audio signal subjected to low-pass filtering is 18 dB; of course, in other embodiments, the gain may be adjusted as actually needed.
Further, the process of performing dynamic gain processing on the low-frequency signal adopting an AGC algorithm is as shown in
In S201: detecting the sound pressure level of the low-frequency signal.
In this embodiment, a sound pressure meter is adopted to detect the sound pressure level of the low-frequency signal.
In S202: determining the range in which the sound pressure level falls.
In this embodiment, the sound pressure level includes a noise domain, a general signal domain and an expected sound pressure domain, wherein the range of the sound pressure level of the noise domain is less than or equal to −80 dB, the range of the sound pressure level of the general signal domain is −80 dB to −56 dB, and the range of the sound pressure level of the expected sound pressure domain is −56 dB to −24 dB.
In S203: if the sound pressure level is in a noise domain, performing zero gain processing on the low-frequency signal; if the sound pressure level is in a general signal domain, performing gain amplification processing on the low-frequency signal, so that the sound pressure level of the low-frequency signal approaches infinitely an expected sound pressure domain or enters the expected sound pressure domain; if the sound pressure level is in the expected sound pressure domain, controlling the gain of the low-frequency signal by controlling a gain coefficient, so that the sound pressure level of the low-frequency signal is kept in the expected sound pressure domain; if the sound pressure level is greater than the expected sound pressure domain, performing negative gain processing on the low-frequency signal, so that the sound pressure level of the low-frequency signal enters the expected sound pressure domain. Further, the expected sound pressure domain in this embodiment may be divided into two ranges, including: −56 dB to 12 dB and 12 dB to 24 dB; when the sound pressure level of the low-frequency signal is in the area of −56 dB to 12 dB, a gain coefficient greater than 1 is adopted to perform gain processing on the low-frequency signal, so that the sound pressure level of the low-frequency signal approaches infinitely 12 dB; when the sound pressure level of the low-frequency signal is in the range of 12 dB to 24 dB, a gain coefficient less than 1 is adopted to perform gain processing on the low-frequency signal, so that the sound pressure level of the low-frequency signal is always kept in the expected sound pressure domain.
In this embodiment, the AGC algorithm can add different gains to the low-frequency signal according to the range which the sound pressure level of the low-frequency signal falls in, so that the gain applied to the low-frequency signal can be dynamically adjusted according to the change of voice volume when a user adjusts the voice volume, and different gains can be superposed for the low-frequency signal at different sound pressure levels.
In S104: subjecting the high-frequency signal, the processed low-frequency signal and the processed original audio signal to weighted summation to obtain a final output audio signal, the weight coefficients of the high frequency signal, the processed low-frequency signal and the processed original audio signal being a, b and c respectively, where the values of a, b and c range from 0 to 1, and a+b+c=1.
In this embodiment, the weight coefficients a, b, c of the high frequency signal, the processed low-frequency signal and the processed original audio signal all have a value of ⅓. It should be understood that we can set the weights of a, b and c again according to specific conditions in other embodiments.
The dynamic low-frequency enhancement method based on equal loudness contour provided by the embodiment of the disclosure first performs frequency-division processing on the input audio signal before performing the low-frequency enhancement, thus being capable of preventing enhancing the high-frequency signal in the input audio signal concurrently, and being capable of achieving the effect of adding different gains to signals of different frequencies; since the AGC algorithm is adopted to perform dynamic gain processing on the low-frequency signal, the gain applied to the low-frequency signal can be dynamically adjusted according to the change of voice volume when a user adjusts the voice volume, and the dynamic nature of GASS is realized; since the static low-frequency enhancement algorithm is adopted to process low-pass filtering enhancement processing on the original audio signal, and, the high-frequency signal, the processed low-frequency signal and the processed original audio signal are subjected to weighted summation to obtain a final output audio signal, so that gains of signals of different frequencies in the output audio signal all meet the tendency of a equal loudness contour when the voice volume is adjusted, an optimal low-frequency enhancement effect can be achieved, and the stability of the low-frequency enhancement effect can be ensured.
Refer to
The audio sampling module 1 is configured to collect an input audio signal.
The frequency-division processing module 2 is configured to perform frequency-division processing on the input audio signal, extract a high-frequency signal and a low-frequency signal to transmit respectively through the low-frequency band pass filter 3 and the high-frequency band pass filter 4, and reserve one path of original audio signal to transmit through the original-audio frequency band pass filter 5. In this embodiment, the low-frequency signal is a low-frequency band signal with frequency less than or equal to 130 HZ in the input audio signal, and the high-frequency signal is a high-frequency band signal with frequency greater than or equal to 1500 HZ in the input audio signal.
The AGC module 6 is configured to perform dynamic gain processing on the low-frequency signal adopting an AGC algorithm.
The low-pass filtering enhancement module 7 is configured to perform low-pass filtering enhancement processing on the original audio signal adopting a static low-frequency enhancement algorithm. In this embodiment, when the low-pass filtering enhancement module 7 performs low-pass filtering enhancement processing on the original audio signal, the gain applied to the original audio signal subjected to low-pass filtering is 18 dB; of course, in other embodiments, the gain may be adjusted as actually needed.
The mixer 8 is configured to subject the high-frequency signal, the processed low-frequency signal and the processed original audio signal to weighted summation to obtain a final output audio signal, the weight coefficients of the high frequency signal, the processed low-frequency signal and the processed original audio signal being a, b and c respectively, where the values of a, b and c range from 0 to 1, and a+b+c=1. In this embodiment, the weight coefficients a, b, c of the high frequency signal, the processed low-frequency signal and the processed original audio signal all have a value of ⅓. It should be understood that we can set the weights of a, b and c again according to specific conditions in other embodiments.
Further,
Refer to
The dynamic low-frequency enhancement system based on equal loudness contour provided by the embodiment of the disclosure first performs frequency-division processing on the input audio signal before performing the low-frequency enhancement, thus being capable of preventing enhancing the high-frequency signal in the input audio signal concurrently, and being capable of achieving the effect of adding different gains to signals of different frequencies; since the AGC algorithm is adopted to perform dynamic gain processing on the low-frequency signal, the gain applied to the low-frequency signal can be dynamically adjusted according to the change of voice volume when a user adjusts the voice volume, and the dynamic nature of GASS is realized; since the low-pass filtering enhancement processing module is adopted to process low-pass filtering enhancement processing on the original audio signal, and, the high-frequency signal, the processed low-frequency signal and the processed original audio signal are subjected to weighted summation through the mixer to obtain a final output audio signal, so that gains of signals of different frequencies in the output audio signal all meet the tendency of a equal loudness contour when the voice volume is adjusted, an optimal low-frequency enhancement effect can be achieved, and the stability of the low-frequency enhancement effect can be ensured.
The above are preferred embodiments of the disclosure merely, and are not intended to limit the disclosure. Any modifications, equivalent substitutes and improvements, etc., made within the spirit and principle of the disclosure all are intended to be included in the protection scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
201510127703.5 | Mar 2015 | CN | national |
This application is a continuation of PCT/CN2015/087581 filed Aug. 20, 2015, which claims priority to CN 201510127703.5 filed Mar. 23, 2015, both of which are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2015/087581 | Aug 2015 | US |
Child | 15647138 | US |