This disclosure relates generally to dynamic monitoring and authorization of an optimization device deployed in a network.
The approaches described in this section could be pursued, but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.
Traditionally, when new software is purchased, the customer receives a key, or authentication code that they must input when the software is first installed. This verifies to the software service provider that the customer has a valid copy of the software installed on the machine. The key, or authentication code, may be a long string of letters or numbers that is difficult to remember and type in accurately. The software service provider must then keep track of the valid authentication codes, to help a customer if a code is lost. This may become cumbersome, particularly when there are lots of customers. Thus, a system is needed that simplifies the process from the customer's standpoint as well as the software service provider's standpoint.
Also, a customer may purchase a 1-year license for software or a hardware device, but may end up only using the software or device a few times. Thus, a more fluid system is needed that allows a customer to purchase and maintain a license for the software or device that is commensurate with the amount it is actually used. Also, the licensor needs a mechanism whereby they can monitor the actual usage of the software or device to ensure compliance with license terms.
Other information can also be conveyed with licensing systems. In the prior art, this is done manually, which can be error-prone and labor intensive. Thus, an automated system to convey information with license authorization is needed.
Data centers may be used to provide computing infrastructure by employing a number of computing resources and associated components, such as telecommunication equipment, networking equipment, storage systems, backup power supplies, environmental controls, and so forth. A data center may provide a variety of services (e.g., web applications, email services, and search engine services) for a number of customers simultaneously. To provide these services, the computing infrastructure of the data center may run various software applications and store business and operational data. The computing resources distributed throughout the data center may be physical machines and/or virtual machines running on a physical host.
Computing resources of a data center may transmit and receive data packets via one or more interconnected networks, such as a Wide Area Network (WAN). Physical switches and routers can be distributed throughout the WAN and configured to connect various network segments and route the data packets within the network environment. It may be desirable to optimize or otherwise transform the data packets transmitted and received via the WAN. Routing of the data packets for optimization may be performed by configuring physical switches, routers, and/or other network appliances, to reroute the data packets to a data optimization virtual machine. However, involving reconfiguration of physical network components in data optimization may be costly and require complex coordination of various organizations and departments.
While there are many optimization techniques that can be accomplished in a WAN, many of these optimization techniques for data transfer across a network require symmetric network components. For example, if data packets are encoded on the transmitting end before transmission through the network, they must be decoded on the receiving end. Optimization techniques may be deployed on specialized hardware devices, or operate as software on other hardware devices. A service provider of an optimization device needs a mechanism to ensure that a customer's usage of the optimization device is within the authorized license, and also to dynamically monitor and re-authorize the optimization device on an as-needed basis.
This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
A system for operation of an optimization device provided over a network is disclosed. The optimization device may require software to function in the network, for which a license needs to be purchased from the software provider.
In various embodiments, a portal may be located in a cloud. The portal may contain a database of information, such as service provider, customer name, customer's sites, and information regarding usage of the software at each site. There may be any number of portals located in the cloud. Each portal may have a database of information for a single service provider, or for any number of service providers.
When a customer initializes the software at a site for an optimization device, the customer may be prompted on the user interface to enter login information such as the name of the service provider, customer name, site, and password. Various fields may also be pre-configured such that the customer only need enter one or more fields. This, and other information, may be transmitted to the portal in an authorization request message.
After the login is successful, the optimization device receives an authorization response message from the portal. The authorization response message contains information regarding the available capability parameters for operating the optimization device. The capability parameters may be in the form of a specific time available for using the optimization device, an amount of data that can be transferred, and/or a limit rate of data that can be transferred in a specific period of time. The capability parameters may also comprise expiry parameters such as an expiry time or data limit for the optimization device, a warning time or data limit, and a refresh time or data limit.
In various embodiments, after a successful login, the device also receives site-specific configuration information from the portal to enable the customer to configure the software at their site. The site-specific configuration information may be included as part of the authorization response message, or may be in a separate message.
Upon expiration of a specified threshold, the optimization device may automatically send an updated authorization request message to the portal. The updated authorization request message may comprise information regarding the actual usage of the software and/or the time period for the usage. In response, the portal may send the optimization device an updated, authorization response message with an updated expiration time, and/or an additional allotment of data. The authorization response message may be refreshed periodically, such as hourly, or weekly, or on an as-needed basis.
In various embodiments, there may also be a firewall deployed between the portal and the optimization device. To enable the optimization device to communicate with the portal, the authorization request message may be communicated in a secure format such as HTTPS, which is permitted to transit the firewall.
In further embodiments, a device can access a remote service provider, such as a cloud-based service, by configuring the firewall at its location with specific parameters matching the firewall configuration for the cloud-based service. The firewall configuration information may be transmitted from the service provider to the optimization device via an authorization response message, or in a separate message, from the portal.
Furthermore, a secure data channel, such as an IPsec tunnel, may be established between the optimization device and the cloud-based service. The secure data channel may employ encryption or other network data optimization or acceleration techniques to transfer data between the optimization device and the service provider. Configuration information for the secure data channel may be transmitted to each end via the authorization request message and authorization response message from the portal. The portal may send corresponding tunnel configuration information to both ends, thereby automatically configuring a secure data channel between the optimization device at the customer site and the service provider in the cloud, without the need for any firewall configuration.
Furthermore, the software provider may be enabled to log into the portal and use the existing communications channel that has been established to remotely control and manage the optimization device, to aid in troubleshooting. In various embodiments, the customer may enable or disable the remote management feature.
In further exemplary embodiments, the above method steps may be stored on a machine-readable medium comprising instructions, which when implemented by one or more processors perform the steps of the method. In yet further examples, subsystems or devices can be adapted to perform the recited steps. Other features, examples, and embodiments are described below.
Embodiments are illustrated by way of example, and not by limitation in the figures of the accompanying drawings, in which like references indicate similar elements.
The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations, in accordance with exemplary embodiments. These exemplary embodiments, which are also referred to herein as “examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents. In this document, the terms “a” and “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive “or,” such that “A or B” includes “A but not B,” “B but not A,” and “A and B,” unless otherwise indicated.
The embodiments disclosed herein may be implemented using a variety of technologies. For example, the methods described herein may be implemented in software executing on a computer system or in hardware utilizing either a combination of microprocessors or other specially designed application-specific integrated circuits (ASICs), programmable logic devices, or various combinations thereof. In particular, the methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium, such as a disk drive, or computer-readable medium.
The embodiments described herein relate to the dynamic monitoring and authorization of an optimization device deployed in a network.
Although two sites, the site 102A and the site 102B, are shown in
The sites 102A and 102B may comprise physical locations, such as offices, office complexes, stores, homes, and other locally networked sites. The sites 102A and 102B may transfer data there between via the network 104. In some embodiments, an application may run at one site and be accessed from another site. In such cases, application data may be transferred between the sites 102A and 102B. As discussed further herein, the data transferred between the sites 102A and 102B may be included in data packets.
The computers 106A and 106B may comprise a server, a client, a workstation, other computing devices, or the like. In some embodiments, the computers 106A and 106B may comprise other computing devices such as a personal digital assistant (PDA), a Smartphone, a pocket PC, and other various handheld or mobile devices. In some embodiments, one or both of the computers 106A and 106B may be substituted by a plurality of computers (not shown). In one embodiment, the plurality of computers may be located at one physical locale and be in communication via one or more optimization devices at the same physical locale. In accordance with some embodiments, one or more computers (e.g., the computers 106A and 106B) may be integrated with one or more optimization devices (e.g., the optimization devices 108A and 108B) as single systems.
According to exemplary embodiments, the optimization devices 108A and 108B, as well as any other optimization devices included in the environment 100, provide optimization of data to reduce the amount of information traversing the network 104. In one example, the optimization device may employ network memory to reduce the amount of information traversing the network 104 by one or more orders of magnitude enabling LAN-like performance of the network 104. This may be achieved by eliminating a need to send data over the network 104 that has been previously sent. Network memory is discussed in further detail in U.S. Pat. No. 8,312,226 issued on Nov. 13, 2012 and entitled “Network Memory Appliance for Providing Data Based on Local Accessibility”. The disclosures of these patents are incorporated herein by reference.
Data optimization techniques may comprise compression/decompression, deduplication, Transmission Control Protocol (TCP) acceleration, performance enhancing proxy, packet reconstruction, error correction, or any other technique for optimizing data transfer between network appliances or devices. However, a person of ordinary skill in the art would understand that any optimization technique may be applied within the environment 100. Optimization encoding and decoding may be symmetric transformations of data, such as compression/decompression, deduplication, etc. For example, data packets that are compressed at optimization device 108A need to be decompressed at optimization device 108B. Furthermore, asymmetric optimization techniques may also be used. For example, optimization device may employ TCP or application proxying, among other methods.
The optimization devices 108A and 108B may comprise one or more of a communications interface, a processor, a memory, or storage. Exemplary embodiments of the optimization devices 108A and 108B are discussed in connection with later figures. In some embodiments, the optimizations devices 108A and 108B may also be referred to herein as ‘appliances’ or ‘devices.’
Furthermore, the optimization devices 108A or 108B may be installed in-path (as depicted in
The term ‘out-of-path,’ on the other hand, describes installation configurations in which a device (e.g., the optimization device 108A) taps into the local area network, but is not physically attached between two communication lines. In one embodiment where the optimization device 108A is installed out-of-path, the optimization device 108A is coupled to a router (not shown). A number of router protocols, such as web cache communication protocol (WCCP) and various protocols related to policy based routing (PBR), may allow the router to transparently route network traffic to the optimization device 108A. In other embodiments, optimization devices 108A and 108B may be embodied as optimization software installed on computers 106A and 106B, instead of as separate hardware devices.
The local area networks 110A and 110B may cover a relatively small geographic range, such the sites 102A and 102B, and comprise one or more of a wired network (e.g., Ethernet) or a wireless network (e.g., Wi-Fi). The local area networks 110A and 110B may include hardware and/or software elements that enable the exchange of information (e.g., voice and data) between various computers 106A and 106B, devices (e.g., the optimization devices 108A and 108B), and other networking components, such as routers and switches (not shown). While
The interface module 202 may be configured to facilitate communication between the optimization device 108 and one or more networks, such as local area networks 110A, 110B, or network 104. For example, information such as packets and packet data may be transferred to and from the optimization device 108 by the interface module 202. The interface module 202 may also receive information such as packets traversing a communication network, as described herein. In exemplary embodiments, the interface module 202 may be further configured to communicate with a global management system (not shown). The global management system may configure, monitor, and manage the optimization device 108 in real-time.
The optimization module 204 may perform various tasks related to the optimization device 108. For example, the optimization module 204 may be configured to store and retrieve copies of the packets, or data therefrom, received by the interface module 202. Furthermore, information stored by the optimization module 204, such as the copies of the packets, or data therefrom, may be synchronized with that of other optimization devices in communication via the network 104. Synchronization of the information may occur continuously, periodically, or after certain prompts, such as the interface module 202 receiving a packet of which a copy has not previously been stored by the optimization module 204. Exemplary methods for synchronizing the information stored by various optimization devices, such as network memory devices, are described in U.S. Pat. No. 8,489,562 issued on Jul. 16, 2013 and entitled “Deferred Data Storage,” which is hereby incorporated by reference.
In exemplary embodiments, the copies of the packets may be stored in blocks by the optimization module 204. Generally speaking, a block may be a collection of consecutive bytes of data that are read from or written to a memory device (such as a disk) as a group. In some cases, the block may be further described as a unit of information comprising one or more of identification codes, data, or error-checking codes. In one embodiment, each of the blocks comprises 256 kB. Additionally, the blocks may be referred to as ‘pages’ or ‘network memory pages.’
The optimization module 204 may also be configured to determine ‘locally accessible data’ of other optimization devices. The locally accessible data of a given optimization device 108 may be described as data that is transferable to a computer by the given optimization device 108 without being transferred over the network 104. Additionally, the locally accessible data may be stored internal to or external to the optimization devices 108. The optimization device 108 may maintain data structures which track which data is locally accessible at each site 102. In exemplary embodiments, the optimization device 108 may keep track of which blocks (e.g., 256 kB blocks or pages) are locally accessible at each site 102.
The optimization module 204 may further comprise a compression/decompression engine that may be configured to compress packet data from packets that are being sent from within the site that includes the optimization device 108 to a remote site across the network 104. The compression/decompression engine may be further configured to decompress the packet data from the packets that is received from the remote site. The compression and decompression of the packet may be based, at least partially, on predictions of subsequent characters.
The storage module 206 may be configured to store various types of information. For example, the storage module 206 may store copies of the packets, or data therefrom, received by the interface module 202 as local instances. The locally accessible data, in turn, may comprise the local instances and be stored by the storage module 206. The locally accessible data may be stored as blocks in exemplary embodiments. Additionally, the storage module 206 may be synchronized with storage modules of other optimization devices, as discussed herein.
In one example, again referring to
In various embodiments, portal 302 maintains information regarding authorized parameters for the operation of each optimization device. Authorized parameters for an optimization device may comprise such information as data processing capacity, data processing capacity or operation time for a specified time period (such as a specified processing capacity or operation time for a single day, week, month, or year), cumulative data processing capacity or operation time, data rate limit, operation expiry time, operation expiry data limit, operation warning time, operating warning data limit, refresh time, refresh data limit, and/or other parameters for operation of the optimization device, as will be understood by a person of ordinary skill in the art. In an exemplary embodiment, an optimization device may be authorized to process 10 GB of data, regardless of time. In other embodiments, an optimization device may be authorized to process up to 10 GB of data within a specified number of days.
When a customer initializes the optimization device 108A at a site, the customer may be prompted on the user interface to enter login information such as the name of the service provider, customer name, site, and password. Various fields may also be pre-configured such that the customer only need enter one or more fields, or none of the fields. Optimization device 108A may obtain various login fields from the user, from the software container, or a combination of both. Certain parameters for pre-configuring optimization device 108A may come from an OVA file (VMware format) and already be within the software container. At initialization, optimization device 108A software may retrieve initialization parameters from the software container. As will be understood by persons of ordinary skill in the art, an OVA file (open virtual appliance or application) is one example of a software container.
As part of the initialization process, the optimization device 108A sends the login information to the portal 302 in an authorization request message 304. The authorization request message 304 comprises information about the optimization device 108A, such as name of service provider, user name, password, any information regarding past usage, and/or other fields as will be understood by a person of ordinary skill in the art. In various embodiments, the authorization request message 304 comprises fewer or additional data items, or any combination of data items. Also, in some embodiments, the components of the authorization request message 304 may be sent over multiple messages.
The portal 302 processes the authorization request, and determines authorized parameters for optimization device 108A. Portal 302 sends an authorization response message 306 to the optimization device 108A with information regarding capability parameters for operation of optimization device 108A. The parameters permit or restrain various operations of the device, and contain information regarding one or more thresholds at which certain events occur. In exemplary embodiments, the parameters may comprise an amount of data that can be processed by the optimization device 108A, a rate limit of data that can be processed by the optimization device 108A within a specified period of time, an expiry time for the device, a time limit for the device to send a usage report to the portal 302, and/or other information. The parameters may also comprise an amount of data that can be received or transmitted by the optimization device 108A on the LAN side (through local area network 110A), and/or an amount of data that can be received or transmitted on the WAN side (through network 308). In various embodiments, the authorization response message 306 comprises fewer or additional data items, or any combination of data items, as will be understood by a person of ordinary skill in the art. The authorization response message 306 may also be comprised of multiple individual messages.
The authorization response message 306 may authorize the optimization device 108A to operate for a discrete period of time. Any discrete time period may be authorized by the authorization response message. In exemplary embodiments, the authorization response message 306 also comprises a device expiry time or data limit, warning time or data limit, and a refresh time or data limit at which the optimization device 108A should send another authorization request message before an expiry parameter is reached. For example, if optimization device 108A is authorized to process 10 GB of data before the expiry time, the authorization response message 306 may specify that the optimization device 108A should send a new authorization request message when 6 GB of data has been processed, a warning should be sent when 8 GB of data has been processed and no updated authorization response message has been received, and the optimization device 108A should be disabled when 10 GB of data has been processed without an updated authorization response message with updated capability parameters being received by the optimization device 108A.
In an exemplary embodiment, the portal 302 may receive successful login information from an optimization device 108A in an authorization request message 304 on any given date, such as May 1, 2014. The portal 302 may contain information that the device is authorized to operate for one year, i.e. until Apr. 30, 2015. The portal 302 may send the device an authorization response message that states that the device is authorized to operate until May 31, 2014 and must report its usage to the portal 302 by May 30, 2014.
Portal 302 may specify to optimization device 108A that its usage information must be reported back to it on a periodic schedule, when a certain threshold has been surpassed (such as a certain amount of time, specified date, or amount of data processed), or as requested by a network administrator.
Before a device's allotted authorized parameter(s) is depleted, the optimization device 108A may automatically send an updated authorization request message to the portal 302. The updated authorization request message may comprise information regarding the actual usage of the software, the time period for the usage, and/or other data items from the original authorization request message 304, as discussed above.
In response, the portal 302 may send the optimization device 108A an updated authorization response message with updated capability parameters. The updated capability parameters may comprise an additional allotment of time and/or data processing capacity for optimization device 108A. The updated authorization response message may be refreshed periodically, such as hourly, weekly, on an as-needed basis, or at a time specified by a previous authorization response message.
In exemplary embodiments, if the expiry parameter is reached before the portal 302 receives usage information from the optimization device 108A, portal 302 will not send optimization device 108A an updated authorization response message. In this case, optimization device 108A may undertake an expiry action, such as ceasing to operate and the data traffic flowing to the device through network 308 or computer 106A may be dropped. In various embodiments, the data traffic may be passed through the device without the application of any data optimization techniques, the data traffic may be forwarded to another optimization device with limited data optimization applied, or optimization device 108A may operate at a limited capacity. To extend the expiry date of optimization device 108A, the device must report its usage to the portal 302 in an updated authorization request message, or in a separate message.
In various embodiments, the authorization response message 306 may also contain configuration information from portal 302 to enable the customer at site 102A to configure systems at site 102A. The configuration information may also be applicable to multiple sites of the customer. The configuration information may be site-specific, customer-specific, or any other type of configuration information. The configuration information may be included as part of the authorization response message 306, or may be in a separate message.
In various embodiments, site 102A may also comprise a firewall 312A, deployed between the portal 302 and the optimization device 108A. The optimization device 108A sends an authorization request message 304 to portal 302 through firewall 312A. Typically, in order for the optimization device 108A to receive an authorization response message 306, the communication should be initiated by the optimization device 108A, or the firewall 312A will block the incoming message. In these embodiments, the optimization device 108A cannot receive an authorization response message until an authorization request message is first sent by the optimization device. As such, the optimization device will not continue to be authorized to operate if usage information to monitor the optimization device is not sent by optimization device 108A to portal 302.
Optimization device 108A may transmit authorization request message 304 to portal 302 in a secure format, such as an https message, or any other secure format as understood by a person of ordinary skill in the art. The secure format of the authorization request message (such as an HTTPS message) may allow the message from optimization device 108A to traverse firewall 312A. The portal 302 may also transmit the authorization response message through a secure format to optimization device 108A. The authorization response message from portal 302 can traverse firewall 312A since the request initiated from optimization device 108A.
After initialization, continued authorization of optimization device 108 proceeds by the optimization device 108 transmitting an updated authorization request message in step 410 to portal 302. The updated authorization request message includes usage information of the device, time, and/or other parameters as specified by the initial capability parameters. In step 414, portal 302 processes the updated authorization request, which may comprise determining that the usage information is current and within the allotted limit for the device. If the usage information is not within the allotted limit for the device, then portal 302 may or may not reply. If a reply is sent, it is with parameters to constrain further operations, as described further below in reference to
Since optimization device 108 is not authorized to continue to operate beyond the last expiry time 430, it performs an expiry action in step 432. As discussed herein, an expiry action may comprise the device ceasing to operate altogether, operating without any optimization, or operating at a limited capacity.
In some embodiments, optimization device 108 may continue to attempt to become operational again by sending an updated authorization request message in step 434 to portal 302. In an exemplary embodiment, portal 302 may process the authorization request in step 436 and transmit an authorization response message with capability parameters including the last expiry time 430 or some other time in the past, in step 438. Since the expiry time in the capability parameters received by the optimization device 108 is already past, the device is not authorized to continue to operate.
In another exemplary embodiment, optimization device 108 may transmit an updated authorization request message to portal 302 in step 440. Portal 302 may process the authorization request and determine that the request is deficient and optimization device 108 is not authorized to continue to operate. The request may be deficient for any number of reasons, such as not including a usage report, a usage report being outdated, or the authorized allotment of optimization device 108 having been depleted. In some embodiments, portal 302 simply does not respond to the updated authorization request message from step 440 after determining in step 442 that optimization device 108 is not authorized to continue to operate.
After failing to receive updated capability parameters, optimization device 108 may continue to send an updated authorization request message in step 444 to portal 302. Again, the portal 302 may determine in step 446 that optimization device 108 is not authorized to continue to operate, and simply not respond to the updated authorization request message from step 444. In various embodiments, after the expiry action is performed in step 432, optimization device 108 may continue to transmit an updated authorization request message to attempt to become operational again a specified number of times, at specified intervals, upon initiation by a user of the optimization device 108, or as directed by a network administrator.
Optimization device 108 may also continue to send updated authorization request messages to portal 302 at increasing intervals. For example, optimization device 108 may send updated authorization request message 434 to portal 302 at 5 minutes past the expiry action, whereas updated authorization request message 440 may be transmitted at 30 minutes past the expiry action, and updated authorization request message 444 may be transmitted at 90 minutes past the expiry action. In other embodiments, multiple days or months may transpire between optimization device 108 transmitting updated authorization request messages to portal 302.
Furthermore, as time passes, optimization device 108 may undertake progressively increasing expiry actions. For example, at a certain time limit, optimization device 108 may continue to optimize data traffic but at a limited rate. At a later time limit, optimization device 108 may simply pass network data through without applying any optimization techniques. At an even later time limit, optimization device 108 may cease to operate entirely. Even though optimization device 108 ceases to operate, it may still continue to re-authorize its operation by continuing to transmit authorization request messages to portal 302.
While the exemplary embodiment of
In step 502, portal 302 receives an updated authorization request message from an optimization device 108. Portal 302 processes the request and determines whether the authorization request message contains current information regarding the usage of the optimization device 108, in step 504. As discussed herein, usage information can be a data amount transmitted, data amount received, data rate limit, device operation time, or any other parameter(s) for operation of the optimization device 108.
Portal 302 then determines if continued usage of optimization device 108 is authorized in step 506. Continued usage may be authorized if the updated authorization request message contains current usage information, and/or device 108 has not exceeded authorized operational limits. If continued usage of optimization device 108 is authorized, portal 302 determines new capability parameters for the device in step 508 and transmits these in an updated authorization response message to the optimization device 108 in step 510. Portal 302 then waits for the next updated authorization request message from the optimization device 108.
If continued device usage is not authorized, portal 302 may either send the optimization device 108 a response message with capability parameters that constrain operations, such as an expiry time less than or equal to the current time, in step 512. Portal 302 may also respond to optimization device 108 in other ways as well, such as with a flag or message stating that the request to continue operations is denied. As will be understood by a person of ordinary skill in the art, these are just two examples of ways that portal 302 can signal to optimization device 108 that its continued operation is not authorized. Alternatively, portal 302 may simply not reply to the request message, as depicted in step 514. Portal 302 may continue to wait for a next updated authorization request message from the optimization device 108. In exemplary embodiments, if an updated authorization request message with current usage information is not received by portal 302 within a specified time frame, the expiry time for optimization device 108 may be reached without an authorization response message being transmitted to the device. As discussed herein, optimization device 108 may then be disabled or operate at limited capacity until a new authorization response message is received by the device. While the exemplary embodiment of
If the current time or data usage is not greater than or equal to the device's expiry parameter, optimization device 108 determines if the current time or data usage is greater than or equal to a warning parameter, in step 608. If so, a warning is displayed in step 610. The warning may be displayed on a graphical user interface of the optimization device 108, or may be transmitted to the user of the optimization device 108 by email, by simple network management protocol (SNMP) trap, or any other means. In exemplary embodiments, the optimization device 108 may automatically send an updated authorization request message to portal 302 if the warning threshold has been reached or exceeded.
If the current time is not greater than or equal to the device's warning parameter, optimization device 108 determines in step 612 if the current time is greater than or equal to a refresh parameter specified by the last authorization response message received by the device. If so, the device sends an updated authorization request message to portal 302 in step 614. The device may optionally also set a threshold time or data usage for a next authorization request message to be sent to the portal if no response is received.
In step 616, the device determines if an authorization response has been received from portal 302. If so, some or all threshold limits (expiry parameter, warning parameter, and refresh parameter) may be updated in step 618 in accordance with the capability parameters from the authorization response message. The device then continues to check whether any of the updated threshold limits have been exceeded by returning to step 602. If no authorization response message is received in step 616, then the device may set a threshold for sending a next request in step 620 and return to step 602 to continue to check whether the most recent threshold limits have been exceeded.
In various embodiments, optimization device 108 may continue this loop for a set number of times as determined by initial configuration settings of the optimization device 108, as specified by an authorization response message, or as directed by a network administrator.
While the exemplary embodiment of
In various embodiments, optimization device 108A at customer site is protected by firewall 712A. The service provider's site, including optimization device 108B, is protected by firewall 712B. Firewalls 712A and 712B may be software firewalls, or hardware firewalls. To access the service provider, firewall 712B at service provider's site needs to be configured to allow incoming data traffic from the customer using optimization device 108A.
As understood by a person of ordinary skill in the art, each firewall may be configured to allow or deny communication using any number of parameters. For example, firewall 712B may be configured to only allow incoming communication from optimization device 108A if it originates from a certain port, IP address or subnet, or the communication is of a certain protocol. Furthermore, firewall 712B may be configured to allow incoming communication from optimization device 108A only if optimization device 108B has previously sent optimization device 108A an outgoing message.
In various embodiments, optimization device 108A, optimization device 108B, and service provider manager 704 can access portal 302 using a common protocol, such as HTTP or HTTPS. Even though optimization device 108A is behind firewall 712A and optimization device 108B and service provider manager 704 are behind firewall 712B, each entity can traverse the firewalls and communicate with portal 302 if it initiates the communication with portal 302.
To enable optimization device 108A to communicate with optimization device 108B through firewall 712B, the service provider manager 704 may send firewall configuration information to portal 302, and also send corresponding firewall configuration information to firewall 712B at the service provider's site. Portal 302 may in turn send this information to optimization device 108A through an authorization response message, or in a separate message. For example, optimization device 108A sends portal 302 an authorization request message 304 to become operational, or continue to operate. As part of the authorization request message 304, or in a separate message, optimization device 108A can also request configuration information to connect to optimization device 108B at a service provider.
Portal 302 then transmits an authorization response message to optimization device 108A, authorizing the device to operate for a certain period of time. As part of the authorization response message, or in a separate message, portal 302 also transmits configuration information to optimization device 108A that specifies parameters to allow data traffic from optimization device 108A to correspond to configured parameters of firewall 712B so that optimization devices 108A and 108B can communicate with each other without being blocked by firewalls 712A and 712B.
Similarly, portal 302 may also send firewall configuration information to optimization device 108B through an authorization response message, or in a separate message. Service provider manager 704 may also configure firewall 712B directly. Since optimization device 108A and firewall 712B have compatible firewall configuration information from service provider manager 704, data traffic may also flow from optimization device 108B to optimization device 108A.
In various embodiments, a secure communications channel is also established between optimization device 108A and optimization device 108B. The channel is depicted in
Tunnel 710 may be any type of secure communications channel, such as an SSL/TLS or Internet Protocol Security (IPsec) tunnel, and facilitates data transfer between optimization device 108A and optimization device 108B by traversing any firewalls, such as firewalls 712A and 712B. In exemplary embodiments, tunnel 710 may carry data traveling between optimization devices 108A and 108B. The data may have one or more data optimization techniques applied to it by optimization devices 108A and/or 108B as discussed herein, such as data deduplication, performance enhancing proxy, acceleration, WAN optimization, encryption, compression, etc.
In exemplary embodiments, the service provider can remotely access optimization device 108A via portal 302 to help debug any connection problems between optimization devices 108A and 108B, and manage optimization device 108A. The service provider may be able to manage optimization device 108A tunnel 710, and will not be blocked from accessing optimization device 108A by firewall 712A since tunnel 710 is already set up. Or, the service provider may manage optimization device 108A via portal 302, even if tunnel 710 is not operational or firewall 712A blocks incoming communication from the service provider. The service provider can still remotely access optimization device 108A through portal 302, since the communication channel between optimization device 108A and portal 302 is already available. In various embodiments, a user at optimization device 108A may enable or disable a remote management feature to allow or disallow a service provider from accessing optimization device 108A.
In various embodiments, optimization device 108A is protected by firewall 712A. The service provider's site, including optimization device 108B, is protected by firewall 712B. Firewalls 712A and 712B may be software firewalls, or hardware firewalls. To access the service provider, firewall 712B at service provider's site needs to be configured to allow incoming data traffic from the customer using optimization device 108A.
As understood by a person of ordinary skill in the art, each firewall may be configured to allow or deny communication using any number of parameters. For example, firewall 712B may be configured to only allow incoming communication from optimization device 108A if it originates from a certain port, IP address or subnet, or the communication is of a certain protocol. Furthermore, firewall 712B may be configured to allow incoming communication from optimization device 108A only if optimization device 108B has previously sent optimization device 108A an outgoing message.
In various embodiments, optimization device 108A, optimization device 108B, and service provider manager 704 can access portal 302 using a common protocol, such as http or https. Even though optimization device 108A is behind firewall 712A and optimization device 108B and service provider manager 704 are behind firewall 712B, each entity can traverse the firewalls and communicate with portal 302 if it initiates the communication with portal 302.
To enable optimization device 108A to communicate with optimization device 108B through firewall 712B, the service provider manager 704 may send firewall configuration information to portal 302, and also send corresponding firewall configuration information to firewall 712B at the service provider's site. Portal 302 may in turn send this information to optimization device 108A through an authorization response message, or in a separate message. For example, optimization device 108A sends portal 302 an authorization request message 304 to become operational, or continue to operate. As part of the authorization request message 304, or in a separate message, optimization device 108A can also request configuration information to connect to optimization device 108B at a service provider.
Portal 302 then transmits an authorization response message to optimization device 108A, authorizing the device to operate for a certain period of time. As part of the authorization response message, or in a separate message, portal 302 also transmits configuration information to optimization device 108A that specifies parameters to allow data traffic from optimization device 108A to correspond to configured parameters of firewall 712B so that optimization devices 108A and 108B can communicate with each other without being blocked by firewalls 712A and 712B.
Similarly, portal 302 may also send firewall configuration information to optimization device 108B through an authorization response message, or in a separate message. Service provider manager 704 may also configure firewall 712B directly. Since optimization device 108A and firewall 712B have compatible firewall configuration information from service provider manager 704, data traffic may also flow from optimization device 108B to optimization device 108A.
In various embodiments, a secure communications channel is established between optimization device 108A and firewall 712B. The channel is depicted in
Since tunnel configuration information transmitted to optimization device 108A originates from a single location (service provider manager 704), the configuration information for tunnel 810 will be compatible at each site, facilitating the establishment of tunnel 810. As understood by a person of ordinary skill in the art, tunnel configuration information may comprise tunnel parameters, encryption keys, network addresses, or any other information to facilitate the establishment of the communication channel.
Tunnel 810 may be any type of secure communications channel, such as an SSL/TLS or Internet Protocol Security (IPsec) tunnel, and facilitates data transfer between optimization device 108A and optimization device 108B by traversing any firewalls, such as firewalls 712A and 712B. In exemplary embodiments, tunnel 810 may carry data traveling between optimization devices 108A and 108B. The data may have one or more data optimization techniques applied to it by optimization devices 108A and/or 108B as discussed herein, such as data deduplication, performance enhancing proxy, acceleration, WAN optimization, encryption, compression, etc.
Thus, methods and systems for the dynamic monitoring and authorization of an optimization device are disclosed. Although embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes can be made to these example embodiments without departing from the broader spirit and scope of the present application. Therefore, these and other variations upon the exemplary embodiments are intended to be covered by the present disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
This application is a continuation of, and claims the priority benefit of, U.S. patent application Ser. No. 15/856,669 filed on Dec. 28, 2017, now U.S. Pat. No. 10,719,588, issued on Jul. 21, 2020, and entitled “Dynamic Monitoring and Authorization of an Optimization Device,” which in turn is a continuation of, and claims the priority benefit of, U.S. patent application Ser. No. 14/479,131 filed on Sep. 5, 2014, now U.S. Pat. No. 9,875,344 which issued on Jan. 23, 2018 and entitled “Dynamic Monitoring and Authorization of an Optimization Device”. The disclosures of the above-referenced applications are incorporated by reference herein in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4494108 | Langdon, Jr. et al. | Jan 1985 | A |
4558302 | Welch | Dec 1985 | A |
4612532 | Bacon et al. | Sep 1986 | A |
5023611 | Chamzas et al. | Jun 1991 | A |
5159452 | Kinoshita et al. | Oct 1992 | A |
5243341 | Seroussi et al. | Sep 1993 | A |
5307413 | Denzer | Apr 1994 | A |
5357250 | Healey et al. | Oct 1994 | A |
5359720 | Tamura et al. | Oct 1994 | A |
5373290 | Lempel et al. | Dec 1994 | A |
5483556 | Pillan et al. | Jan 1996 | A |
5532693 | Winters et al. | Jul 1996 | A |
5592613 | Miyazawa et al. | Jan 1997 | A |
5602831 | Gaskill | Feb 1997 | A |
5608540 | Ogawa | Mar 1997 | A |
5611049 | Pitts | Mar 1997 | A |
5627533 | Clark | May 1997 | A |
5635932 | Shinagawa et al. | Jun 1997 | A |
5652581 | Furlan et al. | Jul 1997 | A |
5659737 | Matsuda | Aug 1997 | A |
5675587 | Okuyama et al. | Oct 1997 | A |
5710562 | Gormish et al. | Jan 1998 | A |
5748122 | Shinagawa et al. | May 1998 | A |
5754774 | Bittinger et al. | May 1998 | A |
5802106 | Packer | Sep 1998 | A |
5805822 | Long et al. | Sep 1998 | A |
5883891 | Williams et al. | Mar 1999 | A |
5903230 | Masenas | May 1999 | A |
5955976 | Heath | Sep 1999 | A |
6000053 | Levine et al. | Dec 1999 | A |
6003087 | Housel et al. | Dec 1999 | A |
6054943 | Lawrence | Apr 2000 | A |
6081883 | Popelka et al. | Jun 2000 | A |
6084855 | Soirinsuo et al. | Jul 2000 | A |
6175944 | Urbanke et al. | Jan 2001 | B1 |
6191710 | Waletzki | Feb 2001 | B1 |
6240463 | Benmohamed et al. | May 2001 | B1 |
6295541 | Bodnar et al. | Sep 2001 | B1 |
6308148 | Bruins | Oct 2001 | B1 |
6311260 | Stone et al. | Oct 2001 | B1 |
6339616 | Kovalev | Jan 2002 | B1 |
6374266 | Shnelvar | Apr 2002 | B1 |
6434191 | Agrawal et al. | Aug 2002 | B1 |
6434641 | Haupt et al. | Aug 2002 | B1 |
6434662 | Greene et al. | Aug 2002 | B1 |
6438664 | McGrath et al. | Aug 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6463001 | Williams | Oct 2002 | B1 |
6489902 | Heath | Dec 2002 | B2 |
6493698 | Beylin | Dec 2002 | B1 |
6570511 | Cooper | May 2003 | B1 |
6587985 | Fukushima et al. | Jul 2003 | B1 |
6614368 | Cooper | Sep 2003 | B1 |
6618397 | Huang | Sep 2003 | B1 |
6633953 | Stark | Oct 2003 | B2 |
6643259 | Borella et al. | Nov 2003 | B1 |
6650644 | Colley et al. | Nov 2003 | B1 |
6653954 | Rijavec | Nov 2003 | B2 |
6667700 | McCanne | Dec 2003 | B1 |
6674769 | Viswanath | Jan 2004 | B1 |
6718361 | Basani et al. | Apr 2004 | B1 |
6728840 | Shatil et al. | Apr 2004 | B1 |
6738379 | Balazinski et al. | May 2004 | B1 |
6754181 | Elliott et al. | Jun 2004 | B1 |
6769048 | Goldberg et al. | Jul 2004 | B2 |
6791945 | Levenson et al. | Sep 2004 | B1 |
6823470 | Smith et al. | Nov 2004 | B2 |
6839346 | Kametani | Jan 2005 | B1 |
6842424 | Key | Jan 2005 | B1 |
6856651 | Singh | Feb 2005 | B2 |
6859842 | Nakamichi et al. | Feb 2005 | B1 |
6862602 | Guha | Mar 2005 | B2 |
6910106 | Sechrest et al. | Jun 2005 | B2 |
6963980 | Mattsson | Nov 2005 | B1 |
6968374 | Lemieux et al. | Nov 2005 | B2 |
6978384 | Milliken | Dec 2005 | B1 |
7007044 | Rafert et al. | Feb 2006 | B1 |
7020750 | Thiyagaranjan et al. | Mar 2006 | B2 |
7035214 | Seddigh et al. | Apr 2006 | B1 |
7047281 | Kausik | May 2006 | B1 |
7069268 | Burns et al. | Jun 2006 | B1 |
7069342 | Biederman | Jun 2006 | B1 |
7110407 | Khanna | Sep 2006 | B1 |
7111005 | Wessman | Sep 2006 | B1 |
7113962 | Kee et al. | Sep 2006 | B1 |
7120666 | McCanne et al. | Oct 2006 | B2 |
7145889 | Zhang et al. | Dec 2006 | B1 |
7149953 | Cameron et al. | Dec 2006 | B2 |
7177295 | Sholander et al. | Feb 2007 | B1 |
7197597 | Scheid et al. | Mar 2007 | B1 |
7200847 | Straube et al. | Apr 2007 | B2 |
7215667 | Davis | May 2007 | B1 |
7216283 | Shen et al. | May 2007 | B2 |
7242681 | Van Bokkelen et al. | Jul 2007 | B1 |
7243094 | Tabellion et al. | Jul 2007 | B2 |
7249309 | Glaise et al. | Jul 2007 | B2 |
7266645 | Garg et al. | Sep 2007 | B2 |
7278016 | Detrick et al. | Oct 2007 | B1 |
7318100 | Demmer et al. | Jan 2008 | B2 |
7359393 | Nalawade et al. | Apr 2008 | B1 |
7366829 | Luttrell et al. | Apr 2008 | B1 |
7380006 | Srinivas et al. | May 2008 | B2 |
7383329 | Erickson | Jun 2008 | B2 |
7383348 | Seki et al. | Jun 2008 | B2 |
7388844 | Brown et al. | Jun 2008 | B1 |
7389357 | Duffle et al. | Jun 2008 | B2 |
7389393 | Karr et al. | Jun 2008 | B1 |
7417570 | Srinivasan et al. | Aug 2008 | B2 |
7417991 | Crawford et al. | Aug 2008 | B1 |
7420992 | Fang et al. | Sep 2008 | B1 |
7428573 | McCanne et al. | Sep 2008 | B2 |
7441039 | Bhardwaj | Oct 2008 | B2 |
7451237 | Takekawa et al. | Nov 2008 | B2 |
7453379 | Plamondon | Nov 2008 | B2 |
7454443 | Ram et al. | Nov 2008 | B2 |
7457315 | Smith | Nov 2008 | B1 |
7460473 | Kodama et al. | Dec 2008 | B1 |
7471629 | Melpignano | Dec 2008 | B2 |
7496659 | Coverdill et al. | Feb 2009 | B1 |
7532134 | Samuels et al. | May 2009 | B2 |
7555484 | Kulkarni et al. | Jun 2009 | B2 |
7571343 | Xiang et al. | Aug 2009 | B1 |
7571344 | Hughes et al. | Aug 2009 | B2 |
7587401 | Yeo et al. | Sep 2009 | B2 |
7596802 | Border et al. | Sep 2009 | B2 |
7617436 | Wenger et al. | Nov 2009 | B2 |
7619545 | Samuels et al. | Nov 2009 | B2 |
7620870 | Srinivasan et al. | Nov 2009 | B2 |
7624333 | Langner | Nov 2009 | B2 |
7624446 | Wilhelm | Nov 2009 | B1 |
7630295 | Hughes et al. | Dec 2009 | B2 |
7633942 | Bearden et al. | Dec 2009 | B2 |
7639700 | Nabhan et al. | Dec 2009 | B1 |
7643426 | Lee et al. | Jan 2010 | B1 |
7644230 | Hughes et al. | Jan 2010 | B1 |
7676554 | Malmskog et al. | Mar 2010 | B1 |
7698431 | Hughes | Apr 2010 | B1 |
7702843 | Chen et al. | Apr 2010 | B1 |
7714747 | Fallon | May 2010 | B2 |
7746781 | Xiang | Jun 2010 | B1 |
7764606 | Ferguson et al. | Jul 2010 | B1 |
7793193 | Koch et al. | Sep 2010 | B2 |
7810155 | Ravi | Oct 2010 | B1 |
7826798 | Stephens et al. | Nov 2010 | B2 |
7827237 | Plamondon | Nov 2010 | B2 |
7849134 | McCanne et al. | Dec 2010 | B2 |
7853699 | Wu et al. | Dec 2010 | B2 |
7873786 | Singh et al. | Jan 2011 | B1 |
7917599 | Gopalan et al. | Mar 2011 | B1 |
7924795 | Wan et al. | Apr 2011 | B2 |
7925711 | Gopalan et al. | Apr 2011 | B1 |
7941606 | Pullela et al. | May 2011 | B1 |
7945736 | Hughes et al. | May 2011 | B2 |
7948921 | Hughes et al. | May 2011 | B1 |
7953869 | Demmer et al. | May 2011 | B2 |
7957307 | Qiu et al. | Jun 2011 | B2 |
7970898 | Clubb et al. | Jun 2011 | B2 |
7975018 | Unrau et al. | Jul 2011 | B2 |
7996747 | Dell et al. | Aug 2011 | B2 |
8046667 | Boyce | Oct 2011 | B2 |
8069225 | McCanne | Nov 2011 | B2 |
8072985 | Golan et al. | Dec 2011 | B2 |
8090027 | Schneider | Jan 2012 | B2 |
8090805 | Chawla et al. | Jan 2012 | B1 |
8095774 | Hughes et al. | Jan 2012 | B1 |
8140757 | Singh | Mar 2012 | B1 |
8171238 | Hughes et al. | May 2012 | B1 |
8209334 | Doerner | Jun 2012 | B1 |
8225072 | Hughes et al. | Jul 2012 | B2 |
8271325 | Silverman et al. | Sep 2012 | B2 |
8271847 | Langner | Sep 2012 | B2 |
8307115 | Hughes | Nov 2012 | B1 |
8312226 | Hughes | Nov 2012 | B2 |
8352608 | Keagy et al. | Jan 2013 | B1 |
8370583 | Hughes | Feb 2013 | B2 |
8386797 | Danilak | Feb 2013 | B1 |
8392684 | Hughes | Mar 2013 | B2 |
8442052 | Hughes | May 2013 | B1 |
8447740 | Huang et al. | May 2013 | B1 |
8473714 | Hughes et al. | Jun 2013 | B2 |
8489562 | Hughes et al. | Jul 2013 | B1 |
8516158 | Wu | Aug 2013 | B1 |
8553757 | Florencio et al. | Oct 2013 | B2 |
8565118 | Shukla et al. | Oct 2013 | B2 |
8570869 | Ojala et al. | Oct 2013 | B2 |
8576816 | Lamy-Bergot et al. | Nov 2013 | B2 |
8595314 | Hughes | Nov 2013 | B1 |
8613071 | Day et al. | Dec 2013 | B2 |
8681614 | McCanne et al. | Mar 2014 | B1 |
8699490 | Zheng et al. | Apr 2014 | B2 |
8700771 | Ramankutty et al. | Apr 2014 | B1 |
8706947 | Vincent | Apr 2014 | B1 |
8725988 | Hughes et al. | May 2014 | B2 |
8732423 | Hughes | May 2014 | B1 |
8738865 | Hughes et al. | May 2014 | B1 |
8743683 | Hughes | Jun 2014 | B1 |
8755381 | Hughes et al. | Jun 2014 | B2 |
8775413 | Brown et al. | Jul 2014 | B2 |
8811431 | Hughes | Aug 2014 | B2 |
8843627 | Baldi et al. | Sep 2014 | B1 |
8850324 | Clemm et al. | Sep 2014 | B2 |
8885632 | Hughes et al. | Nov 2014 | B2 |
8891554 | Biehler | Nov 2014 | B2 |
8929380 | Hughes et al. | Jan 2015 | B1 |
8929402 | Hughes | Jan 2015 | B1 |
8930650 | Hughes et al. | Jan 2015 | B1 |
9003541 | Patidar | Apr 2015 | B1 |
9036662 | Hughes | May 2015 | B1 |
9054876 | Yagnik | Jun 2015 | B1 |
9092342 | Hughes et al. | Jul 2015 | B2 |
9106530 | Wang | Aug 2015 | B1 |
9130991 | Hughes | Sep 2015 | B2 |
9131510 | Wang | Sep 2015 | B2 |
9143455 | Hughes | Sep 2015 | B1 |
9152574 | Hughes et al. | Oct 2015 | B2 |
9171251 | Camp et al. | Oct 2015 | B2 |
9191342 | Hughes et al. | Nov 2015 | B2 |
9202304 | Baenziger et al. | Dec 2015 | B1 |
9253277 | Hughes et al. | Feb 2016 | B2 |
9306818 | Aumann et al. | Apr 2016 | B2 |
9307442 | Bachmann et al. | Apr 2016 | B2 |
9363248 | Hughes | Jun 2016 | B1 |
9363309 | Hughes | Jun 2016 | B2 |
9380094 | Florencio et al. | Jun 2016 | B2 |
9397951 | Hughes | Jul 2016 | B1 |
9438538 | Hughes et al. | Sep 2016 | B2 |
9549048 | Hughes | Jan 2017 | B1 |
9584403 | Hughes et al. | Feb 2017 | B2 |
9584414 | Sung et al. | Feb 2017 | B2 |
9613071 | Hughes | Apr 2017 | B1 |
9626224 | Hughes et al. | Apr 2017 | B2 |
9647949 | Varki et al. | May 2017 | B2 |
9712463 | Hughes et al. | Jul 2017 | B1 |
9716644 | Wei et al. | Jul 2017 | B2 |
9717021 | Hughes et al. | Jul 2017 | B2 |
9875344 | Hughes et al. | Jan 2018 | B1 |
9906630 | Hughes | Feb 2018 | B2 |
9948496 | Hughes et al. | Apr 2018 | B1 |
9961010 | Hughes et al. | May 2018 | B2 |
9967056 | Hughes | May 2018 | B1 |
10091172 | Hughes | Oct 2018 | B1 |
10164861 | Hughes et al. | Dec 2018 | B2 |
10257082 | Hughes | Apr 2019 | B2 |
10313930 | Hughes et al. | Jun 2019 | B2 |
10326551 | Hughes | Jun 2019 | B2 |
10432484 | Hughes et al. | Oct 2019 | B2 |
10637721 | Hughes et al. | Apr 2020 | B2 |
10719588 | Hughes et al. | Jul 2020 | B2 |
10771370 | Hughes et al. | Sep 2020 | B2 |
10771394 | Hughes | Sep 2020 | B2 |
10805840 | Hughes et al. | Oct 2020 | B2 |
10812361 | Hughes et al. | Oct 2020 | B2 |
20010026231 | Satoh | Oct 2001 | A1 |
20010054084 | Kosmynin | Dec 2001 | A1 |
20020007413 | Garcia-Luna-Aceves et al. | Jan 2002 | A1 |
20020009079 | Jungck et al. | Jan 2002 | A1 |
20020010702 | Ajtai et al. | Jan 2002 | A1 |
20020010765 | Border | Jan 2002 | A1 |
20020040475 | Yap et al. | Apr 2002 | A1 |
20020061027 | Abiru et al. | May 2002 | A1 |
20020065998 | Buckland | May 2002 | A1 |
20020071436 | Border et al. | Jun 2002 | A1 |
20020078242 | Viswanath | Jun 2002 | A1 |
20020101822 | Ayyagari et al. | Aug 2002 | A1 |
20020107988 | Jordan | Aug 2002 | A1 |
20020116424 | Radermacher et al. | Aug 2002 | A1 |
20020129158 | Zhang et al. | Sep 2002 | A1 |
20020129260 | Benfield et al. | Sep 2002 | A1 |
20020131434 | Vukovic et al. | Sep 2002 | A1 |
20020150041 | Reinshmidt et al. | Oct 2002 | A1 |
20020159454 | Delmas | Oct 2002 | A1 |
20020163911 | Wee et al. | Nov 2002 | A1 |
20020169818 | Stewart et al. | Nov 2002 | A1 |
20020181494 | Rhee | Dec 2002 | A1 |
20020188871 | Noehring et al. | Dec 2002 | A1 |
20020194324 | Guha | Dec 2002 | A1 |
20030002664 | Anand | Jan 2003 | A1 |
20030009558 | Ben-Yehezkel | Jan 2003 | A1 |
20030012400 | McAuliffe et al. | Jan 2003 | A1 |
20030033307 | Davis et al. | Feb 2003 | A1 |
20030046572 | Newman et al. | Mar 2003 | A1 |
20030048750 | Kobayashi | Mar 2003 | A1 |
20030048785 | Calvignac et al. | Mar 2003 | A1 |
20030067940 | Edholm | Apr 2003 | A1 |
20030123481 | Neale et al. | Jul 2003 | A1 |
20030123671 | He et al. | Jul 2003 | A1 |
20030131079 | Neale et al. | Jul 2003 | A1 |
20030133568 | Stein et al. | Jul 2003 | A1 |
20030142658 | Ofuji et al. | Jul 2003 | A1 |
20030149661 | Mitchell et al. | Aug 2003 | A1 |
20030149869 | Gleichauf | Aug 2003 | A1 |
20030204619 | Bays | Oct 2003 | A1 |
20030214502 | Park et al. | Nov 2003 | A1 |
20030214954 | Oldak et al. | Nov 2003 | A1 |
20030233431 | Reddy et al. | Dec 2003 | A1 |
20040008711 | Lahti et al. | Jan 2004 | A1 |
20040047308 | Kavanagh et al. | Mar 2004 | A1 |
20040083299 | Dietz et al. | Apr 2004 | A1 |
20040085894 | Wang et al. | May 2004 | A1 |
20040086114 | Rarick | May 2004 | A1 |
20040088376 | McCanne | May 2004 | A1 |
20040114569 | Naden et al. | Jun 2004 | A1 |
20040117571 | Chang et al. | Jun 2004 | A1 |
20040123139 | Aiello et al. | Jun 2004 | A1 |
20040158644 | Albuquerque et al. | Aug 2004 | A1 |
20040179542 | Murakami et al. | Sep 2004 | A1 |
20040181679 | Dettinger et al. | Sep 2004 | A1 |
20040199771 | Morten et al. | Oct 2004 | A1 |
20040202110 | Kim | Oct 2004 | A1 |
20040203820 | Billhartz | Oct 2004 | A1 |
20040205332 | Bouchard et al. | Oct 2004 | A1 |
20040243571 | Judd | Dec 2004 | A1 |
20040250027 | Heflinger | Dec 2004 | A1 |
20040255048 | Lev Ran et al. | Dec 2004 | A1 |
20050010653 | McCanne | Jan 2005 | A1 |
20050044270 | Grove et al. | Feb 2005 | A1 |
20050053094 | Cain et al. | Mar 2005 | A1 |
20050055372 | Springer, Jr. et al. | Mar 2005 | A1 |
20050055399 | Savchuk | Mar 2005 | A1 |
20050071453 | Ellis et al. | Mar 2005 | A1 |
20050091234 | Hsu et al. | Apr 2005 | A1 |
20050111460 | Sahita | May 2005 | A1 |
20050131939 | Douglis et al. | Jun 2005 | A1 |
20050132252 | Fifer et al. | Jun 2005 | A1 |
20050141425 | Foulds | Jun 2005 | A1 |
20050171937 | Hughes et al. | Aug 2005 | A1 |
20050177603 | Shavit | Aug 2005 | A1 |
20050182849 | Chandrayana et al. | Aug 2005 | A1 |
20050190694 | Ben-Nun et al. | Sep 2005 | A1 |
20050207443 | Kawamura et al. | Sep 2005 | A1 |
20050210151 | Abdo et al. | Sep 2005 | A1 |
20050220019 | Melpignano | Oct 2005 | A1 |
20050220097 | Swami et al. | Oct 2005 | A1 |
20050235119 | Sechrest et al. | Oct 2005 | A1 |
20050240380 | Jones | Oct 2005 | A1 |
20050243743 | Kimura | Nov 2005 | A1 |
20050243835 | Sharma et al. | Nov 2005 | A1 |
20050256972 | Cochran et al. | Nov 2005 | A1 |
20050278459 | Boucher et al. | Dec 2005 | A1 |
20050283355 | Itani et al. | Dec 2005 | A1 |
20050286526 | Sood et al. | Dec 2005 | A1 |
20060010243 | Duree | Jan 2006 | A1 |
20060013210 | Bordogna et al. | Jan 2006 | A1 |
20060026425 | Douceur et al. | Feb 2006 | A1 |
20060031936 | Nelson et al. | Feb 2006 | A1 |
20060036901 | Yang et al. | Feb 2006 | A1 |
20060039354 | Rao et al. | Feb 2006 | A1 |
20060045096 | Farmer et al. | Mar 2006 | A1 |
20060059171 | Borthakur et al. | Mar 2006 | A1 |
20060059173 | Hirsch et al. | Mar 2006 | A1 |
20060109805 | Malamal Vadakital et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060136913 | Sameske | Jun 2006 | A1 |
20060143497 | Zohar et al. | Jun 2006 | A1 |
20060193247 | Naseh et al. | Aug 2006 | A1 |
20060195547 | Sundarrajan et al. | Aug 2006 | A1 |
20060195840 | Sundarrajan et al. | Aug 2006 | A1 |
20060212426 | Shakara et al. | Sep 2006 | A1 |
20060218390 | Loughran et al. | Sep 2006 | A1 |
20060227717 | van den Berg et al. | Oct 2006 | A1 |
20060250965 | Irwin | Nov 2006 | A1 |
20060268932 | Singh et al. | Nov 2006 | A1 |
20060280205 | Cho | Dec 2006 | A1 |
20070002804 | Xiong et al. | Jan 2007 | A1 |
20070008884 | Tang | Jan 2007 | A1 |
20070011424 | Sharma et al. | Jan 2007 | A1 |
20070038815 | Hughes | Feb 2007 | A1 |
20070038816 | Hughes et al. | Feb 2007 | A1 |
20070038858 | Hughes | Feb 2007 | A1 |
20070050475 | Hughes | Mar 2007 | A1 |
20070076693 | Krishnaswamy | Apr 2007 | A1 |
20070076708 | Kolakowski et al. | Apr 2007 | A1 |
20070081513 | Torsner | Apr 2007 | A1 |
20070097874 | Hughes et al. | May 2007 | A1 |
20070110046 | Farrell et al. | May 2007 | A1 |
20070115812 | Hughes | May 2007 | A1 |
20070127372 | Khan et al. | Jun 2007 | A1 |
20070130114 | Li et al. | Jun 2007 | A1 |
20070140129 | Bauer et al. | Jun 2007 | A1 |
20070150497 | De La Cruz et al. | Jun 2007 | A1 |
20070160200 | Ishikawa et al. | Jul 2007 | A1 |
20070174428 | Lev Ran et al. | Jul 2007 | A1 |
20070179900 | Daase et al. | Aug 2007 | A1 |
20070192863 | Kapoor et al. | Aug 2007 | A1 |
20070195702 | Yuen et al. | Aug 2007 | A1 |
20070195789 | Yao | Aug 2007 | A1 |
20070198523 | Hayim | Aug 2007 | A1 |
20070226320 | Hager et al. | Sep 2007 | A1 |
20070237104 | Alon et al. | Oct 2007 | A1 |
20070244987 | Pedersen et al. | Oct 2007 | A1 |
20070245079 | Bhattacharjee et al. | Oct 2007 | A1 |
20070248084 | Whitehead | Oct 2007 | A1 |
20070258468 | Bennett | Nov 2007 | A1 |
20070260746 | Mirtorabi et al. | Nov 2007 | A1 |
20070263554 | Finn | Nov 2007 | A1 |
20070276983 | Zohar et al. | Nov 2007 | A1 |
20070280245 | Rosberg | Dec 2007 | A1 |
20080005156 | Edwards et al. | Jan 2008 | A1 |
20080013532 | Gamer et al. | Jan 2008 | A1 |
20080016301 | Chen | Jan 2008 | A1 |
20080028467 | Kommareddy et al. | Jan 2008 | A1 |
20080031149 | Hughes et al. | Feb 2008 | A1 |
20080031240 | Hughes et al. | Feb 2008 | A1 |
20080037432 | Cohen et al. | Feb 2008 | A1 |
20080071818 | Apanowicz et al. | Mar 2008 | A1 |
20080095060 | Yao | Apr 2008 | A1 |
20080133536 | Bjorner et al. | Jun 2008 | A1 |
20080133561 | Dubnicki et al. | Jun 2008 | A1 |
20080184081 | Hama et al. | Jul 2008 | A1 |
20080205445 | Kumar et al. | Aug 2008 | A1 |
20080222044 | Gottlieb et al. | Sep 2008 | A1 |
20080229137 | Samuels et al. | Sep 2008 | A1 |
20080243992 | Jardetzky et al. | Oct 2008 | A1 |
20080267217 | Colville et al. | Oct 2008 | A1 |
20080285463 | Oran | Nov 2008 | A1 |
20080300887 | Chen | Dec 2008 | A1 |
20080313318 | Vermeulen et al. | Dec 2008 | A1 |
20080320151 | McCanne et al. | Dec 2008 | A1 |
20090006801 | Shultz et al. | Jan 2009 | A1 |
20090024763 | Stepin et al. | Jan 2009 | A1 |
20090037448 | Thomas | Feb 2009 | A1 |
20090060198 | Little | Mar 2009 | A1 |
20090063696 | Wang et al. | Mar 2009 | A1 |
20090080460 | Kronewitter et al. | Mar 2009 | A1 |
20090089048 | Pouzin | Apr 2009 | A1 |
20090092137 | Haigh et al. | Apr 2009 | A1 |
20090100483 | McDowell | Apr 2009 | A1 |
20090158417 | Khanna et al. | Jun 2009 | A1 |
20090168786 | Sarkar | Jul 2009 | A1 |
20090175172 | Prytz et al. | Jul 2009 | A1 |
20090182864 | Khan et al. | Jul 2009 | A1 |
20090204961 | DeHaan et al. | Aug 2009 | A1 |
20090234966 | Samuels et al. | Sep 2009 | A1 |
20090245114 | Vijayaraghavan | Oct 2009 | A1 |
20090265707 | Goodman et al. | Oct 2009 | A1 |
20090274294 | Itani | Nov 2009 | A1 |
20090279550 | Romrell et al. | Nov 2009 | A1 |
20090281984 | Black | Nov 2009 | A1 |
20100005222 | Brant et al. | Jan 2010 | A1 |
20100011125 | Yang et al. | Jan 2010 | A1 |
20100020693 | Thakur | Jan 2010 | A1 |
20100054142 | Moiso et al. | Mar 2010 | A1 |
20100070605 | Hughes et al. | Mar 2010 | A1 |
20100077251 | Liu et al. | Mar 2010 | A1 |
20100082545 | Bhattacharjee et al. | Apr 2010 | A1 |
20100085964 | Weir et al. | Apr 2010 | A1 |
20100115137 | Kim et al. | May 2010 | A1 |
20100121957 | Roy et al. | May 2010 | A1 |
20100124239 | Hughes | May 2010 | A1 |
20100131957 | Kami | May 2010 | A1 |
20100150158 | Cathey et al. | Jun 2010 | A1 |
20100169467 | Shukla et al. | Jul 2010 | A1 |
20100177663 | Johansson et al. | Jul 2010 | A1 |
20100225658 | Coleman | Sep 2010 | A1 |
20100232443 | Pandey | Sep 2010 | A1 |
20100242106 | Harris et al. | Sep 2010 | A1 |
20100246584 | Ferguson et al. | Sep 2010 | A1 |
20100290364 | Black | Nov 2010 | A1 |
20100318892 | Teevan et al. | Dec 2010 | A1 |
20100333212 | Carpenter et al. | Dec 2010 | A1 |
20110002346 | Wu | Jan 2011 | A1 |
20110022812 | Van Der Linden et al. | Jan 2011 | A1 |
20110113472 | Fung et al. | May 2011 | A1 |
20110131411 | Lin et al. | Jun 2011 | A1 |
20110154169 | Gopal et al. | Jun 2011 | A1 |
20110154329 | Arcese et al. | Jun 2011 | A1 |
20110181448 | Koratagere | Jul 2011 | A1 |
20110219181 | Hughes et al. | Sep 2011 | A1 |
20110225322 | Demidov et al. | Sep 2011 | A1 |
20110258049 | Ramer et al. | Oct 2011 | A1 |
20110261828 | Smith | Oct 2011 | A1 |
20110276963 | Wu et al. | Nov 2011 | A1 |
20110299537 | Saraiya et al. | Dec 2011 | A1 |
20120036325 | Mashtizadeh et al. | Feb 2012 | A1 |
20120069131 | Abelow | Mar 2012 | A1 |
20120147894 | Mulligan et al. | Jun 2012 | A1 |
20120173759 | Agarwal et al. | Jul 2012 | A1 |
20120185775 | Clemm et al. | Jul 2012 | A1 |
20120198346 | Clemm et al. | Aug 2012 | A1 |
20120218130 | Boettcher et al. | Aug 2012 | A1 |
20120221611 | Watanabe et al. | Aug 2012 | A1 |
20120230345 | Ovsiannikov | Sep 2012 | A1 |
20120239872 | Hughes et al. | Sep 2012 | A1 |
20120290636 | Kadous et al. | Nov 2012 | A1 |
20130018722 | Libby | Jan 2013 | A1 |
20130018765 | Fork et al. | Jan 2013 | A1 |
20130031642 | Dwivedi et al. | Jan 2013 | A1 |
20130044751 | Casado et al. | Feb 2013 | A1 |
20130058354 | Casado et al. | Mar 2013 | A1 |
20130080619 | Assuncao et al. | Mar 2013 | A1 |
20130083806 | Suarez Fuentes et al. | Apr 2013 | A1 |
20130086236 | Baucke et al. | Apr 2013 | A1 |
20130086594 | Cottrell | Apr 2013 | A1 |
20130094501 | Hughes | Apr 2013 | A1 |
20130103655 | Fanghaenel et al. | Apr 2013 | A1 |
20130117494 | Hughes et al. | May 2013 | A1 |
20130121209 | Padmanabhan et al. | May 2013 | A1 |
20130141259 | Hazarika et al. | Jun 2013 | A1 |
20130142050 | Luna | Jun 2013 | A1 |
20130163594 | Sharma et al. | Jun 2013 | A1 |
20130250951 | Koganti | Sep 2013 | A1 |
20130263125 | Shamsee et al. | Oct 2013 | A1 |
20130266007 | Kumbhare et al. | Oct 2013 | A1 |
20130282970 | Hughes et al. | Oct 2013 | A1 |
20130325986 | Brady et al. | Dec 2013 | A1 |
20130343191 | Kim et al. | Dec 2013 | A1 |
20140052864 | van Der Linden et al. | Feb 2014 | A1 |
20140075554 | Cooley | Mar 2014 | A1 |
20140086069 | Frey et al. | Mar 2014 | A1 |
20140101426 | Senthurpandi | Apr 2014 | A1 |
20140108360 | Kunath et al. | Apr 2014 | A1 |
20140114742 | Lamontagne et al. | Apr 2014 | A1 |
20140123213 | Vank et al. | May 2014 | A1 |
20140181381 | Hughes et al. | Jun 2014 | A1 |
20140269705 | DeCusatis et al. | Sep 2014 | A1 |
20140279078 | Nukala et al. | Sep 2014 | A1 |
20140321290 | Jin et al. | Oct 2014 | A1 |
20140379937 | Hughes et al. | Dec 2014 | A1 |
20150058488 | Backholm | Feb 2015 | A1 |
20150074291 | Hughes | Mar 2015 | A1 |
20150074361 | Hughes et al. | Mar 2015 | A1 |
20150078397 | Hughes et al. | Mar 2015 | A1 |
20150110113 | Levy et al. | Apr 2015 | A1 |
20150120663 | Le Scouamec et al. | Apr 2015 | A1 |
20150127701 | Chu et al. | May 2015 | A1 |
20150143505 | Border et al. | May 2015 | A1 |
20150170221 | Shah | Jun 2015 | A1 |
20150281099 | Banavalikar | Oct 2015 | A1 |
20150281391 | Hughes et al. | Oct 2015 | A1 |
20150312054 | Barabash et al. | Oct 2015 | A1 |
20150334210 | Hughes | Nov 2015 | A1 |
20150365293 | Madrigal et al. | Dec 2015 | A1 |
20160014051 | Hughes et al. | Jan 2016 | A1 |
20160034305 | Shear et al. | Feb 2016 | A1 |
20160093193 | Silvers et al. | Mar 2016 | A1 |
20160112255 | Li | Apr 2016 | A1 |
20160142310 | Means | May 2016 | A1 |
20160218947 | Hughes et al. | Jul 2016 | A1 |
20160255000 | Gattani et al. | Sep 2016 | A1 |
20160255542 | Hughes et al. | Sep 2016 | A1 |
20160359740 | Parandehgheibi et al. | Dec 2016 | A1 |
20160380886 | Blair et al. | Dec 2016 | A1 |
20170026467 | Barsness et al. | Jan 2017 | A1 |
20170111692 | An | Apr 2017 | A1 |
20170149679 | Hughes et al. | May 2017 | A1 |
20170187581 | Hughes et al. | Jun 2017 | A1 |
20170359238 | Hughes et al. | Dec 2017 | A1 |
20180089994 | Dhondse et al. | Mar 2018 | A1 |
20180121634 | Hughes et al. | May 2018 | A1 |
20180123861 | Hughes et al. | May 2018 | A1 |
20180131711 | Chen et al. | May 2018 | A1 |
20180205494 | Hughes | Jul 2018 | A1 |
20180227216 | Hughes | Aug 2018 | A1 |
20180227223 | Hughes | Aug 2018 | A1 |
20190089620 | Hefel et al. | Mar 2019 | A1 |
20190104207 | Goel et al. | Apr 2019 | A1 |
20190149447 | Hughes et al. | May 2019 | A1 |
20190230038 | Hughes | Jul 2019 | A1 |
20190245771 | Wu et al. | Aug 2019 | A1 |
20190253187 | Hughes | Aug 2019 | A1 |
20190260683 | Hughes | Aug 2019 | A1 |
20190274070 | Hughes et al. | Sep 2019 | A1 |
20190280917 | Hughes et al. | Sep 2019 | A1 |
20200021506 | Hughes et al. | Jan 2020 | A1 |
20200213185 | Hughes et al. | Jul 2020 | A1 |
20200358687 | Hughes et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
1507353A2 | Feb 2005 | EP |
H05061964A | Mar 1993 | JP |
WO0135226A1 | May 2001 | WO |
Entry |
---|
“IPsec Anti-Replay Window: Expanding and Disabling,” Cisco IOS Security Configuration Guide. 2005-2006 Cisco Systems, Inc. Last updated: Sep. 12, 2006, 14 pages. |
Singh et al. ; “Future of Internet Security—IPSEC”; 2005; pp. 1-8. |
Muthitacharoen, Athicha et al., “A Low-bandwidth Network File System,” 2001, in Proc. of the 18th ACM Symposium on Operating Systems Principles, Banff, Canada, pp. 174-187. |
“Shared LAN Cache Datasheet”, 1996, <http://www.lancache.com/slcdata.htm>, 8 pages. |
Spring et al., “A protocol-independent technique for eliminating redundant network traffic”, ACM SIGCOMM Computer Communication Review, vol. 30, Issue 4 (Oct. 2000) pp. 87-95, Year of Publication: 2000. |
Hong, B et al. “Duplicate data elimination in a SAN file system”, in Proceedings of the 21st Symposium on Mass Storage Systems (MSS '04), Goddard, MD, Apr. 2004. IEEE, pp. 101-114. |
You, L. L. and Karamanolis, C. 2004. “Evaluation of efficient archival storage techniques”, in Proceedings of the 21st IEEE Symposium on Mass Storage Systems and Technologies (MSST), pp. 1-6. |
Douglis, F. et al., “Application specific Delta-encoding via Resemblance Detection”, Published in the 2003 USENIX Annual Technical Conference, pp. 1-14. |
You, L. L. et al., “Deep Store an Archival Storage System Architecture” Data Engineering, 2005. ICDE 2005. Proceedings of the 21st Intl. Conf. on Data Eng., Tokyo, Japan, Apr. 5-8, 2005, pp. 12. |
Manber, Udi, “Finding Similar Files in a Large File System”, TR 93-33 Oct. 1994, Department of Computer Science, University of Arizona. <http://webglimpse.net/pubs/TR93-33.pdf>. Also appears in the 1994 winter USENIX Technical Conference, pp. 1-10. |
Knutsson, Bjorn et al., “Transparent Proxy Signalling”, Journal of Communications and Networks, vol. 3, No. 2, Jun. 2001, pp. 164-174. |
Definition memory (n), Webster's Third New International Dictionary, Unabridged (1993), available at <http://lionreference.chadwyck.com> (Dictionaries/Webster's Dictionary). |
Definition appliance, 2c, Webster's Third New International Dictionary, Unabridged (1993), available at <http://lionreference.chadwyck.com> (Dictionaries/Webster's Dictionary). |
Newton, “Newton's Telecom Dictionary”, 17th Ed., 2001, pp. 38, 201, and 714. |
Silver Peak Systems, “The Benefits of Byte-level WAN Deduplication” (2008), pp. 1-4. |
Business Wire, “Silver Peak Systems Delivers Family of Appliances for Enterprise-Wide Centralization of Branch Office Infrastructure; Innovative Local Instance Networking Approach Overcomes Traditional Application Acceleration Pitfalls” (available at http://www.businesswire.com/news/home/20050919005450/en/Silver-Peak-Systems-Delivers-Family-Appliances-Enterprise-Wide#.UVzkPk7u-1 (last visited Aug. 8, 2014)), 4 pages. |
Riverbed, “Riverbed Introduces Market-Leading WDS Solutions for Disaster Recovery and Business Application Acceleration” (available at http://www.riverbed.com/about/news-articles/pressreleases/riverbed-introduces-market-leading-wds-solutions-fordisaster-recovery-and-business-application-acceleration.html (last visited Aug. 8, 2014)), 4 pages. |
Tseng, Josh, “When accelerating secure traffic is not secure” (available at http://www.riverbed.com/blogs/whenaccelerati.html?&IsSearch=true&pageSize=3&page=2 (last visited Aug. 8, 2014)), 3 pages. |
Riverbed, “The Riverbed Optimization System (RIOS) v4.0: A Technical Overview” (explaining “Data Security” through segmentation) (available at http://mediacms.riverbed.com/documents/TechOverview-Riverbed-RiOS_4_0.pdf (last visited Aug. 8, 2014)), pp. 1-18. |
Riverbed, “Riverbed Awarded Patent on Core WDS Technology” (available at: http://www.riverbed.com/about/news-articles/pressreleases/riverbed-awarded-patent-on-core-wds-technology.html (last visited Aug. 8, 2014)), 2 pages. |
Final Written Decision, Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00403, pp. 1-38. |
Final Written Decision, Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00402, pp. 1-37. |
“Notice of Entry of Judgement Accompanied by Opinion”, United States Court of Appeals for the Federal Circuit, Case: 15-2072, Oct. 24, 2017, 6 pages. |
“Decision Granting Motion to Terminate”, Inter Partes Review Case No. IPR2014-00245, Feb. 7, 2018, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20200279029 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15856669 | Dec 2017 | US |
Child | 16875866 | US | |
Parent | 14479131 | Sep 2014 | US |
Child | 15856669 | US |