This invention relates to magnetic cards and devices and associated payment systems.
A card may include a dynamic magnetic stripe communications device. Such a dynamic magnetic stripe communications device may take the form of a magnetic encoder or an electromagnetic generator. A magnetic encoder may change the information located on a magnetic medium such that a magnetic stripe reader may read changed magnetic information from the magnetic medium. An electromagnetic generator may generate electromagnetic fields that directly communicate data to a magnetic stripe reader. Such an electromagnetic generator may communicate data serially to a read-head of the magnetic stripe reader.
All, or substantially all, of the front as well as the back of a card may be a display (e.g., bi-stable, non bi-stable, LCD, or electrochromic display). Electrodes of a display may be coupled to one or more capacitive touch sensors such that a display may be provided as a touch-screen display. Any type of touch-screen display may be utilized. Such touch-screen displays may be operable of determining multiple points of touch. A barcode, for example, may be displayed across all, or substantially all, of a surface of a card. In doing so, computer vision equipment such as barcode readers may be less susceptible to errors in reading a displayed barcode.
A card may include a number of output devices to output dynamic information. For example, a card may include one or more RFIDs or IC chips to communicate to one or more RFID readers or IC chip readers, respectively. A card may include devices to receive information. For example, an RFID and IC chip may both receive information and communicate information to an RFID and IC chip reader, respectively. A card may include a central processor that communicates data through one or more output devices simultaneously (e.g., an RFID, IC chip, and a dynamic magnetic stripe communications device). The central processor may receive information from one or more input devices simultaneously (e.g., an RFID, IC chip, and a dynamic magnetic stripe communications device). A processor may be coupled to surface contacts such that the processor may perform the processing capabilities of, for example, an EMV chip. The processor may be laminated over and not exposed such that a processor is not exposed on the surface of the card.
A card may be provided with a button in which the activation of the button causes a code to be communicated through a dynamic magnetic stripe communications device (e.g., the subsequent time a read-head detector on the card detects a read-head). The code may be indicative of, for example, a payment option. The code may be received by the card via manual input (e.g., onto buttons of the card).
An electromagnetic generator may be constructed as a stacked assembly of layers where one of the layers includes one or more coils. Inside each coil, one or more strips of a material (e.g., a magnetic or non-magnetic material) may be provided. Outside of the coil, one or more strips of a material (e.g., a magnetic or non-magnetic material) may be provided. For example, three strips of soft magnetic material may be provided in a coil and one strip of hard magnetic material may be stacked exterior of the coil on the side of the coil opposite of the side of the coil utilized to serially communicate magnetic stripe data to a magnetic stripe reader.
An electromagnetic generator may include a coil that may produce an electromagnetic field when current is conducted through the coil. A magnetic material (e.g., a soft-magnetic material) may be located within the coil, which may enhance the electromagnetic field produced by the coil. For example, multiple or several strips of soft-magnetic material may be stacked to form a stepped material inside of the coil.
The one or more strips of material (e.g., a soft-magnetic material) within the coil may be of different lengths. Accordingly, for example, a length of a first strip of material may be longer than a length of a second strip of material, a length of the second strip of material may be longer than a third strip of material, and so on, to form multiple strips of material having a stepped structure within the coil.
A magnetic material (e.g., a hard-magnetic material) may be stacked outside of the coil. The hard-magnetic material may be provided on the side of the coil opposite the side of a coil that communicates to a read head of a magnetic stripe reader. The electromagnetic field produced by the coil may be subjected to a torque that may be induced by the magnetic field generated by the hard-magnetic material stacked outside of the coil.
A shield may be stacked adjacent to the electromagnetic generator. For example, a shield may be provided adjacent to the electromagnetic generator on a side opposite a side that communicates data to a read-head of a magnetic stripe reader. In so doing, the shield may reduce a magnetic bias from a magnetic material located outside of a coil of an electromagnetic generator, as well as reduce an electromagnetic field that may be produced by a coil of an electromagnetic generator. In doing so, magnetic-based signals from an electromagnetic generator may be substantially attenuated on an adjacent side of the electromagnetic generator.
The shield may, for example, be an assembly of multiple strips of shielding material that may be bonded together using a flexible adhesive, such as a room-temperature vulcanizing compound (e.g., an RTV silicone). The adhesive may, for example, be cured by exposure to a change in one or more conditions (e.g., a change in atmospheric humidity). Once cured, the flexible adhesive may bond the strips of shielding material together while at the same time remaining flexible. The shield assembly may, for example, be bonded to a magnetic material using an adhesive, such as a pressure-sensitive adhesive, that remains flexible. An additional layer of flexible adhesive may be bonded to the shield assembly. Accordingly, for example, the shield assembly may float between two layers of flexible adhesive to allow the shield assembly to bend and flex while the flexible adhesive stretches and compresses in conformance with movement of the shield assembly.
The principles and advantages of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:
Card 100 may include a second dynamic number that may also be entirely, or partially, displayed via a second display (e.g., display 108). Display 108 may be utilized, for example, to display a dynamic code such as a dynamic security code. Card 100 may also include third display 122 that may be used to display graphical information, such as logos and barcodes. Third display 122 may also be utilized to display multiple rows and/or columns of textual and/or graphical information.
Persons skilled in the art will appreciate that any one or more of displays 106, 108, and/or 122 may be implemented as a bi-stable display. For example, information provided on displays 106, 108, and/or 122 may be stable in at least two different states (e.g., a powered-on state and a powered-off state). Any one or more of displays 106, 108, and/or 122 may be implemented as a non-bi-stable display. For example, the display is stable in response to operational power that is applied to the non-bi-stable display. Other display types, such as LCD or electrochromic, may be provided as well.
Other permanent information, such as permanent information 120, may be included within card 100, which may include user specific information, such as the cardholder's name or username. Permanent information 120 may, for example, include information that is specific to card 100 (e.g., a card issue date and/or a card expiration date). Information 120 may represent, for example, information that includes information that is both specific to the cardholder, as well as information that is specific to card 100.
Card 100 may accept user input data via any one or more data input devices, such as buttons 110-118. Buttons 110-118 may be included to accept data entry through mechanical distortion, contact, or proximity. Buttons 110-118 may be responsive to, for example, induced changes and/or deviations in light intensity, pressure magnitude, or electric and/or magnetic field strength. Such information exchange may be determined and processed by a processor of card 100 as data input.
Dynamic magnetic stripe communications device 102 may be included on card 100 to communicate information to, for example, a read-head of a magnetic stripe reader via, for example, electromagnetic signals. Dynamic magnetic stripe communications device 102 may be formed on a printed circuit board (PCB) as a stacked structure including, for example, an electromagnetic generator including an interior stepped material (e.g., stepped soft-magnetic material 124), an exterior magnet, and a shield. The electromagnetic generator, exterior magnet and shield may be stacked and adhered together using any combination of flexible adhesion components to form dynamic magnetic stripe communications device 102 having elastic and flexible characteristics.
Accordingly, for example, dynamic magnetic stripe communications device 102 may exhibit a flexibility whereby each layer of the stack may move independently of each other layer, while at the same time maintaining adhesion between all layers of the stack. In so doing, individual components of each layer of dynamic magnetic stripe communications device 102 may maintain a correct orientation to each other layer while card 100 may undergo bending and flexing.
A material (e.g., stepped soft-magnetic material 124) and an exterior magnet (not shown) may, for example, interact to improve performance of dynamic magnetic stripe communications device 102 while dynamic magnetic stripe communications device 102 generates an electromagnetic signal. For example, stepped ends of soft-magnetic material 124 may cause a gradual change (e.g., a gradual increase in the magnetic field magnitude) as a function of a position of a read head of a magnetic stripe reader along dynamic magnetic stripe communications device 102 (e.g., along end portions of dynamic magnetic stripe communications device 102).
Card 100 may, for example, be formed as a laminate structure of two or more layers. Card 100 may, for example, include top and bottom layers of a plastic material (e.g., a polymer). Electronics package circuitry (e.g., one or more printed circuit boards, a dynamic magnetic stripe communications device, a battery, a display, a processor, and buttons) may be sandwiched between top and bottom layers of a laminate structure of card 100. A material (e.g., a polyurethane-based or silicon-based substance) may be applied between top and bottom layers and cured (e.g., solidified) to form card 100 that has a flexible laminate structure.
One or more of the components shown in architecture 150 may be configured to transmit information to processor 154 and/or may be configured to receive information as transmitted by processor 154. For example, one or more displays 156 may be coupled to receive data from processor 154. The data received from processor 154 may include, for example, at least a portion of dynamic numbers and/or dynamic codes. The data to be displayed on the display may be displayed on one or more displays 156.
One or more displays 156 may, for example, be touch sensitive and/or proximity sensitive. For example, objects such as fingers, pointing devices, etc., may be brought into contact with displays 156, or in proximity to displays 156. Detection of object proximity or object contact with displays 156 may be effective to perform any type of function (e.g., transmit data to processor 154). Displays 156 may have multiple locations that are able to be determined as being touched, or determined as being in proximity to an object.
Input and/or output devices may be implemented within architecture 150. For example, integrated circuit (IC) chip 160 (e.g., an EMV chip) may be included within architecture 150, that can communicate information with a chip reader (e.g., an EMV chip reader). Radio frequency identification (RFID) module 162 may be included within architecture 150 to enable the exchange of information with an RFID reader.
Other input and/or output devices 168 may be included within architecture 150, for example, to provide any number of input and/or output capabilities. For example, other input and/or output devices 168 may include an audio device capable of receiving and/or transmitting audible information. Other input and/or output devices 168 may include a device that exchanges analog and/or digital data using a visible data carrier. Other input and/or output devices 168 may include a device, for example, that is sensitive to a non-visible data carrier, such as an infrared data carrier or electromagnetic data carrier.
Electromagnetic field generators 170-174 may communicate one or more tracks of electromagnetic data to read-heads of a magnetic stripe reader. Electromagnetic field generators 170-174 may include, for example, a series of electromagnetic elements, where each electromagnetic element may be implemented as a coil wrapped around one or more materials (e.g., a soft-magnetic material and/or a non-magnetic material). Additional materials, such as a magnet (not shown) and a shield (not shown), may be stacked in proximity to electromagnetic field generators 170-174 using any combination of adhesives (e.g., flexible adhesives), so that the stacked components may be flexed while remaining within a substantially fixed relationship to one another.
Electrical excitation by processor 154 of one or more coils of one or more electromagnetic elements via, for example, driving circuitry 164 may be effective to generate electromagnetic fields from one or more electromagnetic elements. One or more electromagnetic field generators 170-174 may be utilized to communicate electromagnetic information to, for example, one or more read-heads of a magnetic stripe reader.
Timing aspects of information exchange between architecture 150 and the various I/O devices implemented on architecture 150 may be determined by processor 154. One or more detectors 166 may be utilized, for example, to sense the proximity, mechanical distortion, or actual contact, of an external device, which in turn, may trigger the initiation of a communication sequence. The sensed presence or touch of the external device may then be communicated to a controller (e.g., processor 154), which in turn may direct the exchange of information between architecture 150 and the external device. The sensed presence, mechanical distortion, or touch of the external device may be effective to, for example, determine the type of device or object detected.
The detection may include, for example, the detection of a read-head housing of a magnetic stripe reader. In response, processor 154 may activate one or more electromagnetic field generators 170-174 to initiate a communications sequence with, for example, one or more read-heads of a magnetic stripe reader. The timing relationships associated with communications to one or more electromagnetic field generators 170-174 and one or more read-heads of a magnetic stripe reader may be provided through use of the detection of the magnetic stripe reader.
Persons skilled in the art will appreciate that processor 154 may provide user-specific and/or card-specific information through utilization of any one or more of buttons 110-118, RFID 162, IC chip 160, electromagnetic field generators 170-174, and other input and/or output devices 168.
Persons skilled in the art will appreciate that a card (e.g., card 100 of
Electromagnetic generator 210 may, for example, be constructed as a multiple-layer circuit (e.g., a circuit constructed on a multiple-layer printed circuit board (PCB)). A first layer, for example, may include patterns of a conductive element (e.g., copper) that may be added to a PCB substrate according to a patterning mask definition layer to form portions (e.g., the bottom portions) of coils 211 and 213. Alternately, a first layer of a PCB may, for example, include patterns of a conductive element (e.g., copper) that may be subtracted from a pre-plated PCB substrate according to an etching mask definition layer to form portions (e.g., the bottom portions) of coils 211 and 213. A second PCB layer may, for example, use additive and/or subtractive techniques to form portions (e.g., the top portions) of coils 211 and 213.
The first and second PCB layers may be separated by an insulation layer (e.g., a dielectric layer). Pockets within the insulation layer (e.g., pockets located between the top and bottom portions of coils 211 and 213) may include a magnetic material (e.g., a lamination stepped layers of soft magnetic material) to form materials 212 and 214.
The top and bottom portions of coils 211 and 213 may be interconnected through the insulation layer (e.g., interconnected using plated vias through the insulation layer) to form coils 211 and 213. Conductive pads (not shown) may be patterned at each end of coils 211 and 213 on the first and/or second layers of the PCB, so that electrical signals (e.g., current) may be conducted through coils 211 and 213.
Magnet 215 may be arranged in proximity to coils 211 and 213, such that magnet 215 may extend along at least a portion of a length of coils 211 and 213. Magnet 215 may be arranged in proximity to coils 211 and 213, such that magnet 215 may extend along at least a portion of a width of coils 211 and 213.
Layer 216 may include a flexible adhesive, such as a pressure-sensitive adhesive (e.g., a solvent-based acrylic). Layer 216 may include a liner (not shown) that may remain in place to allow compression of layer 216 onto magnet 215. Accordingly, for example, adhesion between layer 216 and layer 215 may be activated by a die of a press (not shown) while the liner (not shown) of layer 216 prevents adhesion of layer 216 to the die.
Shield 220 may include, for example, two shields (e.g., shields 221 and 223) that may be bonded together (e.g., via layer 222) and placed in proximity to magnet 215. Shields 221 and 223 may include, for example, soft-magnetic materials. One or both sides of shields 221 and 223 may be abraded to improve, for example, an adhesion quality to layer 222 and/or an adhesion quality to layers 216 and/or 231.
Layer 222 may, for example, include a flexible adhesive, such as a room-temperature vulcanizing material (e.g., an RTV silicone). Layer 222 may, for example, cure when exposed to a change in one or more external conditions (e.g., atmospheric humidity). Once cured, layer 222 may form a bond between shields 221 and 223 that remains flexible. Accordingly, for example, layer 222 may allow shields 221 and 223 to be flexed, bent, or otherwise manipulated, while maintaining the bond between layers 221 and 223.
Shield 220 may, for example, be placed in proximity to and bonded with magnet 215 using a flexible adhesive layer, such as a pressure-sensitive adhesive layer (e.g., solvent-based acrylic layer 216) or other adhesive. Adhesive layer 216 may form a flexible bond between shield 220 and magnet 215, such that shield 220 maintains a substantially fixed relationship with relation to magnet 215 despite any flexing, bending, or any other form of manipulation that may occur with dynamic magnetic stripe communications device 200.
Shield 220 may be attached to electromagnetic generator 210 via magnet 215 and any intervening adhesion layers (e.g., layers 222 and 216) to form an electronic package that may be held together with other electronic packages via a mold while a liquid laminate material (e.g., a polyurethane-based or silicon-based substance) is provided (e.g., sprayed) into the mold. A protective layer, such as a tape layer (e.g., polyimide tape layer 230) may wrap around at least portions of shield 220, magnet 215, electromagnetic generator 210, PCB 202 and/or intervening adhesion layers to prevent liquid laminate from penetrating the individual layers of dynamic magnetic stripe communications device 200. The liquid laminate material may be cured (e.g., solidified) via a reaction caused by a change in condition (e.g., chemical, temperature, or UV light). The resulting interior laminate may be sandwiched between two layers of polymer to form a card having a laminate structure with top, middle, and bottom layers.
Layer 230 may include a protective layer, such as a tape layer (e.g., polyimide tape layer 232) and an adhesive layer, such as a flexible, pressure-sensitive adhesive layer (e.g., solvent-based acrylic layer 231). Accordingly, shield 220 may float between flexible adhesive layers 231 and 216 to allow shield 220 to remain in a substantially fixed relationship with respect to magnet 215 and electromagnetic generator 210 notwithstanding any flexing, bending or any other type of manipulation of dynamic magnetic stripe communications device 200.
Positioning of stepped material 304 within region 314 may be established, for example, by centering stepped material 304 about a centerline of a magnetic stripe data track (e.g., Track 1) position on card 300. Positioning of stepped material 306 within region 314 may be established, for example, by centering stepped material 306 about a centerline of a magnetic stripe data track (e.g., Track 2) position on card 300. Persons skilled in the art will appreciate that an additional stepped material may, for example, be positioned about a centerline of a magnetic stripe data track (e.g., Track 3) position on card 300 to establish three tracks of data communication capability from card 300.
Stepped materials 304 and 306 may include two or more layers (e.g., three layers) of material (e.g., soft magnetic material). A first layer of material of stepped materials 304 and/or 306 may have a length 316 that is between approximately 2.9 and 3.1 inches (e.g., approximately 2.984 inches). A second layer of material of stepped materials 304 and/or 306 may have a length 318 that is between approximately 2.8 and 2.9 inches (e.g., approximately 2.858 inches). A third layer of material of stepped materials 304 and/or 306 may have a length 320 that is between approximately 2.7 and 2.8 inches (e.g., approximately 2.734 inches).
Stepped materials 304 and 306 may include shorter layers stacked on top of longer layers so as to form a stepped structure on one or both ends of stepped materials 304 and 306. For example, a bottom layer of stepped materials 304 and 306 may extend beyond a length of a middle layer of stepped materials 304 and 306 by a length 322 that is between approximately 0.06 and 0.065 inches (e.g., approximately 0.0625 inches). Additionally, for example, the middle layer of stepped materials 304 and 306 may extend beyond a length of a top layer of stepped materials 304 and 306 by a length 324 that is between approximately 0.06 and 0.065 inches (e.g., approximately 0.0625 inches).
Card 300 may be laminated to form a card assembly, such that the laminate may cover a dynamic magnetic stripe communications device including stepped materials 304 and 306, PCBs 308-312 and any other components that may exist on PCBs 308-312. Prior to lamination, for example, a dynamic magnetic stripe communications device including stepped materials 304 and 306 may be built up onto PCB 312 via one or more production steps to yield an assembly that extends away from PCB 312 in a stacked fashion.
PCB 402 may be placed into a press and PCB 402, adhesive layer 404, and electromagnetic generator 406 may be pressed together for a period of time (e.g., 30 seconds) thereby activating adhesive 404 to form a flexible bond between electromagnetic generator 406 and PCB 402. Once compressed, a stacked height of the combination of PCB 402, adhesive layer 404, and electromagnetic generator 406 may be between approximately 0.0095 and 0.0105 inches (e.g., approximately 0.010 inches).
A strip of adhesive (e.g., cyanoacrylate 410) or other adhesive may be applied (e.g., manually or robotically) to electromagnetic generator 406. Magnet 420 may be placed onto electromagnetic generator 406 along the strip of adhesive 410. The stack may be placed into a press and PCB 402, adhesive layer 404, electromagnetic generator 406, adhesive layer 410, and magnet 420 may be pressed together for a period of time (e.g., 30 seconds) thereby activating adhesive 410 to form a flexible bond between magnet 420 and electromagnetic generator 406. Once compressed, a stacked height of the combination of PCB 402, adhesive layer 404, electromagnetic generator 406, adhesive layer 410, and magnet 420 may be between approximately 0.0145 and 0.0175 inches (e.g., 0.016 inches).
An adhesive, such as a pressure-activated adhesive (e.g., solvent-based acrylic 408) may be applied to the stacked combination of PCB 402, adhesive layers 404 and 410, electromagnetic generator 406, and magnet 420. The stacked combination may then be pressed for a period of time (e.g., 30 seconds) to form a flexible bond between a top surface of magnet 420 and a bottom surface of adhesive layer 408. A top surface of adhesive layer 408 may be lined so as to avoid adhering adhesive layer 408 to the press. In addition, a die of the press may be shaped to conform to the shape of magnet 420. Accordingly, for example, adhesive layer 408 may be compressed to wrap around the edges of magnet 420 and along a length of each end of electromagnetic generator 406. Adhesive layer 408 may, for example, be non-conductive.
A liner (not shown) attached to adhesive layer 408 may be peeled away to expose a top surface of adhesive layer 408. Shield 416 may be placed onto the exposed adhesive layer 408. A protective layer, such as a protective tape layer (e.g., polyimide tape layer 418) may be placed onto shield 416 and wrapped around the stacked structure substantially as shown. Protective layer 418 may include a layer of adhesive, such as a pressure-activated adhesive (e.g., a solvent-based acrylic). Accordingly, for example, protective layer 418 may be pressed onto shield 416 to activate the adhesive layer. Shield 416 may, for example, float between the layer of adhesive of protective layer 418 and adhesive layer 408.
Accordingly, for example, shield 416 may be substantially free to move between top and bottom layers of adhesive during any bending, flexing, or manipulation of dynamic magnetic stripe communications device 400 while remaining substantially fixed in position relative to magnet 420 and electromagnetic generator 406. Once compressed, a stacked height of the combination of PCB 402, adhesive layer 404, electromagnetic generator 406, adhesive layer 410, magnet 420, adhesive layer 408, shield 416, and protective layer 418 may be between approximately 0.0165 and 0.0215 inches (e.g., approximately 0.019 inches).
As per another example, a stepped material (e.g., soft-magnetic material layers 514, 516 and 518) may exist within a second coil of a dynamic magnetic stripe communications device to enhance communication of a second track of magnetic stripe information to a read head of a magnetic stripe reader from the dynamic magnetic stripe communications device. A length 524 of layer 514 may be longer than a length 522 of layer 516, which may in turn be longer than a length 520 of layer 518 to form a stepped structure having width 526 that may be between approximately 0.14 and 0.145 inches (e.g., 0.142 inches).
Layer 604 may be positioned to be approximately centered within a length of layer 606 while layer 602 may be positioned to be approximately centered within a length of layer 604. Accordingly, the stacked assembly may have stepped ends. Similarly, layer 610 may be positioned to be approximately centered within a length of layer 612 while layer 608 may be positioned to be approximately centered within a length of layer 610 to form a stacked assembly having stepped ends.
In step 721 of sequence 720, a flexible electromagnetic generator may be installed (e.g., glued) onto a flexible PCB of a flexible card using a flexible glue. In step 722, a flexible magnet may be installed (e.g., glued) onto the flexible electromagnetic generator using a flexible glue. In step 723, a substantially non-flexible shield may be installed (e.g., glued) onto the magnet using a flexible glue. In step 724, the shield may be adhered to and cushioned between two layers of flexible glue, such that when the shield is bent or flexed, the two layers of flexible glue may stretch, compress or otherwise conform to the flexed or bent shield (e.g., as in step 725). Accordingly, for example, the shield may remain laminated to the magnet while the card is being flexed, bent, or otherwise manipulated.
In step 731 of sequence 730, layers of a dynamic magnetic stripe communications device may be stacked onto a card. One of the layers may be non-flexible (e.g., a shield) and may be sandwiched between two flexible layers (e.g., two layers of flexible adhesive as in step 732). As the card is bent, flexed, or manipulated, the non-flexible layer may not stretch or compress, but the flexible layers that are adhered to the non-flexible layer may stretch or compress. Accordingly, for example, while the non-flexible layer is bent, flexed or otherwise manipulated, the non-flexible layer moves within the flexible layers (e.g., as in step 733) such that the flexible adhesive of the flexible layers adheres to the non-flexible layer and stretches and compresses to conform to the movement of the non-flexible layer.
In step 741 of sequence 740, layers of a dynamic magnetic stripe communications device may be stacked onto a card. One of the layers may include one or more coils of the dynamic magnetic stripe communications device. Each coil may include one or more layers of material (e.g., a soft-magnetic material) contained within each coil. Each layer of material within each coil of the dynamic magnetic stripe communications device may be shorter than the layer beneath it (e.g., as in step 742). For example, a length of a bottom layer of material may be made to be longer as compared to a length of a middle layer of material, while a length of the middle layer of material may be made to be longer as compared to a length of a top layer of material.
Persons skilled in the art will appreciate that the present invention is not limited to only the embodiments described. Instead, the present invention more generally involves dynamic information. Persons skilled in the art will also appreciate that the apparatus of the present invention may be implemented in ways other than those described herein. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 15/591,027, titled “DYNAMIC MAGNETIC STRIPE COMMUNICATIONS DEVICE WITH STEPPED MAGNETIC MATERIAL FOR MAGNETIC CARDS AND DEVICES,” filed on May 9, 2017, which is a continuation of U.S. patent application Ser. No. 14/660,920, titled “DYNAMIC MAGNETIC STRIPE COMMUNICATIONS DEVICE WITH STEPPED MAGNETIC MATERIAL FOR MAGNETIC CARDS AND DEVICES,” filed on Mar. 17, 2015, which is a continuation of U.S. patent application Ser. No. 14/071,565, titled “DYNAMIC MAGNETIC STRIPE COMMUNICATIONS DEVICE WITH STEPPED MAGNETIC MATERIAL FOR MAGNETIC CARDS AND DEVICES,” filed on Nov. 4, 2013, which claims the benefit of U.S. Provisional Patent Application No. 61/732,080, titled “DYNAMIC MAGNETIC STRIPE COMMUNICATIONS DEVICE WITH STEPPED MAGNETIC MATERIAL FOR MAGNETIC CARDS AND DEVICES,” filed Nov. 30, 2012, which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4353064 | Stamm | Oct 1982 | A |
4394654 | Hofmann-Cerfontaine | Jul 1983 | A |
4614861 | Pavlov et al. | Sep 1986 | A |
4667087 | Quintana | May 1987 | A |
4701601 | Francini et al. | Oct 1987 | A |
4720860 | Weiss | Jan 1988 | A |
4786791 | Hodama | Nov 1988 | A |
4791283 | Burkhardt | Dec 1988 | A |
4797542 | Hara | Jan 1989 | A |
5038251 | Sugiyama et al. | Aug 1991 | A |
5168520 | Weiss | Dec 1992 | A |
5237614 | Weiss | Aug 1993 | A |
5276311 | Hennige | Jan 1994 | A |
5347580 | Molva et al. | Sep 1994 | A |
5361062 | Weiss et al. | Nov 1994 | A |
5412199 | Finkelstein et al. | May 1995 | A |
5434398 | Goldberg | Jul 1995 | A |
5434405 | Finkelstein et al. | Jul 1995 | A |
5478994 | Rahman | Dec 1995 | A |
5479512 | Weiss | Dec 1995 | A |
5484997 | Haynes | Jan 1996 | A |
5485519 | Weiss | Jan 1996 | A |
5585787 | Wallerstein | Dec 1996 | A |
5591949 | Bernstein | Jan 1997 | A |
5608203 | Finkelstein et al. | Mar 1997 | A |
5623552 | Lane | Apr 1997 | A |
5657388 | Weiss | Aug 1997 | A |
5834747 | Cooper | Nov 1998 | A |
5834756 | Gutman et al. | Nov 1998 | A |
5856661 | Finkelstein et al. | Jan 1999 | A |
5864623 | Messina et al. | Jan 1999 | A |
5907142 | Kelsey | May 1999 | A |
5913203 | Wong et al. | Jun 1999 | A |
5937394 | Wong et al. | Aug 1999 | A |
5955021 | Tiffany, III | Sep 1999 | A |
5956699 | Wong et al. | Sep 1999 | A |
6025054 | Tiffany, III | Feb 2000 | A |
6045043 | Bashan et al. | Apr 2000 | A |
6076163 | Hoffstein et al. | Jun 2000 | A |
6085320 | Kaliski | Jul 2000 | A |
6095416 | Grant et al. | Aug 2000 | A |
6130621 | Weiss | Oct 2000 | A |
6145079 | Mitty et al. | Nov 2000 | A |
6157920 | Jakobsson et al. | Dec 2000 | A |
6161181 | Haynes, III et al. | Dec 2000 | A |
6176430 | Finkelstein et al. | Jan 2001 | B1 |
6182894 | Hackett et al. | Feb 2001 | B1 |
6189098 | Kaliski | Feb 2001 | B1 |
6199052 | Mitty et al. | Mar 2001 | B1 |
6206293 | Gutman et al. | Mar 2001 | B1 |
6240184 | Huynh et al. | May 2001 | B1 |
6241153 | Tiffany, III | Jun 2001 | B1 |
6256873 | Tiffany, III | Jul 2001 | B1 |
6269163 | Rivest et al. | Jul 2001 | B1 |
6286022 | Kaliski et al. | Sep 2001 | B1 |
6308890 | Cooper | Oct 2001 | B1 |
6313724 | Osterweil | Nov 2001 | B1 |
6389442 | Yin et al. | May 2002 | B1 |
6393447 | Jakobsson et al. | May 2002 | B1 |
6411715 | Liskov et al. | Jun 2002 | B1 |
6446052 | Juels | Sep 2002 | B1 |
6460141 | Olden | Oct 2002 | B1 |
6592044 | Wong et al. | Jul 2003 | B1 |
6607127 | Wong | Aug 2003 | B2 |
6609654 | Anderson et al. | Aug 2003 | B1 |
6631849 | Blossom | Oct 2003 | B2 |
6655585 | Shinn | Dec 2003 | B2 |
6681988 | Stack et al. | Jan 2004 | B2 |
6705520 | Pitroda et al. | Mar 2004 | B1 |
6755341 | Wong et al. | Jun 2004 | B1 |
6764005 | Cooper | Jul 2004 | B2 |
6769618 | Finkelstein | Aug 2004 | B1 |
6805288 | Routhenstein et al. | Oct 2004 | B2 |
6811082 | Wong | Nov 2004 | B2 |
6813354 | Jakobsson et al. | Nov 2004 | B1 |
6817532 | Finkelstein | Nov 2004 | B2 |
6873974 | Schutzer | Mar 2005 | B1 |
6902116 | Finkelstein | Jun 2005 | B2 |
6970070 | Juels et al. | Nov 2005 | B2 |
6980969 | Tuchler et al. | Dec 2005 | B1 |
6985583 | Brainard et al. | Jan 2006 | B1 |
6991155 | Burchette, Jr. | Jan 2006 | B2 |
7013030 | Wong et al. | Mar 2006 | B2 |
7035443 | Wong | Apr 2006 | B2 |
7039223 | Wong | May 2006 | B2 |
7044394 | Brown | May 2006 | B2 |
7051929 | Li | May 2006 | B2 |
7083094 | Cooper | Aug 2006 | B2 |
7100049 | Gasparini et al. | Aug 2006 | B2 |
7100821 | Rasti | Sep 2006 | B2 |
7111172 | Duane et al. | Sep 2006 | B1 |
7114652 | Moullette et al. | Oct 2006 | B2 |
7136514 | Wong | Nov 2006 | B1 |
7140550 | Ramachandran | Nov 2006 | B2 |
7163153 | Blossom | Jan 2007 | B2 |
7195154 | Routhenstein | Mar 2007 | B2 |
7197639 | Juels et al. | Mar 2007 | B1 |
7215229 | Shen et al. | May 2007 | B2 |
7219368 | Juels et al. | May 2007 | B2 |
7225537 | Reed | Jun 2007 | B2 |
7225994 | Finkelstein | Jun 2007 | B2 |
7246752 | Brown | Jul 2007 | B2 |
7298243 | Juels et al. | Nov 2007 | B2 |
7334732 | Cooper | Feb 2008 | B2 |
7337326 | Palmer et al. | Feb 2008 | B2 |
7346775 | Gasparini et al. | Mar 2008 | B2 |
7356696 | Jakobsson et al. | Apr 2008 | B1 |
7357319 | Lin et al. | Apr 2008 | B1 |
7359507 | Kaliski | Apr 2008 | B2 |
7360688 | Harris | Apr 2008 | B1 |
7363494 | Brainard et al. | Apr 2008 | B2 |
7380710 | Brown | Jun 2008 | B2 |
7398253 | Pinnell | Jul 2008 | B1 |
7404087 | Teunen | Jul 2008 | B2 |
7424570 | D'Albore et al. | Sep 2008 | B2 |
7427033 | Roskind | Sep 2008 | B1 |
D670329 | Mullen et al. | Nov 2008 | S |
D670330 | Mullen et al. | Nov 2008 | S |
D670331 | Mullen et al. | Nov 2008 | S |
D670332 | Mullen et al. | Nov 2008 | S |
7454349 | Teunen et al. | Nov 2008 | B2 |
D673606 | Mullen et al. | Dec 2008 | S |
7461250 | Duane et al. | Dec 2008 | B1 |
7461399 | Juels et al. | Dec 2008 | B2 |
7472093 | Juels | Dec 2008 | B2 |
D675256 | Mullen et al. | Jan 2009 | S |
7472829 | Brown | Jan 2009 | B2 |
D676487 | Mullen et al. | Feb 2009 | S |
D676904 | Mullen et al. | Feb 2009 | S |
7494055 | Fernandes et al. | Feb 2009 | B2 |
7502467 | Brainard et al. | Mar 2009 | B2 |
7502933 | Jakobsson et al. | Mar 2009 | B2 |
7503485 | Routhenstein | Mar 2009 | B1 |
7516492 | Nisbet et al. | Apr 2009 | B1 |
7523301 | Nisbet et al. | Apr 2009 | B2 |
7530495 | Cooper | May 2009 | B2 |
7532104 | Juels | May 2009 | B2 |
7543739 | Brown et al. | Jun 2009 | B2 |
D687095 | Mullen et al. | Jul 2009 | S |
7559464 | Routhenstein | Jul 2009 | B2 |
7562221 | Nystrom et al. | Jul 2009 | B2 |
7562222 | Gasparini et al. | Jul 2009 | B2 |
D687487 | Mullen et al. | Aug 2009 | S |
D687488 | Mullen et al. | Aug 2009 | S |
D687489 | Mullen et al. | Aug 2009 | S |
D687490 | Mullen et al. | Aug 2009 | S |
D687887 | Mullen et al. | Aug 2009 | S |
D688744 | Mullen et al. | Aug 2009 | S |
7580898 | Brown et al. | Aug 2009 | B2 |
7584153 | Brown et al. | Sep 2009 | B2 |
7591426 | Osterweil et al. | Sep 2009 | B2 |
7591427 | Osterweil | Sep 2009 | B2 |
D692053 | Mullen et al. | Oct 2009 | S |
7602904 | Juels et al. | Oct 2009 | B2 |
D694322 | Mullen et al. | Nov 2009 | S |
D695636 | Mullen et al. | Dec 2009 | S |
7631804 | Brown | Dec 2009 | B2 |
7639537 | Sepe et al. | Dec 2009 | B2 |
7641124 | Brown et al. | Jan 2010 | B2 |
7660902 | Graham et al. | Feb 2010 | B2 |
7784687 | Mullen et al. | Aug 2010 | B2 |
7793851 | Mullen | Sep 2010 | B2 |
7828207 | Cooper | Nov 2010 | B2 |
7828220 | Mullen | Nov 2010 | B2 |
7931195 | Mullen | Apr 2011 | B2 |
D729869 | Mullen et al. | May 2011 | S |
D729870 | Mullen et al. | May 2011 | S |
D729871 | Mullen et al. | May 2011 | S |
D730438 | Mullen et al. | May 2011 | S |
D730439 | Mullen et al. | May 2011 | S |
7946501 | Borracci et al. | May 2011 | B2 |
7954705 | Mullen | Jun 2011 | B2 |
D643063 | Mullen et al. | Aug 2011 | S |
8011577 | Mullen et al. | Sep 2011 | B2 |
8020775 | Mullen et al. | Sep 2011 | B2 |
8066191 | Cloutier et al. | Nov 2011 | B1 |
D651237 | Mullen et al. | Dec 2011 | S |
D651238 | Mullen et al. | Dec 2011 | S |
8074877 | Mullen et al. | Dec 2011 | B2 |
D651644 | Mullen et al. | Jan 2012 | S |
D652075 | Mullen et al. | Jan 2012 | S |
D652076 | Mullen et al. | Jan 2012 | S |
D652448 | Mullen et al. | Jan 2012 | S |
D652449 | Mullen et al. | Jan 2012 | S |
D652450 | Mullen et al. | Jan 2012 | S |
D652867 | Mullen et al. | Jan 2012 | S |
D653288 | Mullen et al. | Jan 2012 | S |
8172148 | Cloutier et al. | May 2012 | B1 |
D665022 | Mullen et al. | Aug 2012 | S |
D665447 | Mullen et al. | Aug 2012 | S |
D666241 | Mullen et al. | Aug 2012 | S |
8282007 | Cloutier et al. | Oct 2012 | B1 |
8286876 | Mullen et al. | Oct 2012 | B2 |
D670759 | Mullen et al. | Nov 2012 | S |
8302872 | Mullen | Nov 2012 | B2 |
D672389 | Mullen et al. | Dec 2012 | S |
8322623 | Mullen et al. | Dec 2012 | B1 |
D674013 | Mullen et al. | Jan 2013 | S |
8348172 | Cloutier et al. | Jan 2013 | B1 |
8382000 | Mullen et al. | Feb 2013 | B2 |
8393545 | Mullen et al. | Mar 2013 | B1 |
8393546 | Yen et al. | Mar 2013 | B1 |
8413892 | Mullen et al. | Apr 2013 | B2 |
8424773 | Mullen et al. | Apr 2013 | B2 |
8459548 | Mullen et al. | Jun 2013 | B2 |
D687094 | Mullen et al. | Jul 2013 | S |
8485437 | Mullen et al. | Jul 2013 | B2 |
8485446 | Mullen et al. | Jul 2013 | B1 |
8511574 | Yen et al. | Aug 2013 | B1 |
8517276 | Mullen et al. | Aug 2013 | B2 |
8523059 | Mullen et al. | Sep 2013 | B1 |
8561894 | Mullen et al. | Oct 2013 | B1 |
8567679 | Mullen et al. | Oct 2013 | B1 |
8573503 | Cloutier et al. | Nov 2013 | B1 |
8579203 | Lambeth et al. | Nov 2013 | B1 |
8590796 | Cloutier et al. | Nov 2013 | B1 |
8602312 | Cloutier et al. | Dec 2013 | B2 |
8608083 | Mullen et al. | Dec 2013 | B2 |
8622309 | Mullen et al. | Jan 2014 | B1 |
8628022 | Rhoades et al. | Jan 2014 | B1 |
8668143 | Mullen et al. | Mar 2014 | B2 |
8727219 | Mullen | May 2014 | B1 |
8733638 | Mullen et al. | May 2014 | B2 |
8739402 | Radenne | Jun 2014 | B2 |
8746579 | Cloutier et al. | Jun 2014 | B1 |
8757483 | Mullen et al. | Jun 2014 | B1 |
8757499 | Cloutier et al. | Jun 2014 | B2 |
8814050 | Mullen et al. | Aug 2014 | B1 |
D828870 | Mullen et al. | Sep 2014 | S |
8827153 | Rhoades et al. | Sep 2014 | B1 |
8875999 | Mullen et al. | Nov 2014 | B2 |
8881989 | Mullen et al. | Nov 2014 | B2 |
8888009 | Mullen | Nov 2014 | B1 |
8931703 | Mullen et al. | Jan 2015 | B1 |
8944333 | Mullen et al. | Feb 2015 | B1 |
8960545 | Batra | Feb 2015 | B1 |
8973824 | Mullen et al. | Mar 2015 | B2 |
9004368 | Mullen et al. | Apr 2015 | B2 |
9010630 | Mullen et al. | Apr 2015 | B2 |
9010647 | Workley et al. | Apr 2015 | B2 |
9033218 | Batra | May 2015 | B1 |
9053398 | Cloutier | Jun 2015 | B1 |
9064194 | Bohac, Jr. | Jun 2015 | B1 |
9064195 | Hartwick et al. | Jun 2015 | B2 |
9064225 | Mullen et al. | Jun 2015 | B2 |
9064255 | Mullen et al. | Jun 2015 | B1 |
9292843 | Mullen et al. | Mar 2016 | B1 |
9306666 | Zhang et al. | Apr 2016 | B1 |
9329619 | Cloutier | May 2016 | B1 |
9349089 | Rhoades et al. | May 2016 | B1 |
9361569 | Mullen et al. | Jun 2016 | B2 |
9373069 | Cloutier et al. | Jun 2016 | B2 |
9384438 | Mullen et al. | Jul 2016 | B2 |
9449753 | Kim et al. | Sep 2016 | B2 |
9547816 | Mullen et al. | Jan 2017 | B2 |
9619741 | Rigatti | Apr 2017 | B1 |
9639796 | Mullen et al. | May 2017 | B2 |
9646240 | Mullen et al. | May 2017 | B1 |
9652436 | Yen et al. | May 2017 | B1 |
9659246 | Workley | May 2017 | B1 |
9684861 | Mullen et al. | Jun 2017 | B2 |
D792511 | Mullen et al. | Jul 2017 | S |
D792512 | Mullen et al. | Jul 2017 | S |
D792513 | Mullen et al. | Jul 2017 | S |
9697454 | Mullen et al. | Jul 2017 | B2 |
9704088 | Mullen et al. | Jul 2017 | B2 |
9704089 | Mullen et al. | Jul 2017 | B2 |
9710745 | O'Shea | Jul 2017 | B1 |
9721201 | Mullen et al. | Aug 2017 | B1 |
9727813 | Mullen et al. | Aug 2017 | B2 |
9734669 | Mullen et al. | Aug 2017 | B1 |
9805297 | Mullen et al. | Oct 2017 | B2 |
9818125 | Mullen et al. | Nov 2017 | B2 |
9836680 | Cloutier | Dec 2017 | B1 |
9852368 | Yen et al. | Dec 2017 | B1 |
9875437 | Cloutier et al. | Jan 2018 | B2 |
9881245 | Rhoades et al. | Jan 2018 | B1 |
9916992 | Mullen et al. | Mar 2018 | B2 |
9928456 | Cloutier et al. | Mar 2018 | B1 |
9953255 | Yen et al. | Apr 2018 | B1 |
10022884 | Cloutier | Jul 2018 | B1 |
10032100 | Mullen et al. | Jul 2018 | B2 |
10055614 | Cloutier et al. | Aug 2018 | B1 |
10062024 | Bohac, Jr. | Aug 2018 | B1 |
10095970 | Mullen | Oct 2018 | B1 |
10095974 | Mullen et al. | Oct 2018 | B1 |
10169692 | Mullen et al. | Jan 2019 | B2 |
10169693 | Batra | Jan 2019 | B1 |
10176419 | Cloutier et al. | Jan 2019 | B1 |
10176423 | Mullen et al. | Jan 2019 | B1 |
10181097 | Mullen et al. | Jan 2019 | B1 |
10198687 | Mullen et al. | Feb 2019 | B2 |
10223631 | Mullen et al. | Mar 2019 | B2 |
10255545 | Mullen et al. | Apr 2019 | B2 |
10325199 | Mullen et al. | Jun 2019 | B2 |
10395156 | Batra | Aug 2019 | B1 |
10430704 | Mullen et al. | Oct 2019 | B2 |
10467521 | Mullen et al. | Nov 2019 | B2 |
10482363 | Cloutier et al. | Nov 2019 | B1 |
10496918 | Mullen et al. | Dec 2019 | B2 |
10504105 | Mullen et al. | Dec 2019 | B2 |
10579920 | Mullen et al. | Mar 2020 | B2 |
10693263 | Mullen et al. | Jun 2020 | B1 |
20010034702 | Mockett et al. | Oct 2001 | A1 |
20010047335 | Arndt et al. | Nov 2001 | A1 |
20020059114 | Cockrill et al. | May 2002 | A1 |
20020082989 | Fife et al. | Jun 2002 | A1 |
20020096570 | Wong et al. | Jul 2002 | A1 |
20020120583 | Keresman, III et al. | Aug 2002 | A1 |
20030034388 | Routhenstein et al. | Feb 2003 | A1 |
20030052168 | Wong | Mar 2003 | A1 |
20030057278 | Wong | Mar 2003 | A1 |
20030116635 | Taban | Jun 2003 | A1 |
20030152253 | Wong | Aug 2003 | A1 |
20030163287 | Vock et al. | Aug 2003 | A1 |
20030173409 | Vogt et al. | Sep 2003 | A1 |
20030173961 | Choi et al. | Sep 2003 | A1 |
20030179909 | Wong et al. | Sep 2003 | A1 |
20030179910 | Wong | Sep 2003 | A1 |
20030226899 | Finkelstein | Dec 2003 | A1 |
20040027809 | Takahashi et al. | Feb 2004 | A1 |
20040035942 | Silverman | Feb 2004 | A1 |
20040133787 | Doughty | Jul 2004 | A1 |
20040162732 | Rahim et al. | Aug 2004 | A1 |
20040172535 | Jakobsson | Sep 2004 | A1 |
20040177045 | Brown | Sep 2004 | A1 |
20050043997 | Sohata et al. | Feb 2005 | A1 |
20050080747 | Anderson et al. | Apr 2005 | A1 |
20050086160 | Wong et al. | Apr 2005 | A1 |
20050086177 | Anderson et al. | Apr 2005 | A1 |
20050116026 | Burger et al. | Jun 2005 | A1 |
20050119940 | Concilio et al. | Jun 2005 | A1 |
20050154643 | Doan et al. | Jul 2005 | A1 |
20050228959 | D'Albore et al. | Oct 2005 | A1 |
20060000900 | Fernandes et al. | Jan 2006 | A1 |
20060037073 | Juels et al. | Feb 2006 | A1 |
20060041759 | Kaliski et al. | Feb 2006 | A1 |
20060085328 | Cohen et al. | Apr 2006 | A1 |
20060091223 | Zellner | May 2006 | A1 |
20060161435 | Atef et al. | Jul 2006 | A1 |
20060163353 | Moulette et al. | Jul 2006 | A1 |
20060174104 | Crichton et al. | Aug 2006 | A1 |
20060196931 | Holtmanns et al. | Sep 2006 | A1 |
20060256961 | Brainard et al. | Nov 2006 | A1 |
20070034700 | Poidomani et al. | Feb 2007 | A1 |
20070114274 | Gibbs et al. | May 2007 | A1 |
20070124321 | Szydlo | May 2007 | A1 |
20070152070 | D'Albore | Jul 2007 | A1 |
20070152072 | Frallicciardi et al. | Jul 2007 | A1 |
20070153487 | Frallicciardi et al. | Jul 2007 | A1 |
20070174614 | Duane et al. | Jul 2007 | A1 |
20070192249 | Biffle et al. | Aug 2007 | A1 |
20070241183 | Brown et al. | Oct 2007 | A1 |
20070241201 | Brown et al. | Oct 2007 | A1 |
20070256123 | Duane et al. | Nov 2007 | A1 |
20070291753 | Romano | Dec 2007 | A1 |
20080005510 | Sepe et al. | Jan 2008 | A1 |
20080008315 | Fontana et al. | Jan 2008 | A1 |
20080008322 | Fontana et al. | Jan 2008 | A1 |
20080010675 | Massascusa et al. | Jan 2008 | A1 |
20080016351 | Fontana et al. | Jan 2008 | A1 |
20080019507 | Fontana et al. | Jan 2008 | A1 |
20080028447 | O'Malley et al. | Jan 2008 | A1 |
20080029607 | Mullen | Feb 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080040271 | Hammad et al. | Feb 2008 | A1 |
20080040276 | Hammad et al. | Feb 2008 | A1 |
20080054068 | Mullen | Mar 2008 | A1 |
20080054079 | Mullen | Mar 2008 | A1 |
20080054081 | Mullen | Mar 2008 | A1 |
20080058016 | Di Maggio et al. | Mar 2008 | A1 |
20080059379 | Ramaci et al. | Mar 2008 | A1 |
20080065555 | Mullen | Mar 2008 | A1 |
20080096326 | Reed | Apr 2008 | A1 |
20080126398 | Cimino | May 2008 | A1 |
20080128515 | Di Iorio | Jun 2008 | A1 |
20080148394 | Poidomani et al. | Jun 2008 | A1 |
20080201264 | Brown et al. | Aug 2008 | A1 |
20080209550 | Di Iorio | Aug 2008 | A1 |
20080288699 | Chichierchia | Nov 2008 | A1 |
20080294930 | Varone et al. | Nov 2008 | A1 |
20080302869 | Mullen | Dec 2008 | A1 |
20080302876 | Mullen | Dec 2008 | A1 |
20080302877 | Musella et al. | Dec 2008 | A1 |
20090013122 | Sepe et al. | Jan 2009 | A1 |
20090036147 | Romano | Feb 2009 | A1 |
20090046522 | Sepe et al. | Feb 2009 | A1 |
20090108064 | Fernandes et al. | Apr 2009 | A1 |
20090145971 | Yin | Jun 2009 | A1 |
20090150295 | Hatch et al. | Jun 2009 | A1 |
20090152365 | Li et al. | Jun 2009 | A1 |
20090159663 | Mullen et al. | Jun 2009 | A1 |
20090159667 | Mullen et al. | Jun 2009 | A1 |
20090159668 | Mullen et al. | Jun 2009 | A1 |
20090159669 | Mullen et al. | Jun 2009 | A1 |
20090159670 | Mullen et al. | Jun 2009 | A1 |
20090159671 | Mullen et al. | Jun 2009 | A1 |
20090159672 | Mullen et al. | Jun 2009 | A1 |
20090159673 | Mullen et al. | Jun 2009 | A1 |
20090159680 | Mullen et al. | Jun 2009 | A1 |
20090159681 | Mullen et al. | Jun 2009 | A1 |
20090159682 | Mullen et al. | Jun 2009 | A1 |
20090159688 | Mullen et al. | Jun 2009 | A1 |
20090159689 | Mullen et al. | Jun 2009 | A1 |
20090159690 | Mullen et al. | Jun 2009 | A1 |
20090159696 | Mullen | Jun 2009 | A1 |
20090159697 | Mullen et al. | Jun 2009 | A1 |
20090159698 | Mullen et al. | Jun 2009 | A1 |
20090159699 | Mullen et al. | Jun 2009 | A1 |
20090159700 | Mullen et al. | Jun 2009 | A1 |
20090159701 | Mullen et al. | Jun 2009 | A1 |
20090159702 | Mullen | Jun 2009 | A1 |
20090159703 | Mullen et al. | Jun 2009 | A1 |
20090159704 | Mullen et al. | Jun 2009 | A1 |
20090159705 | Mullen et al. | Jun 2009 | A1 |
20090159706 | Mullen et al. | Jun 2009 | A1 |
20090159707 | Mullen et al. | Jun 2009 | A1 |
20090159708 | Mullen et al. | Jun 2009 | A1 |
20090159709 | Mullen | Jun 2009 | A1 |
20090159710 | Mullen et al. | Jun 2009 | A1 |
20090159711 | Mullen et al. | Jun 2009 | A1 |
20090159712 | Mullen et al. | Jun 2009 | A1 |
20090159713 | Mullen et al. | Jun 2009 | A1 |
20090160617 | Mullen et al. | Jun 2009 | A1 |
20090242648 | Di Sirio et al. | Oct 2009 | A1 |
20090244858 | Di Sirio et al. | Oct 2009 | A1 |
20090253460 | Varone et al. | Oct 2009 | A1 |
20090255996 | Brown et al. | Oct 2009 | A1 |
20090290704 | Cimino | Nov 2009 | A1 |
20090303885 | Longo | Dec 2009 | A1 |
20090308921 | Mullen | Dec 2009 | A1 |
20110028184 | Cooper | Feb 2011 | A1 |
20110272465 | Mullen et al. | Nov 2011 | A1 |
20110272466 | Mullen et al. | Nov 2011 | A1 |
20110272467 | Mullen et al. | Nov 2011 | A1 |
20110272471 | Mullen | Nov 2011 | A1 |
20110272472 | Mullen | Nov 2011 | A1 |
20110272473 | Mullen et al. | Nov 2011 | A1 |
20110272474 | Mullen et al. | Nov 2011 | A1 |
20110272475 | Mullen et al. | Nov 2011 | A1 |
20110272476 | Mullen et al. | Nov 2011 | A1 |
20110272477 | Mullen et al. | Nov 2011 | A1 |
20110272478 | Mullen | Nov 2011 | A1 |
20110272479 | Mullen | Nov 2011 | A1 |
20110272480 | Mullen et al. | Nov 2011 | A1 |
20110272481 | Mullen | Nov 2011 | A1 |
20110272482 | Mullen et al. | Nov 2011 | A1 |
20110272483 | Mullen et al. | Nov 2011 | A1 |
20110272484 | Mullen et al. | Nov 2011 | A1 |
20110276380 | Mullen et al. | Nov 2011 | A1 |
20110276381 | Mullen et al. | Nov 2011 | A1 |
20110276416 | Mullen et al. | Nov 2011 | A1 |
20110276424 | Mullen | Nov 2011 | A1 |
20110276425 | Mullen | Nov 2011 | A1 |
20110276436 | Mullen et al. | Nov 2011 | A1 |
20110276437 | Mullen et al. | Nov 2011 | A1 |
20110278364 | Mullen et al. | Nov 2011 | A1 |
20110282753 | Mullen et al. | Nov 2011 | A1 |
20110284632 | Mullen et al. | Nov 2011 | A1 |
20110284640 | Mullen et al. | Nov 2011 | A1 |
20120028702 | Mullen et al. | Feb 2012 | A1 |
20120037709 | Cloutier et al. | Feb 2012 | A1 |
20120197708 | Mullen et al. | Aug 2012 | A1 |
20120209744 | Mullen et al. | Aug 2012 | A1 |
20120254037 | Mullen | Oct 2012 | A1 |
20120254038 | Mullen | Oct 2012 | A1 |
20120286037 | Mullen et al. | Nov 2012 | A1 |
20120286928 | Mullen et al. | Nov 2012 | A1 |
20120286936 | Mullen et al. | Nov 2012 | A1 |
20120290449 | Mullen et al. | Nov 2012 | A1 |
20120290472 | Mullen et al. | Nov 2012 | A1 |
20120318871 | Mullen et al. | Dec 2012 | A1 |
20120326013 | Cloutier et al. | Dec 2012 | A1 |
20130020396 | Mullen et al. | Jan 2013 | A1 |
20130217152 | Mullen et al. | Aug 2013 | A1 |
20130282573 | Mullen et al. | Oct 2013 | A1 |
20130282575 | Mullen et al. | Oct 2013 | A1 |
20140001269 | Hartwick et al. | Jan 2014 | A1 |
20140054384 | Cloutier et al. | Feb 2014 | A1 |
20140117094 | Workley et al. | May 2014 | A1 |
20150186766 | Mullen et al. | Jul 2015 | A1 |
20150193679 | Workley et al. | Jul 2015 | A1 |
20150254546 | Hartwick et al. | Sep 2015 | A1 |
20160162713 | Cloutier et al. | Jun 2016 | A1 |
20160180209 | Mullen et al. | Jun 2016 | A1 |
20160239735 | Mullen et al. | Aug 2016 | A1 |
20160283837 | Mullen et al. | Sep 2016 | A1 |
20160307085 | Mullen et al. | Oct 2016 | A1 |
20160335529 | Mullen et al. | Nov 2016 | A1 |
20160342876 | Mullen et al. | Nov 2016 | A1 |
20160342877 | Mullen et al. | Nov 2016 | A1 |
20160342878 | Mullen et al. | Nov 2016 | A1 |
20160342879 | Mullen et al. | Nov 2016 | A1 |
20160342880 | Mullen et al. | Nov 2016 | A1 |
20170286817 | Mullen et al. | Oct 2017 | A1 |
20170300796 | Mullen et al. | Oct 2017 | A1 |
20170308785 | Kim et al. | Oct 2017 | A1 |
20170352464 | Sanchihar et al. | Dec 2017 | A1 |
20180053079 | Cloutier et al. | Feb 2018 | A1 |
20180060881 | Mullen et al. | Mar 2018 | A1 |
20180151391 | Mullen et al. | May 2018 | A1 |
20190026613 | O'Shea | Jan 2019 | A1 |
20190042903 | Cloutier et al. | Feb 2019 | A1 |
20190065928 | Mullen et al. | Feb 2019 | A1 |
20190197387 | Mullen et al. | Jun 2019 | A1 |
20190340484 | Mullen et al. | Nov 2019 | A1 |
20200082383 | Mullen et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
05210770 | Aug 1993 | JP |
WO9852735 | Nov 1998 | WO |
WO0247019 | Jun 2002 | WO |
WO06066322 | Jun 2006 | WO |
WO06080929 | Aug 2006 | WO |
WO06105092 | Oct 2006 | WO |
WO06116772 | Nov 2006 | WO |
WO08064403 | Jun 2008 | WO |
PCTUS1125047 | Feb 2011 | WO |
PCTUS1137041 | May 2011 | WO |
PCTUS1145991 | Jul 2011 | WO |
PCTUS1231919 | Apr 2012 | WO |
PCTUS1231921 | Apr 2012 | WO |
PCTUS1237237 | May 2012 | WO |
PCTUS1326746 | Feb 2013 | WO |
Entry |
---|
U.S. Appl. No. 60/594,300, Poidomani et al. |
U.S. Appl. No. 60/675,388, Poidomani et al. |
The Bank Credit Card Business. Second Edition, American Bankers Association, Washington, D.C., 1996. |
A Day in the Life of a Flux Reversal. http://www.phrack/org/issues.html?issue=37&id=6#article As viewed on Apr. 12, 2010. |
Dynamic Virtual Credit Card Numbers. http://homes.cerias.purdue.edu/˜jtili/paper/fc07.pdf. As viewed on Apr. 12, 2010. |
English translation of JP 05210770 A. |
Number | Date | Country | |
---|---|---|---|
61732080 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15591027 | May 2017 | US |
Child | 16386223 | US | |
Parent | 14660920 | Mar 2015 | US |
Child | 15591027 | US | |
Parent | 14071565 | Nov 2013 | US |
Child | 14660920 | US |