This invention relates to a normally open clutch assembly, and specifically to a normally open clutch assembly controllable to modify rotational speed required for actuation.
Typically a centrifugal clutch assembly includes at least one friction disk rotatable to drive an output shaft. Pressure plates move axially to clamp the friction disks in response to movement of a front plate. A centrifugal weight moves radially outward in response to rotation of the clutch assembly. Rollers of the centrifugal weights move up a ramped surface of the front plate to move the front plate axially. Axial movement of the front plate compress a clamp spring and forces engagement between the pressure plates and the friction disks.
Conventional centrifugal clutches begin actuation within a desired range of rotational speed. The rotational speed required for clutch actuation is substantially fixed and does not provide for adaptation to current vehicle operating conditions. In some instances it may be desirable to begin or maintain clutch engagement at slower speeds, such as when coasting or moving downhill. Further it may be desirable to begin engagement at higher engine speeds, or slip the clutch such as when moving or starting on a steep grade.
Accordingly, it is desirable to develop a centrifugal clutch assembly that is controllable to modify engagement and actuation at various rotational speeds.
The present invention is a centrifugal clutch assembly with movable centrifugal weight reaction surfaces for varying the rotational speed of clutch assembly actuation.
The centrifugal clutch assembly of this invention includes a radially movable front plate with a ramped surface. Radial movement of the front plate changes the radial position at which the centrifugal weight begins moving the front plate axially to compress the clamp spring and begin clutch actuation. The change in radial position of the ramped surface controls the rotational speed required to begin or maintain actuation of the clutch assembly.
Another centrifugal clutch assembly of this invention includes an axially movable back plate. The back plate moves axially to change the magnitude of compression caused by axial movement of the front plate and thereby the amount of clamping force. The changes to clamping force result in a change of rotational speed required for beginning and maintaining actuation of the clutch assembly.
Accordingly, the centrifugal clutch assembly of this invention provides for the modification and control of clutch engagement at various rotational speeds.
The various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the currently preferred embodiment. The drawings that accompany the detailed description can be briefly described as follows:
Referring to
Rotation of the clutch assembly 10 creates a centrifugal force that drives the centrifugal weights 28 radially outward and up a ramped portion 34 of the front plate 26. Movement of the rollers 30 up the ramped portion 34 moves the front plate 26 axially to compress a clamp spring 24. The clamp spring 24, in turn, forces the pressure plates 22 into clamping engagement with the friction disks 20.
Radial movement of the centrifugal weights 28 is dependent on the centrifugal force developed by rotation of the clutch assembly 10. A transition point 36 between a first flat portion 37 and the ramped portion 34 of the front plate 26 is the point where compression of the clamp spring 24 begins. Clamping force is increased as the centrifugal weights 28 move upward toward a second flat portion 39. The centrifugal force required to move the centrifugal weight 28 radially corresponds to a rotational speed of the clutch assembly 10. The front plate 26 is movable radially to modify the rotational speed at which the centrifugal weight 28 begins movement up the ramped portion 34 and thereby begins compression of the clamp spring 24.
A pin 38 is disposed within a slot 40 defined within the front plate 26. An adjustable member 42 is attached to move the front plate 26 radially. Radial movement of the front plate 26 changes the radial position of the transition point 36. Movement of the transition point 36 changes the point that the rollers 30 engage the ramped portion 34 and begin compressing the clamp spring 24. This movement of the transition point 36 changes the rotational speed at which the clutch assembly 10 begins transmitting torque to the output shaft 14.
An actuator 44 drives the adjustable member 42 to change the radial position of the front plate 26. Radial adjustment of the front plate 26 modifies a distance 48 between the transition point 36 and the centrifugal weight 28 at rest.
Referring to
Referring to
The actuator 44 drives the adjustable member 42 to continually adjust the rotational speed at which the clutch assembly begins engagement. A controller 46 controls the actuator 44 to vary the radial position of the face plate 26. The controller 46 is as known, and a worker skilled in the art with the benefit of this disclosure would understand how to program a commercially available controller to vary the radial position of the front plate 26 to change the engagement point of the clutch assembly 10.
Referring to
Axial movement of the back plate 62 changes the amount of compression from the clamp spring 24 caused by axial movement of the front plate 26. The change in compression of the clamp spring 24 relative to radial movement of the centrifugal weight 28 changes the rotational speed at which the clutch assembly 60 begins engagement. The correlation between rotational speed of the clutch assembly 60 and compression of the clamp spring 24 provides for the continual adjustment of clutch engagement during operation.
In operation, rotation of the clutch assembly 60 generates a centrifugal force that drives the centrifugal weight 28 radially outward, causing axial movement of the front plate 26 and compression of the clamping spring 24. If the back plate 62 remains in an axially fixed position, compression of the clamp spring 24 will occur at substantially the same rotational speed, because the centrifugal weight 28 will cause axial movement at a substantially constant axial speed. Movement of the back plate 62 modifies the magnitude of compression of the clamp spring 24 that corresponds to axial movement of the front plate 26.
The release bearing 66 is movable by the drive 68 to adjust engagement of the friction disks 20 and pressure plates. Such an adjustment is made in response to dynamic conditions of the vehicle and desired clutch engagement.
Referring to
Referring to
Referring to
Preferably, the adjustable member 84 is a shaft that is movable by the drive 86. The drive 86 can be, for example, a pneumatic or hydraulic cylinder, an electric motor or a lever. The controller 88 can be an independent dedicated controller for the clutch assembly 80 or part of a larger vehicle controller. The controller 88 controls actuation of the drive 86 to dynamically adjust the engagement point of the clutch assembly 80 according to current operating and vehicle conditions.
Referring to
Centrifugal clutch assemblies designed with the benefit of this disclosure provide for dynamic alteration of clutch engagement speeds. The dynamic alteration of engagement speeds provides for adaptation of clutch engagement to driving conditions and vehicle conditions to improve vehicle handling and increases clutch assembly life.
The foregoing description is exemplary and not just a material specification. The invention has been described in an illustrative manner, and should be understood that the terminology used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. The preferred embodiments of this invention have been disclosed, however, one of ordinary skill in the art would recognize that certain modifications are within the scope of this invention. It is understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described. For that reason the following claims should be studied to determine the true scope and content of this invention.
Number | Name | Date | Kind |
---|---|---|---|
1995406 | Tower | Mar 1935 | A |
2002699 | Larsen | May 1935 | A |
2071588 | Swennes et al. | Feb 1937 | A |
3001623 | Fawick | Sep 1961 | A |
3580372 | Schlefer et al. | May 1971 | A |
4081065 | Smyth et al. | Mar 1978 | A |
4111291 | Horstman | Sep 1978 | A |
5070984 | Fehring | Dec 1991 | A |
6533056 | Maimone | Mar 2003 | B1 |
20020137595 | Markyvech et al. | Sep 2002 | A1 |
20020137596 | Markyvech | Sep 2002 | A1 |
20020137597 | Genise et al. | Sep 2002 | A1 |
20050121284 | Abusamra et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
831507 | Feb 1952 | DE |
906 176 | Mar 1954 | DE |
1104356 | Apr 1961 | DE |
2743400 | Mar 1979 | DE |
30 45 840 | Jul 1982 | DE |
3226231 | Jan 1984 | DE |
0668453 | Aug 1995 | EP |
55044166 | Mar 1980 | JP |
WO 0248530 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050133336 A1 | Jun 2005 | US |