Dynamic monitoring and authorization of an optimization device

Information

  • Patent Grant
  • 11954184
  • Patent Number
    11,954,184
  • Date Filed
    Thursday, January 28, 2021
    3 years ago
  • Date Issued
    Tuesday, April 9, 2024
    9 months ago
Abstract
Disclosed is a system and method for the monitoring and authorization of an optimization device in a network. In exemplary embodiments, an optimization device transmits an authorization request message to a portal to receive authorization to operate. The portal transmits an authorization response message to the optimization device with capability parameters for operation of the device, including at least one expiration parameter for the authorization. The optimization device sends updated authorization request messages to the portal with its device usage information, such that the portal can dynamically monitor the optimization device and continue to authorize its operation.
Description
TECHNICAL FIELD

This disclosure relates generally to dynamic monitoring and authorization of an optimization device deployed in a network.


BACKGROUND

The approaches described in this section could be pursued, but are not necessarily approaches that have previously been conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.


Traditionally, when new software is purchased, the customer receives a key, or authentication code that they must input when the software is first installed. This verifies to the software service provider that the customer has a valid copy of the software installed on the machine. The key, or authentication code, may be a long string of letters or numbers that is difficult to remember and type in accurately. The software service provider must then keep track of the valid authentication codes, to help a customer if a code is lost. This may become cumbersome, particularly when there are lots of customers. Thus, a system is needed that simplifies the process from the customer's standpoint as well as the software service provider's standpoint.


Also, a customer may purchase a 1-year license for software or a hardware device, but may end up only using the software or device a few times. Thus, a more fluid system is needed that allows a customer to purchase and maintain a license for the software or device that is commensurate with the amount it is actually used. Also, the licensor needs a mechanism whereby they can monitor the actual usage of the software or device to ensure compliance with license terms.


Other information can also be conveyed with licensing systems. In the prior art, this is done manually, which can be error-prone and labor intensive. Thus, an automated system to convey information with license authorization is needed.


Data centers may be used to provide computing infrastructure by employing a number of computing resources and associated components, such as telecommunication equipment, networking equipment, storage systems, backup power supplies, environmental controls, and so forth. A data center may provide a variety of services (e.g., web applications, email services, and search engine services) for a number of customers simultaneously. To provide these services, the computing infrastructure of the data center may run various software applications and store business and operational data. The computing resources distributed throughout the data center may be physical machines and/or virtual machines running on a physical host.


Computing resources of a data center may transmit and receive data packets via one or more interconnected networks, such as a Wide Area Network (WAN). Physical switches and routers can be distributed throughout the WAN and configured to connect various network segments and route the data packets within the network environment. It may be desirable to optimize or otherwise transform the data packets transmitted and received via the WAN. Routing of the data packets for optimization may be performed by configuring physical switches, routers, and/or other network appliances, to reroute the data packets to a data optimization virtual machine. However, involving reconfiguration of physical network components in data optimization may be costly and require complex coordination of various organizations and departments.


While there are many optimization techniques that can be accomplished in a WAN, many of these optimization techniques for data transfer across a network require symmetric network components. For example, if data packets are encoded on the transmitting end before transmission through the network, they must be decoded on the receiving end. Optimization techniques may be deployed on specialized hardware devices, or operate as software on other hardware devices. A service provider of an optimization device needs a mechanism to ensure that a customer's usage of the optimization device is within the authorized license, and also to dynamically monitor and re-authorize the optimization device on an as-needed basis.


SUMMARY

This summary is provided to introduce a selection of concepts in a simplified form that are further described in the Detailed Description below. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.


A system for operation of an optimization device provided over a network is disclosed. The optimization device may require software to function in the network, for which a license needs to be purchased from the software provider.


In various embodiments, a portal may be located in a cloud. The portal may contain a database of information, such as service provider, customer name, customer's sites, and information regarding usage of the software at each site. There may be any number of portals located in the cloud. Each portal may have a database of information for a single service provider, or for any number of service providers.


When a customer initializes the software at a site for an optimization device, the customer may be prompted on the user interface to enter login information such as the name of the service provider, customer name, site, and password. Various fields may also be pre-configured such that the customer only need enter one or more fields. This, and other information, may be transmitted to the portal in an authorization request message.


After the login is successful, the optimization device receives an authorization response message from the portal. The authorization response message contains information regarding the available capability parameters for operating the optimization device. The capability parameters may be in the form of a specific time available for using the optimization device, an amount of data that can be transferred, and/or a limit rate of data that can be transferred in a specific period of time. The capability parameters may also comprise expiry parameters such as an expiry time or data limit for the optimization device, a warning time or data limit, and a refresh time or data limit.


In various embodiments, after a successful login, the device also receives site-specific configuration information from the portal to enable the customer to configure the software at their site. The site-specific configuration information may be included as part of the authorization response message, or may be in a separate message.


Upon expiration of a specified threshold, the optimization device may automatically send an updated authorization request message to the portal. The updated authorization request message may comprise information regarding the actual usage of the software and/or the time period for the usage. In response, the portal may send the optimization device an updated, authorization response message with an updated expiration time, and/or an additional allotment of data. The authorization response message may be refreshed periodically, such as hourly, or weekly, or on an as-needed basis.


In various embodiments, there may also be a firewall deployed between the portal and the optimization device. To enable the optimization device to communicate with the portal, the authorization request message may be communicated in a secure format such as HTTPS, which is permitted to transit the firewall.


In further embodiments, a device can access a remote service provider, such as a cloud-based service, by configuring the firewall at its location with specific parameters matching the firewall configuration for the cloud-based service. The firewall configuration information may be transmitted from the service provider to the optimization device via an authorization response message, or in a separate message, from the portal.


Furthermore, a secure data channel, such as an IPsec tunnel, may be established between the optimization device and the cloud-based service. The secure data channel may employ encryption or other network data optimization or acceleration techniques to transfer data between the optimization device and the service provider. Configuration information for the secure data channel may be transmitted to each end via the authorization request message and authorization response message from the portal. The portal may send corresponding tunnel configuration information to both ends, thereby automatically configuring a secure data channel between the optimization device at the customer site and the service provider in the cloud, without the need for any firewall configuration.


Furthermore, the software provider may be enabled to log into the portal and use the existing communications channel that has been established to remotely control and manage the optimization device, to aid in troubleshooting. In various embodiments, the customer may enable or disable the remote management feature.


In further exemplary embodiments, the above method steps may be stored on a machine-readable medium comprising instructions, which when implemented by one or more processors perform the steps of the method. In yet further examples, subsystems or devices can be adapted to perform the recited steps. Other features, examples, and embodiments are described below.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments are illustrated by way of example, and not by limitation in the figures of the accompanying drawings, in which like references indicate similar elements.



FIG. 1 is a block diagram of an exemplary environment for the operation of an optimization device.



FIG. 2 illustrates an exemplary optimization device.



FIG. 3 depicts an exemplary environment for dynamic monitoring and authorization of an optimization device via a portal.



FIG. 4A depicts an exemplary message sequence chart for the dynamic monitoring and authorization of an optimization device.



FIG. 4B depicts an exemplary message sequence chart for the unsuccessful continued authorization of an optimization device.



FIG. 5 is a flowchart depicting an exemplary method for the dynamic monitoring and authorization of an optimization device by a portal.



FIG. 6 is a flowchart depicting an exemplary method performed by an optimization device for continued operation.



FIG. 7 depicts another exemplary environment for dynamic monitoring and authorization of an optimization device.



FIG. 8 depicts another exemplary environment for dynamic monitoring and authorization of an optimization device.





DETAILED DESCRIPTION

The following detailed description includes references to the accompanying drawings, which form a part of the detailed description. The drawings show illustrations, in accordance with exemplary embodiments. These exemplary embodiments, which are also referred to herein as II examples,” are described in enough detail to enable those skilled in the art to practice the present subject matter. The embodiments can be combined, other embodiments can be utilized, or structural, logical, and electrical changes can be made without departing from the scope of what is claimed. The following detailed description is therefore not to be taken in a limiting sense, and the scope is defined by the appended claims and their equivalents. In this document, the terms II a” and II an” are used, as is common in patent documents, to include one or more than one. In this document, the term II or” is used to refer to a nonexclusive II or,” such that II A or B” includes II A but not B,” 11 B but not A,” and II A and B,” unless otherwise indicated.


The embodiments disclosed herein may be implemented using a variety of technologies. For example, the methods described herein may be implemented in software executing on a computer system or in hardware utilizing either a combination of microprocessors or other specially designed application-specific integrated circuits (ASICs), programmable logic devices, or various combinations thereof. In particular, the methods described herein may be implemented by a series of computer-executable instructions residing on a storage medium, such as a disk drive, or computer-readable medium.


The embodiments described herein relate to the dynamic monitoring and authorization of an optimization device deployed in a network.



FIG. 1 is a block diagram of an exemplary environment 100 for the operation of an optimization device. As depicted, the environment 100 includes site 102A in communication with site 102B via a network 104. Network 104 may include one or more interconnected networks, including a Wide Area Network (WAN), the Internet, Metropolitan Area Network (MAN), Backbone network, Storage Area Network (SAN), Advanced Intelligent Network (AIN), Local Area Network (LAN), Personal Area Network (PAN), and so forth. The network 104 may comprise a private network (e.g., a leased line network) or a public network (e.g., the Internet). The network 104 may include hardware and/or software elements that enable the exchange of information between the site 102A and the site 102B. Routers or switches may be used to connect the network 104 with the sites 102A and 102B, and local area networks thereof (e.g., the local area networks 110A and 110B).


Although two sites, the site 102A and the site 102B, are shown in FIG. 1, the environment 100 may comprise three or more sites and still fall within the scope of embodiments of the present invention. There may also only be one site within the scope of embodiments of the present invention. The site 102A includes a computer 106A and an optimization device 108A coupled by a local area network (LAN) 110A. Similarly, the site 102B includes a computer 106B and an optimization device 108B coupled by a local area network 110B. In various embodiments, the sites 102A and 102B may further include a router or switch (not shown). The router or switch may, for example, facilitate communication between the local area network 110A and the network 104, and between the local area network 110B and the network 104, which may be a wide area network. Other networking hardware may also be included in the sites 102A and 102B, as will be appreciated by those skilled in the art.


The sites 102A and 102B may comprise physical locations, such as offices, office complexes, stores, homes, and other locally networked sites. The sites 102A and 102B may transfer data there between via the network 104. In some embodiments, an application may run at one site and be accessed from another site. In such cases, application data may be transferred between the sites 102A and 102B. As discussed further herein, the data transferred between the sites 102A and 102B may be included in data packets.


The computers 106A and 106B may comprise a server, a client, a workstation, other computing devices, or the like. In some embodiments, the computers 106A and 106B may comprise other computing devices such as a personal digital assistant (PDA), a Smartphone, a pocket PC, and other various handheld or mobile devices. In some embodiments, one or both of the computers 106A and 106B may be substituted by a plurality of computers (not shown). In one embodiment, the plurality of computers may be located at one physical locale and be in communication via one or more optimization devices at the same physical locale. In accordance with some embodiments, one or more computers (e.g., the computers 106A and 106B) may be integrated with one or more optimization devices (e.g., the optimization devices 108A and 108B) as single systems.


According to exemplary embodiments, the optimization devices 108A and 108B, as well as any other optimization devices included in the environment 100, provide optimization of data to reduce the amount of information traversing the network 104. In one example, the optimization device may employ network memory to reduce the amount of information traversing the network 104 by one or more orders of magnitude enabling LAN-like performance of the network 104. This may be achieved by eliminating a need to send data over the network 104 that has been previously sent. Network memory is discussed in further detail in U.S. Pat. No. 8,312,226 issued on Nov. 13, 2012 and entitled “Network Memory Appliance for Providing Data Based on Local Accessibility”. The disclosures of these patents are incorporated herein by reference.


Data optimization techniques may comprise compression/decompression, deduplication, Transmission Control Protocol (TCP) acceleration, performance enhancing proxy, packet reconstruction, error correction, or any other technique for optimizing data transfer between network appliances or devices. However, a person of ordinary skill in the art would understand that any optimization technique may be applied within the environment 100. Optimization encoding and decoding may be symmetric transformations of data, such as compression/decompression, deduplication, etc. For example, data packets that are compressed at optimization device 108A need to be decompressed at optimization device 108B. Furthermore, asymmetric optimization techniques may also be used. For example, optimization device may employ TCP or application proxying, among other methods.


The optimization devices 108A and 108B may comprise one or more of a communications interface, a processor, a memory, or storage. Exemplary embodiments of the optimization devices 108A and 108B are discussed in connection with later figures. In some embodiments, the optimizations devices 108A and 108B may also be referred to herein as' appliances' or ‘devices.’


Furthermore, the optimization devices 108A or 108B may be installed in-path (as depicted in FIG. 1 with respect to the optimization device 108A) or out-of-path (as depicted in FIG. 1 with respect to the optimization device 108B) in the local area networks 110A and 110B. The term ‘in-path,’ which may also be referred to as ‘in-line,’ describes installation configurations in which a device (e.g., the optimization devices 108A and 108B) is physically attached between two communication lines that make up some portion of the local area network. As such, for in-line installations, the optimization device 108B may be installed between one or more computers 106B and a router or switch (not shown) so that any data that flows through the local area network 110B will necessarily flow through the optimization device 108B. In some embodiments, some network appliances comprise identical hardware and/or software elements. Alternatively, in other embodiments, some network appliances may include hardware and/or software elements providing additional processing, communication, and storage capacity.


The term ‘out-of-path,’ on the other hand, describes installation configurations in which a device (e.g., the optimization device 108A) taps into the local area network, but is not physically attached between two communication lines. In one embodiment where the optimization device 108A is installed out-of-path, the optimization device 108A is coupled to a router (not shown). A number of router protocols, such as web cache communication protocol (WCCP) and various protocols related to policy based routing (PBR), may allow the router to transparently route network traffic to the optimization device 108A. In other embodiments, optimization devices 108A and 108B may be embodied as optimization software installed on computers 106A and 106B, instead of as separate hardware devices.


The local area networks 110A and 110B may cover a relatively small geographic range, such the sites 102A and 102B, and comprise one or more of a wired network (e.g., Ethernet) or a wireless network (e.g., Wi-Fi). The local area networks 110A and 110B may include hardware and/or software elements that enable the exchange of information (e.g., voice and data) between various computers 106A and 106B, devices (e.g., the optimization devices 108A and 108B), and other networking components, such as routers and switches (not shown). While FIG. 1 depicts the optimization devices connected to the computer via a LAN, other types of networks, as discussed above, may also be used. For example, local area network 110A may actually be a wide area network, or other type of network.



FIG. 2 illustrates an exemplary optimization device 108. The optimization device 108 may be similar to one or both of the optimization devices 108A and 108B. The optimization device 108 may include an interface module 202, an optimization module 204, and a storage module 206. Although FIG. 2 describes the optimization device 108 as including various modules and engines, fewer or more modules and engines may be included in the optimization device 108 and still fall within the scope of various embodiments. Additionally, various modules and engines of the optimization device 108 may be combined into a single module or engine. After a flow table 300 is used to populate an accumulating map, or on a certain periodic basis or activation of a condition, flow table 300 may be discarded by network appliance 110 and a new flow table is started. Similarly, after an accumulating map 400 is received by network information collector 180, or on a certain periodic basis or activation of a condition, accumulating map 400 may be discarded by network appliance 110 and a new accumulating map is started.


The interface module 202 may be configured to facilitate communication between the optimization device 108 and one or more networks, such as local area networks 110A, 110B, or network 104. For example, information such as packets and packet data may be transferred to and from the optimization device 108 by the interface module 202. The interface module 202 may also receive information such as packets traversing a communication network, as described herein. In exemplary embodiments, the interface module 202 may be further configured to communicate with a global management system (not shown). The global management system may configure, monitor, and manage the optimization device 108 in real-time.


The optimization module 204 may perform various tasks related to the optimization device 108. For example, the optimization module 204 may be configured to store and retrieve copies of the packets, or data therefrom, received by the interface module 202. Furthermore, information stored by the optimization module 204, such as the copies of the packets, or data therefrom, may be synchronized with that of other optimization devices in communication via the network 104. Synchronization of the information may occur continuously, periodically, or after certain prompts, such as the interface module 202 receiving a packet of which a copy has not previously been stored by the optimization module 204. Exemplary methods for synchronizing the information stored by various optimization devices, such as network memory devices, are described in U.S. Pat. No. 8,489,562 issued on Jul. 16, 2013 and entitled “Deferred Data Storage,” which is hereby incorporated by reference.


In exemplary embodiments, the copies of the packets may be stored in blocks by the optimization module 204. Generally speaking, a block may be a collection of consecutive bytes of data that are read from or written to a memory device (such as a disk) as a group. In some cases, the block may be further described as a unit of information comprising one or more of identification codes, data, or error-checking codes. In one embodiment, each of the blocks comprises 256 kB. Additionally, the blocks may be referred to as ‘pages’ or ‘network memory pages.


The optimization module 204 may also be configured to determine ‘locally accessible data’ of other optimization devices. The locally accessible data of a given optimization device 108 may be described as data that is transferable to a computer by the given optimization device 108 without being transferred over the network 104. Additionally, the locally accessible data may be stored internal to or external to the optimization devices 108. The optimization device 108 may maintain data structures which track which data is locally accessible at each site 102. In exemplary embodiments, the optimization device 108 may keep track of which blocks (e.g., 256 kB blocks or pages) are locally accessible at each site 102.


The optimization module 204 may further comprise a compression/decompression engine that may be configured to compress packet data from packets that are being sent from within the site that includes the optimization device 108 to a remote site across the network 104. The compression/decompression engine may be further configured to decompress the packet data from the packets that is received from the remote site. The compression and decompression of the packet may be based, at least partially, on predictions of subsequent characters.


The storage module 206 may be configured to store various types of information. For example, the storage module 206 may store copies of the packets, or data therefrom, received by the interface module 202 as local instances. The locally accessible data, in turn, may comprise the local instances and be stored by the storage module 206. The locally accessible data may be stored as blocks in exemplary embodiments. Additionally, the storage module 206 may be synchronized with storage modules of other optimization devices, as discussed herein.


In one example, again referring to FIG. 1, the interface module 202 of the optimization device 108A may receive a transferred packet sent by the computer 106A directed to the computer 106B over the network 104. The compression/decompression engine of the optimization device 108A may compress the packet data from the received packet. The compressed packet data may then be transferred over the network 104 to the optimization device 108B. Accordingly, the compression/decompression engine of the optimization device 108B may decompress the compressed packet data to obtain the packet data from the transferred packet as originally sent by the computer 106A.



FIG. 3 depicts an exemplary environment for dynamic monitoring and authorization of an optimization device via a portal. In FIG. 3, optimization device 108A is connected to a portal 302 through the network 308. The portal 302 may maintain information about the authorization of the optimization device 108A and receive information regarding its usage. The portal 302 may be located in a cloud, or in any other central location accessible to all optimization devices connected to one another via an overlay network. Portal 302 may provide service to multiple optimization devices simultaneously. In various embodiments, the portal 302 contains a database of information, such as service provider, customer name, information regarding the customer's sites, and usage of the optimization software at each site. Fewer or additional fields may also be stored in the database of information. There may be any number of portals located in the cloud. Each portal may have a database of information for a single service provider, or for any number of service providers. Additionally, the portal(s) may maintain data in other data structures other than a database, as understood by a person of ordinary skill in the art.


In various embodiments, portal 302 maintains information regarding authorized parameters for the operation of each optimization device. Authorized parameters for an optimization device may comprise such information as data processing capacity, data processing capacity or operation time for a specified time period (such as a specified processing capacity or operation time for a single day, week, month, or year), cumulative data processing capacity or operation time, data rate limit, operation expiry time, operation expiry data limit, operation warning time, operating warning data limit, refresh time, refresh data limit, and/or other parameters for operation of the optimization device, as will be understood by a person of ordinary skill in the art. In an exemplary embodiment, an optimization device may be authorized to process 10 GB of data, regardless of time. In other embodiments, an optimization device may be authorized to process up to 10 GB of data within a specified number of days.


When a customer initializes the optimization device 108A at a site, the customer may be prompted on the user interface to enter login information such as the name of the service provider, customer name, site, and password. Various fields may also be pre-configured such that the customer only need enter one or more fields, or none of the fields. Optimization device 108A may obtain various login fields from the user, from the software container, or a combination of both. Certain parameters for pre-configuring optimization device 108A may come from an OVA file (VMware format) and already be within the software container. At initialization, optimization device 108A software may retrieve initialization parameters from the software container. As will be understood by persons of ordinary skill in the art, an OVA file (open virtual appliance or application) is one example of a software container.


As part of the initialization process, the optimization device 108A sends the login information to the portal 302 in an authorization request message 304. The authorization request message 304 comprises information about the optimization device 108A, such as name of service provider, user name, password, any information regarding past usage, and/or other fields as will be understood by a person of ordinary skill in the art. In various embodiments, the authorization request message 304 comprises fewer or additional data items, or any combination of data items. Also, in some embodiments, the components of the authorization request message 304 may be sent over multiple messages.


The portal 302 processes the authorization request, and determines authorized parameters for optimization device 108A. Portal 302 sends an authorization response message 306 to the optimization device 108A with information regarding capability parameters for operation of optimization device 108A. The parameters permit or restrain various operations of the device, and contain information regarding one or more thresholds at which certain events occur. In exemplary embodiments, the parameters may comprise an amount of data that can be processed by the optimization device 108A, a rate limit of data that can be processed by the optimization device 108A within a specified period of time, an expiry time for the device, a time limit for the device to send a usage report to the portal 302, and/or other information. The parameters may also comprise an amount of data that can be received or transmitted by the optimization device 108A on the LAN side (through local area network 110A), and/or an amount of data that can be received or transmitted on the WAN side (through network 308). In various embodiments, the authorization response message 306 comprises fewer or additional data items, or any combination of data items, as will be understood by a person of ordinary skill in the art. The authorization response message 306 may also be comprised of multiple individual messages.


The authorization response message 306 may authorize the optimization device 108A to operate for a discrete period of time. Any discrete time period may be authorized by the authorization response message. In exemplary embodiments, the authorization response message 306 also comprises a device expiry time or data limit, warning time or data limit, and a refresh time or data limit at which the optimization device 108A should send another authorization request message before an expiry parameter is reached. For example, if optimization device 108A is authorized to process 10 GB of data before the expiry time, the authorization response message 306 may specify that the optimization device 108A should send a new authorization request message when 6 GB of data has been processed, a warning should be sent when 8 GB of data has been processed and no updated authorization response message has been received, and the optimization device 108A should be disabled when 10 GB of data has been processed without an updated authorization response message with updated capability parameters being received by the optimization device 108A.


In an exemplary embodiment, the portal 302 may receive successful login information from an optimization device 108A in an authorization request message 304 on any given date, such as May 1, 2014. The portal 302 may contain information that the device is authorized to operate for one year, i.e. until Apr. 30, 2015. The portal 302 may send the device an authorization response message that states that the device is authorized to operate until May 31, 2014 and must report its usage to the portal 302 by May 30, 2014.


Portal 302 may specify to optimization device 108A that its usage information must be reported back to it on a periodic schedule, when a certain threshold has been surpassed (such as a certain amount of time, specified date, or amount of data processed), or as requested by a network administrator.


Before a device's allotted authorized parameter(s) is depleted, the optimization device 108A may automatically send an updated authorization request message to the portal 302. The updated authorization request message may comprise information regarding the actual usage of the software, the time period for the usage, and/or other data items from the original authorization request message 304, as discussed above.


In response, the portal 302 may send the optimization device 108A an updated authorization response message with updated capability parameters. The updated capability parameters may comprise an additional allotment of time and/or data processing capacity for optimization device 108A. The updated authorization response message may be refreshed periodically, such as hourly, weekly, on an as-needed basis, or at a time specified by a previous authorization response message.


In exemplary embodiments, if the expiry parameter is reached before the portal 302 receives usage information from the optimization device 108A, portal 302 will not send optimization device 108A an updated authorization response message. In this case, optimization device 108A may undertake an expiry action, such as ceasing to operate and the data traffic flowing to the device through network 308 or computer 106A may be dropped. In various embodiments, the data traffic may be passed through the device without the application of any data optimization techniques, the data traffic may be forwarded to another optimization device with limited data optimization applied, or optimization device 108A may operate at a limited capacity. To extend the expiry date of optimization device 108A, the device must report its usage to the portal 302 in an updated authorization request message, or in a separate message.


In various embodiments, the authorization response message 306 may also contain configuration information from portal 302 to enable the customer at site 102A to configure systems at site 102A. The configuration information may also be applicable to multiple sites of the customer. The configuration information may be site-specific, customer-specific, or any other type of configuration information. The configuration information may be included as part of the authorization response message 306, or may be in a separate message.


In various embodiments, site 102A may also comprise a firewall 312A, deployed between the portal 302 and the optimization device 108A. The optimization device 108A sends an authorization request message 304 to portal 302 through firewall 312A. Typically, in order for the optimization device 108A to receive an authorization response message 306, the communication should be initiated by the optimization device 108A, or the firewall 312A will block the incoming message. In these embodiments, the optimization device 108A cannot receive an authorization response message until an authorization request message is first sent by the optimization device. As such, the optimization device will not continue to be authorized to operate if usage information to monitor the optimization device is not sent by optimization device 108A to portal 302.


Optimization device 108A may transmit authorization request message 304 to portal 302 in a secure format, such as an https message, or any other secure format as understood by a person of ordinary skill in the art. The secure format of the authorization request message (such as an HTTPS message) may allow the message from optimization device 108A to traverse firewall 312A. The portal 302 may also transmit the authorization response message through a secure format to optimization device 108A. The authorization response message from portal 302 can traverse firewall 312A since the request initiated from optimization device 108A.



FIG. 4A depicts an exemplary message sequence chart for the dynamic monitoring and authorization of an optimization device 108. In the initialization phase of optimization device 108, the device sends an authorization request message to portal 302, in step 402. Initialization may occur upon first installation of optimization device 108, or upon re-starting of the device, such as after a power failure. As discussed herein, the initial authorization request message may comprise login information such as service provider, customer name, site, and password. In step 404, portal 302 processes the authorization request, by verifying the information in the authorization request message. Portal 302 determines authorized capability parameters for optimization device 108 in step 406, and transmits an authorization response message with these capability parameters in step 408. As discussed herein, authorization response message may comprise any or all of a number of data items, including, but not limited to, a time for device 108 to send an updated authorization request (also referred to herein as a ‘refresh time’), a warning time, and an expiry time for optimization device


After initialization, continued authorization of optimization device 108 proceeds by the optimization device 108 transmitting an updated authorization request message in step 410 to portal 302. The updated authorization request message includes usage information of the device, time, and/or other parameters as specified by the initial capability parameters. In step 414, portal 302 processes the updated authorization request, which may comprise determining that the usage information is current and within the allotted limit for the device. If the usage information is not within the allotted limit for the device, then portal 302 may or may not reply. If a reply is sent, it is with parameters to constrain further operations, as described further below in reference to FIGS. 4A and 4B. If the usage information is within the allotted limit, portal 302 determines updated capability parameters for the device in step 416, including an updated time for next authorization request (refresh time) and an updated expiry time (item 424 in FIG. 4A). Portal 302 transmits an updated authorization response message with these updated capability parameters to optimization device 108 in step 420. In order for optimization device 108 to avoid an expiry action, the device must receive the updated authorization response for continued operation before the initial expiry time 422 specified in the initial authorization response message from step 408 is reached. Updated authorization request and response messages may continue to be transmitted and received any number of times between optimization device 108 and portal 302 for continued operation of the device.



FIG. 4B depicts an exemplary message sequence chart for the unsuccessful continued authorization of an optimization device 108. In the exemplary embodiment depicted, a last expiry time 430 is reached before updated capability parameters are received by the optimization device 108 from portal 302. The last expiry time 430 may comprise the initial expiry time 422, updated expiry time 424, or any subsequent expiry time received by the optimization device 108 in an authorization response message from portal 302. Optimization device 108 may not receive updated capability parameters from portal 302 for any number of reasons, such as failure to transmit an updated authorization request message, failure to transmit current usage information in the updated authorization request message, a determination by portal 302 that optimization device 108 has depleted its authorized allotment for operation, or the updated authorization request or response message may have been dropped or delayed by network 308.


Since optimization device 108 is not authorized to continue to operate beyond the last expiry time 430, it performs an expiry action in step 432. As discussed herein, an expiry action may comprise the device ceasing to operate altogether, operating without any optimization, or operating at a limited capacity.


In some embodiments, optimization device 108 may continue to attempt to become operational again by sending an updated authorization request message in step 434 to portal 302. In an exemplary embodiment, portal 302 may process the authorization request in step 436 and transmit an authorization response message with capability parameters including the last expiry time 430 or some other time in the past, in step 438. Since the expiry time in the capability parameters received by the optimization device 108 is already past, the device is not authorized to continue to operate.


In another exemplary embodiment, optimization device 108 may transmit an updated authorization request message to portal 302 in step 440. Portal 302 may process the authorization request and determine that the request is deficient and optimization device 108 is not authorized to continue to operate. The request may be deficient for any number of reasons, such as not including a usage report, a usage report being outdated, or the authorized allotment of optimization device 108 having been depleted. In some embodiments, portal 302 simply does not respond to the updated authorization request message from step 440 after determining in step 442 that optimization device 108 is not authorized to continue to operate.


After failing to receive updated capability parameters, optimization device 108 may continue to send an updated authorization request message in step 444 to portal 302. Again, the portal 302 may determine in step 446 that optimization device 108 is not authorized to continue to operate, and simply not respond to the updated authorization request message from step 444. In various embodiments, after the expiry action is performed in step 432, optimization device 108 may continue to transmit an updated authorization request message to attempt to become operational again a specified number of times, at specified intervals, upon initiation by a user of the optimization device 108, or as directed by a network administrator.


Optimization device 108 may also continue to send updated authorization request messages to portal 302 at increasing intervals. For example, optimization device 108 may send updated authorization request message 434 to portal 302 at 5 minutes past the expiry action, whereas updated authorization request message 440 may be transmitted at 30 minutes past the expiry action, and updated authorization request message 444 may be transmitted at 90 minutes past the expiry action. In other embodiments, multiple days or months may transpire between optimization device 108 transmitting updated authorization request messages to portal 302.


Furthermore, as time passes, optimization device 108 may undertake progressively increasing expiry actions. For example, at a certain time limit, optimization device 108 may continue to optimize data traffic but at a limited rate. At a later time limit, optimization device 108 may simply pass network data through without applying any optimization techniques. At an even later time limit, optimization device 108 may cease to operate entirely. Even though optimization device 108 ceases to operate, it may still continue to re-authorize its operation by continuing to transmit authorization request messages to portal 302.


While the exemplary embodiment of FIG. 4B refers to capability parameters as time limits, other thresholds are also applicable as discussed herein. For example, an expiry parameter of an expiry data limit may be used, instead of expiry time.



FIG. 5 is a flowchart depicting an exemplary method 500 for the dynamic monitoring and authorization of an optimization device by a portal. The method may be performed by one or more optimization devices in the network. Additionally, steps of the method may be performed in varying orders or concurrently. Furthermore, various steps may be added, removed, or combined in the method and still fall within the scope of the present invention.


In step 502, portal 302 receives an updated authorization request message from an optimization device 108. Portal 302 processes the request and determines whether the authorization request message contains current information regarding the usage of the optimization device 108, in step 504. As discussed herein, usage information can be a data amount transmitted, data amount received, data rate limit, device operation time, or any other parameter(s) for operation of the optimization device 108.


Portal 302 then determines if continued usage of optimization device 108 is authorized in step 506. Continued usage may be authorized if the updated authorization request message contains current usage information, and/or device 108 has not exceeded authorized operational limits. If continued usage of optimization device 108 is authorized, portal 302 determines new capability parameters for the device in step 508 and transmits these in an updated authorization response message to the optimization device 108 in step 510. Portal 302 then waits for the next updated authorization request message from the optimization device 108.


If continued device usage is not authorized, portal 302 may either send the optimization device 108 a response message with capability parameters that constrain operations, such as an expiry time less than or equal to the current time, in step 512. Portal 302 may also respond to optimization device 108 in other ways as well, such as with a flag or message stating that the request to continue operations is denied. As will be understood by a person of ordinary skill in the art, these are just two examples of ways that portal 302 can signal to optimization device 108 that its continued operation is not authorized. Alternatively, portal 302 may simply not reply to the request message, as depicted in step 514. Portal 302 may continue to wait for a next updated authorization request message from the optimization device 108. In exemplary embodiments, if an updated authorization request message with current usage information is not received by portal 302 within a specified time frame, the expiry time for optimization device 108 may be reached without an authorization response message being transmitted to the device. As discussed herein, optimization device 108 may then be disabled or operate at limited capacity until a new authorization response message is received by the device. While the exemplary embodiment of FIG. 5 refers to an expiry time capability parameter, other types of thresholds are also applicable as discussed herein. For example, portal 302 may determine whether device usage is authorized in step 506 based on an authorized data limit. If not, then the portal may send a message to the optimization device to constrain operations, such as with an expiry data limit less than or equal to the amount used, in step 512.



FIG. 6 is a flowchart depicting an exemplary method 600 performed by an optimization device for continued operation. In step 602, optimization device 108 determines whether a current time or data amount used is greater than or equal to an expiry parameter determined from the most recent authorization response message received by the device. If the current time or data amount used is greater than or equal to the expiry parameter, then optimization device 108 performs an expiry action in step 604. As discussed herein, the expiry action may comprise the device ceasing to operate, or operating at a limited capacity. In step 606, optimization device 108 sets a time or data amount threshold for transmitting a next authorization request message that is greater than the current time or data amount used, and sends the request message to portal 302 at the specified time.


If the current time or data usage is not greater than or equal to the device's expiry parameter, optimization device 108 determines if the current time or data usage is greater than or equal to a warning parameter, in step 608. If so, a warning is displayed in step 610. The warning may be displayed on a graphical user interface of the optimization device 108, or may be transmitted to the user of the optimization device 108 by email, by simple network management protocol (SNMP) trap, or any other means. In exemplary embodiments, the optimization device 108 may automatically send an updated authorization request message to portal 302 if the warning threshold has been reached or exceeded.


If the current time is not greater than or equal to the device's warning parameter, optimization device 108 determines in step 612 if the current time is greater than or equal to a refresh parameter specified by the last authorization response message received by the device. If so, the device sends an updated authorization request message to portal 302 in step 614. The device may optionally also set a threshold time or data usage for a next authorization request message to be sent to the portal if no response is received.


In step 616, the device determines if an authorization response has been received from portal 302. If so, some or all threshold limits (expiry parameter, warning parameter, and refresh parameter) may be updated in step 618 in accordance with the capability parameters from the authorization response message. The device then continues to check whether any of the updated threshold limits have been exceeded by returning to step 602. If no authorization response message is received in step 616, then the device may set a threshold for sending a next request in step 620 and return to step 602 to continue to check whether the most recent threshold limits have been exceeded.


In various embodiments, optimization device 108 may continue this loop for a set number of times as determined by initial configuration settings of the optimization device 108, as specified by an authorization response message, or as directed by a network administrator.


While the exemplary embodiment of FIG. 6 has been described in terms of threshold time limits, other parameters for operating the device may also be used for the threshold limits, as understood by a person of ordinary skill in the art. For example, optimization device 108 may use data processing capacity as the parameter, and check whether the capacity has exceeded an expiry amount, warning amount, or refresh amount.



FIG. 7 depicts another exemplary environment for dynamic monitoring and authorization of an optimization device. In the exemplary embodiment of FIG. 7, optimization device 108A is at a customer site, and optimization device 108B is at a service provider's site. Optimization devices 108A and 108B are in communication with portal 302. In an exemplary embodiment, optimization device 108B may be located in a cloud, and the service provider may be a cloud-based service, managed by service provider manager 704 via a management interface. Communications between the various devices of FIG. 7 may occur over a network, or multiple inter-connected networks, like the Internet. As understood by a person of ordinary skill in the art, there can be any number of hops along the one or more networks connecting the various devices of FIG. 7.


In various embodiments, optimization device 108A at customer site is protected by firewall 712A. The service provider's site, including optimization device 108B, is protected by firewall 712B. Firewalls 712A and 712B may be software firewalls, or hardware firewalls. To access the service provider, firewall 712B at service provider's site needs to be configured to allow incoming data traffic from the customer using optimization device 108A.


As understood by a person of ordinary skill in the art, each firewall may be configured to allow or deny communication using any number of parameters. For example, firewall 712B may be configured to only allow incoming communication from optimization device 108A if it originates from a certain port, IP address or subnet, or the communication is of a certain protocol. Furthermore, firewall 712B may be configured to allow incoming communication from optimization device 108A only if optimization device 108B has previously sent optimization device 108A an outgoing message.


In various embodiments, optimization device 108A, optimization device 108B, and service provider manager 704 can access portal 302 using a common protocol, such as HTTP or HTTPS. Even though optimization device 108A is behind firewall 712A and optimization device 108B and service provider manager 704 are behind firewall 712B, each entity can traverse the firewalls and communicate with portal 302 if it initiates the communication with portal 302.


To enable optimization device 108A to communicate with optimization device 108B through firewall 712B, the service provider manager 704 may send firewall configuration information to portal 302, and also send corresponding firewall configuration information to firewall 712B at the service provider's site. Portal 302 may in turn send this information to optimization device 108A through an authorization response message, or in a separate message. For example, optimization device 108A sends portal 302 an authorization request message 304 to become operational, or continue to operate. As part of the authorization request message 304, or in a separate message, optimization device 108A can also request configuration information to connect to optimization device 108B at a service provider.


Portal 302 then transmits an authorization response message to optimization device 108A, authorizing the device to operate for a certain period of time. As part of the authorization response message, or in a separate message, portal 302 also transmits configuration information to optimization device 108A that specifies parameters to allow data traffic from optimization device 108A to correspond to configured parameters of firewall 712B so that optimization devices 108A and 108B can communicate with each other without being blocked by firewalls 712A and 712B.


Similarly, portal 302 may also send firewall configuration information to optimization device 108B through an authorization response message, or in a separate message. Service provider manager 704 may also configure firewall 712B directly. Since optimization device 108A and firewall 712B have compatible firewall configuration information from service provider manager 704, data traffic may also flow from optimization device 108B to optimization device 108A.


In various embodiments, a secure communications channel is also established between optimization device 108A and optimization device 108B. The channel is depicted in FIG. 7 as tunnel 710. To enable the establishment of tunnel 710, the service provider sends to portal 302 configuration information for tunnel 710 via a management interface at service provider manager 704. Portal 302 may in turn send this information to optimization device 108A in an authorization response message 306, or in a separate message. In this way, portal 302 maintains information necessary to enable the establishment of tunnel 710. Since tunnel configuration information transmitted to optimization device 108A originates from a single location (service provider manager 704), the configuration information for tunnel 710 should be compatible between the customer site and the service provider's site, facilitating the establishment of tunnel 710. This reduces the possibility of errors introduced by two independent configuration steps. As understood by a person of ordinary skill in the art, tunnel configuration information may comprise tunnel parameters, encryption keys, network addresses, or any other information to facilitate the establishment of the communication channel.


Tunnel 710 may be any type of secure communications channel, such as an SSL/TLS or Internet Protocol Security (IPsec) tunnel, and facilitates data transfer between optimization device 108A and optimization device 108B by traversing any firewalls, such as firewalls 712A and 712B. In exemplary embodiments, tunnel 710 may carry data traveling between optimization devices 108A and 108B. The data may have one or more data optimization techniques applied to it by optimization devices 108A and/or 108B as discussed herein, such as data deduplication, performance enhancing proxy, acceleration, WAN optimization, encryption, compression, etc.


In exemplary embodiments, the service provider can remotely access optimization device 108A via portal 302 to help debug any connection problems between optimization devices 108A and 108B, and manage optimization device 108A. The service provider may be able to manage optimization device 108A tunnel 710, and will not be blocked from accessing optimization device 108A by firewall 712A since tunnel 710 is already set up. Or, the service provider may manage optimization device 108A via portal 302, even if tunnel 710 is not operational or firewall 712A blocks incoming communication from the service provider. The service provider can still remotely access optimization device 108A through portal 302, since the communication channel between optimization device 108A and portal 302 is already available. In various embodiments, a user at optimization device 108A may enable or disable a remote management feature to allow or disallow a service provider from accessing optimization device 108A.



FIG. 8 depicts another exemplary environment for dynamic monitoring and authorization of an optimization device. In the exemplary embodiment of FIG. 8, optimization device 108A is at a customer site, and optimization device 108B is at a service provider's site. Optimization devices 108A and 108B are in communication with portal 302. In an exemplary embodiment, optimization device 108B may be located in a cloud, and the service provider may be a cloud-based service, managed by service provider manager 704 via a management interface. Communications between the various devices of FIG. 8 may occur over a network, or multiple inter-connected networks, like the Internet. As understood by a person of ordinary skill in the art, there can be any number of hops along the one or more networks connecting the various devices of FIG. 8.


In various embodiments, optimization device 108A is protected by firewall 712A. The service provider's site, including optimization device 108B, is protected by firewall 712B. Firewalls 712A and 712B may be software firewalls, or hardware firewalls. To access the service provider, firewall 712B at service provider's site needs to be configured to allow incoming data traffic from the customer using optimization device 108A.


As understood by a person of ordinary skill in the art, each firewall may be configured to allow or deny communication using any number of parameters. For example, firewall 712B may be configured to only allow incoming communication from optimization device 108A if it originates from a certain port, IP address or subnet, or the communication is of a certain protocol. Furthermore, firewall 712B may be configured to allow incoming communication from optimization device 108A only if optimization device 108B has previously sent optimization device 108A an outgoing message.


In various embodiments, optimization device 108A, optimization device 108B, and service provider manager 704 can access portal 302 using a common protocol, such as http or https. Even though optimization device 108A is behind firewall 712A and optimization device 108B and service provider manager 704 are behind firewall 712B, each entity can traverse the firewalls and communicate with portal 302 if it initiates the communication with portal 302.


To enable optimization device 108A to communicate with optimization device 108B through firewall 712B, the service provider manager 704 may send firewall configuration information to portal 302, and also send corresponding firewall configuration information to firewall 712B at the service provider's site. Portal 302 may in turn send this information to optimization device 108A through an authorization response message, or in a separate message. For example, optimization device 108A sends portal 302 an authorization request message 304 to become operational, or continue to operate. As part of the authorization request message 304, or in a separate message, optimization device 108A can also request configuration information to connect to optimization device 108B at a service provider.


Portal 302 then transmits an authorization response message to optimization device 108A, authorizing the device to operate for a certain period of time. As part of the authorization response message, or in a separate message, portal 302 also transmits configuration information to optimization device 108A that specifies parameters to allow data traffic from optimization device 108A to correspond to configured parameters of firewall 712B so that optimization devices 108A and 108B can communicate with each other without being blocked by firewalls 712A and 712B.


Similarly, portal 302 may also send firewall configuration information to optimization device 108B through an authorization response message, or in a separate message. Service provider manager 704 may also configure firewall 712B directly. Since optimization device 108A and firewall 712B have compatible firewall configuration information from service provider manager 704, data traffic may also flow from optimization device 108B to optimization device 108A.


In various embodiments, a secure communications channel is established between optimization device 108A and firewall 712B. The channel is depicted in FIG. 8 as tunnel 810. To enable the establishment of tunnel 810, the service provider sends to portal 302 configuration information for tunnel 810 via a management interface at service provider manager 704. Portal 302 may in turn send this information to optimization device 108A in an authorization response message 306, or in a separate message. In this way, portal 302 maintains information necessary to enable the establishment of tunnel 810. Similarly, service provider manager 704 may configure the firewall at the service provider's site, firewall 712B, to allow incoming traffic via tunnel 810. The firewall 712B also maintains configuration information for tunnel 810, and may also be configured to allow the creation of a VPN tunnel.


Since tunnel configuration information transmitted to optimization device 108A originates from a single location (service provider manager 704), the configuration information for tunnel 810 will be compatible at each site, facilitating the establishment of tunnel 810. As understood by a person of ordinary skill in the art, tunnel configuration information may comprise tunnel parameters, encryption keys, network addresses, or any other information to facilitate the establishment of the communication channel.


Tunnel 810 may be any type of secure communications channel, such as an SSL/TLS or Internet Protocol Security (IPsec) tunnel, and facilitates data transfer between optimization device 108A and optimization device 108B by traversing any firewalls, such as firewalls 712A and 712B. In exemplary embodiments, tunnel 810 may carry data traveling between optimization devices 108A and 108B. The data may have one or more data optimization techniques applied to it by optimization devices 108A and/or 108B as discussed herein, such as data deduplication, performance enhancing proxy, acceleration, WAN optimization, encryption, compression, etc.


Thus, methods and systems for the dynamic monitoring and authorization of an optimization device are disclosed. Although embodiments have been described with reference to specific example embodiments, it will be evident that various modifications and changes can be made to these example embodiments without departing from the broader spirit and scope of the present application. Therefore, these and other variations upon the exemplary embodiments are intended to be covered by the present disclosure. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A computer-implemented method for operating an optimization device in a network, the method comprising: receiving at a portal an authorization request message from the optimization device, the authorization request message comprising information identifying a service provider;processing at the portal information in the authorization request message from the optimization device;determining that the optimization device is authorized for initial operation;receiving at the portal from the service provider, firewall configuration information usable to form a secure channel with a different optimization device behind a firewall, wherein the optimization device is outside the firewall, the different optimization device is configured with corresponding firewall configuration information and the firewall configuration information comprises at least one of an originating port associated with a communication that the firewall allows to pass through the firewall, an Internet Protocol (IP) address associated with a communication that the firewall allows to pass through the firewall, a subnet associated with a communication that the firewall allows to pass through the firewall, or a protocol associated with a communication that the firewall allows to pass through the firewall; andsending the firewall configuration information to the optimization device such that the optimization device forms the secure channel with the different optimization device.
  • 2. The method of claim 1, wherein the service provider is a cloud-based service, the optimization device is at a customer site, the different optimization device is at a site of the service provider and located in a cloud, and both the optimization device and the different optimization device are in communication with the portal.
  • 3. The method of claim 1, wherein the firewall configuration information is sent to the optimization device as part of an authorization response message.
  • 4. The method of claim 1, further comprising: sending the corresponding firewall configuration information to the different optimization device.
  • 5. The method of claim 1, wherein the corresponding firewall configuration information is sent to the different optimization device as part of a second authorization response message to the different optimization.
  • 6. The method of claim 1, wherein the firewall is configured by a service provider manager at a site of the service provider.
  • 7. The method of claim 6, wherein the optimization device is remotely accessed by the service provider manager via the portal.
  • 8. The method of claim 1, wherein the secure channel is a tunnel and configuration information for the tunnel is maintained at the firewall to allow creation of a virtual private network (VPN) tunnel.
  • 9. The method of claim 1, wherein the secure channel is a tunnel and one or more data optimization techniques are applied to data travelling between the optimization device and the different optimization device by the optimization device and the different optimization device.
  • 10. The method of claim 9, wherein the one or more data optimization techniques comprise at least one of data deduplication, performance enhancing proxy, acceleration, wide area network (WAN) optimization, encryption, or compression.
  • 11. A system for operating an optimization device in a network, the system comprising: at least one processor; andmemory storing instructions that, when executed by the at least one processor, cause the system to perform a method comprising: at a portal an authorization request message from the optimization device, the authorization request message comprising information identifying a service provider;processing at the portal information in the authorization request message from the optimization device;determining that the optimization device is authorized for initial operation;receiving at the portal from the service provider, firewall configuration information usable to form a secure channel with a different optimization device behind a firewall, wherein the optimization device is outside the firewall, the different optimization device is configured with corresponding firewall configuration information, and the firewall configuration information comprises at least one of an originating port associated with a communication that the firewall allows to pass through the firewall, an Internet Protocol (IP) address associated with a communication that the firewall allows to pass through the firewall, a subnet associated with a communication that the firewall allows to pass through the firewall, or a protocol associated with a communication that the firewall allows to pass through the firewall; andsending the firewall configuration information to the optimization device such that the optimization device forms the secure channel with the different optimization device.
  • 12. The system of claim 11, wherein the service provider is a cloud-based service, the optimization device is at a customer site, the different optimization device is at a site of the service provider and located in a cloud, and both the optimization device and the different optimization device are in communication with the portal.
  • 13. The system of claim 11, wherein the firewall configuration information is sent to the optimization device as part of an authorization response message.
  • 14. The system of claim 11, wherein the instructions cause the system to perform the method further comprising: sending the corresponding firewall configuration information to the different optimization device.
  • 15. The system of claim 11, wherein the corresponding firewall configuration information is sent to the different optimization device as part of a second authorization response message to the different optimization.
  • 16. A non-transitory computer-readable storage medium including instructions that, when executed by at least one processor of a computing system, cause the computing system to perform a method for operating an optimization device in a network, the method comprising: receiving at a portal an authorization request message from the optimization device, the authorization request message comprising information identifying a service provider;processing at the portal information in the authorization request message from the optimization device;determining that the optimization device is authorized for initial operation;receiving at the portal from the service provider, firewall configuration information usable to form a secure channel with a different optimization device behind a firewall, wherein the optimization device is outside the firewall, the different optimization device is configured with corresponding firewall configuration information, and the firewall configuration information comprises at least one of an originating port associated with a communication that the firewall allows to pass through the firewall, an Internet Protocol (IP) address associated with a communication that the firewall allows to pass through the firewall, a subnet associated with a communication that the firewall allows to pass through the firewall, or a protocol associated with a communication that the firewall allows to pass through the firewall; andsending the firewall configuration information to the optimization device such that the optimization device forms the secure channel with the different optimization device.
  • 17. The non-transitory computer-readable storage medium of claim 16, wherein the service provider is a cloud-based service, the optimization device is at a customer site, the different optimization device is at a site of the service provider and located in a cloud, and both the optimization device and the different optimization device are in communication with the portal.
  • 18. The non-transitory computer-readable storage medium of claim 16, wherein the firewall configuration information is sent to the optimization device as part of an authorization response message.
  • 19. The non-transitory computer-readable storage medium of claim 16, wherein the instructions cause the system to perform the method further comprising: sending the corresponding firewall configuration information to the different optimization device.
  • 20. The non-transitory computer-readable storage medium of claim 16, wherein the corresponding firewall configuration information is sent to the different optimization device as part of a second authorization response message to the different optimization.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims the priority benefit of U.S. patent application Ser. No. 17/139,795 filed on Dec. 31, 2020, which is a continuation of and claims the priority benefit of U.S. patent application Ser. No. 16/875,866 filed May 15, 2020, now U.S. Pat. No. 10,885,156 issued on Jan. 5, 2021, which is a continuation of and claims the priority benefit of U.S. patent application Ser. No. 15/856,669 filed on Dec. 28, 2017, now U.S. Pat. No. 10,719,588 issued on Jul. 21, 2020, which is a continuation of and claims the priority benefit of U.S. patent application Ser. No. 14/479,131 filed on Sep. 5, 2014, now U.S. Pat. No. 9,875,344 issued on Jan. 23, 2018. The disclosures of the above-referenced applications are incorporated by reference herein in their entirety for all purposes.

US Referenced Citations (600)
Number Name Date Kind
4494108 Langdon et al. Jan 1985 A
4558302 Welch Dec 1985 A
4612532 Bacon et al. Sep 1986 A
5023611 Chamzas et al. Jun 1991 A
5159452 Kinoshita et al. Oct 1992 A
5243341 Seroussi et al. Sep 1993 A
5307413 Denzer Apr 1994 A
5357250 Healey et al. Oct 1994 A
5359720 Tamura et al. Oct 1994 A
5373290 Lempel et al. Dec 1994 A
5483556 Pillan et al. Jan 1996 A
5532693 Winters et al. Jul 1996 A
5592613 Miyazawa et al. Jan 1997 A
5602831 Gaskill Feb 1997 A
5608540 Ogawa Mar 1997 A
5611049 Pitts Mar 1997 A
5612682 DeLuca Mar 1997 A
5627533 Clark May 1997 A
5635932 Shinagawa et al. Jun 1997 A
5652581 Furlan et al. Jul 1997 A
5659737 Matsuda Aug 1997 A
5675587 Okuyama et al. Oct 1997 A
5710562 Gormish et al. Jan 1998 A
5748122 Shinagawa et al. May 1998 A
5754774 Bittinger et al. May 1998 A
5802106 Packer Sep 1998 A
5805822 Long et al. Sep 1998 A
5883891 Libove et al. Mar 1999 A
5903230 Masenas May 1999 A
5955976 Heath Sep 1999 A
6000053 Levine et al. Dec 1999 A
6003087 Housel et al. Dec 1999 A
6054943 Lawrence Apr 2000 A
6081883 Popelka et al. Jun 2000 A
6084855 Soirinsuo et al. Jul 2000 A
6175944 Urbanke et al. Jan 2001 B1
6191710 Waletzki Feb 2001 B1
6240463 Benmohamed et al. May 2001 B1
6295541 Bodnar et al. Sep 2001 B1
6308148 Bruins et al. Oct 2001 B1
6311260 Stone et al. Oct 2001 B1
6339616 Kovalev Jan 2002 B1
6374266 Shnelvar Apr 2002 B1
6434191 Agrawal et al. Aug 2002 B1
6434641 Haupt et al. Aug 2002 B1
6434662 Greene et al. Aug 2002 B1
6438664 McGrath et al. Aug 2002 B1
6452915 Jorgensen Sep 2002 B1
6453305 Glassman et al. Sep 2002 B1
6463001 Williams Oct 2002 B1
6489902 Heath Dec 2002 B2
6493698 Boris Dec 2002 B1
6570511 Cooper May 2003 B1
6587985 Fukushima et al. Jul 2003 B1
6614368 Cooper Sep 2003 B1
6618397 Huang Sep 2003 B1
6633953 Stark Oct 2003 B2
6643259 Borella et al. Nov 2003 B1
6650644 Colley et al. Nov 2003 B1
6653954 Rijavec Nov 2003 B2
6667700 McCanne et al. Dec 2003 B1
6674769 Viswanath Jan 2004 B1
6718361 Basani et al. Apr 2004 B1
6728840 Shatil et al. Apr 2004 B1
6738379 Balazinski et al. May 2004 B1
6754181 Elliott et al. Jun 2004 B1
6769048 Goldberg et al. Jul 2004 B2
6791945 Levenson et al. Sep 2004 B1
6823470 Smith et al. Nov 2004 B2
6839346 Kametani Jan 2005 B1
6842424 Key et al. Jan 2005 B1
6856651 Singh Feb 2005 B2
6859842 Nakamichi et al. Feb 2005 B1
6862602 Guha Mar 2005 B2
6910106 Sechrest et al. Jun 2005 B2
6963980 Mattsson Nov 2005 B1
6968374 Lemieux et al. Nov 2005 B2
6978384 Milliken Dec 2005 B1
7007044 Rafert et al. Feb 2006 B1
7020750 Thiyagarajan et al. Mar 2006 B2
7035214 Seddigh et al. Apr 2006 B1
7047281 Kausik May 2006 B1
7069268 Burns et al. Jun 2006 B1
7069342 Biederman Jun 2006 B1
7110407 Khanna Sep 2006 B1
7111005 Wessman Sep 2006 B1
7113962 Kee et al. Sep 2006 B1
7114070 Willming et al. Sep 2006 B1
7120666 McCanne et al. Oct 2006 B2
7145889 Zhang et al. Dec 2006 B1
7149953 Cameron et al. Dec 2006 B2
7177295 Sholander et al. Feb 2007 B1
7197597 Scheid et al. Mar 2007 B1
7200847 Straube et al. Apr 2007 B2
7215667 Davis May 2007 B1
7216283 Shen et al. May 2007 B2
7242681 Van et al. Jul 2007 B1
7243094 Tabellion et al. Jul 2007 B2
7249309 Glaise et al. Jul 2007 B2
7266645 Garg et al. Sep 2007 B2
7278016 Detrick et al. Oct 2007 B1
7318100 Demmer et al. Jan 2008 B2
7359393 Nalawade et al. Apr 2008 B1
7366829 Luttrell et al. Apr 2008 B1
7380006 Srinivas et al. May 2008 B2
7383329 Erickson Jun 2008 B2
7383348 Seki et al. Jun 2008 B2
7388844 Brown et al. Jun 2008 B1
7389357 Duffie et al. Jun 2008 B2
7389393 Karr et al. Jun 2008 B1
7417570 Srinivasan et al. Aug 2008 B2
7417991 Crawford et al. Aug 2008 B1
7420992 Fang et al. Sep 2008 B1
7428573 McCanne et al. Sep 2008 B2
7441039 Bhardwaj Oct 2008 B2
7451237 Takekawa et al. Nov 2008 B2
7453379 Plamondon Nov 2008 B2
7454443 Ram et al. Nov 2008 B2
7457315 Smith Nov 2008 B1
7460473 Kodama et al. Dec 2008 B1
7471629 Melpignano Dec 2008 B2
7496659 Coverdill et al. Feb 2009 B1
7532134 Samuels et al. May 2009 B2
7555484 Kulkarni et al. Jun 2009 B2
7571343 Xiang et al. Aug 2009 B1
7571344 Hughes et al. Aug 2009 B2
7587401 Yeo et al. Sep 2009 B2
7596802 Border et al. Sep 2009 B2
7617436 Wenger et al. Nov 2009 B2
7619545 Samuels et al. Nov 2009 B2
7620870 Srinivasan et al. Nov 2009 B2
7624333 Langner Nov 2009 B2
7624446 Wilhelm Nov 2009 B1
7630295 Hughes et al. Dec 2009 B2
7633942 Bearden et al. Dec 2009 B2
7639700 Nabhan et al. Dec 2009 B1
7643426 Lee et al. Jan 2010 B1
7644230 Hughes et al. Jan 2010 B1
7676554 Malmskog et al. Mar 2010 B1
7698431 Hughes Apr 2010 B1
7702843 Chen et al. Apr 2010 B1
7714747 Fallon May 2010 B2
7746781 Xiang Jun 2010 B1
7764606 Ferguson et al. Jul 2010 B1
7793193 Koch et al. Sep 2010 B2
7810155 Ravi Oct 2010 B1
7826798 Stephens et al. Nov 2010 B2
7827237 Plamondon Nov 2010 B2
7849134 McCanne et al. Dec 2010 B2
7853699 Wu et al. Dec 2010 B2
7873786 Singh et al. Jan 2011 B1
7917599 Gopalan et al. Mar 2011 B1
7924795 Wan et al. Apr 2011 B2
7925711 Gopalan et al. Apr 2011 B1
7941606 Pullela et al. May 2011 B1
7945736 Hughes et al. May 2011 B2
7948921 Hughes et al. May 2011 B1
7953869 Demmer et al. May 2011 B2
7957307 Qiu et al. Jun 2011 B2
7958352 Edgett Jun 2011 B2
7970898 Clubb et al. Jun 2011 B2
7975018 Unrau et al. Jul 2011 B2
7996747 Dell et al. Aug 2011 B2
8046667 Boyce Oct 2011 B2
8069225 McCanne et al. Nov 2011 B2
8072985 Golan et al. Dec 2011 B2
8090027 Schneider Jan 2012 B2
8090805 Chawla et al. Jan 2012 B1
8095774 Hughes et al. Jan 2012 B1
8140757 Singh et al. Mar 2012 B1
8171238 Hughes et al. May 2012 B1
8209334 Doerner Jun 2012 B1
8225072 Hughes et al. Jul 2012 B2
8245315 Cassett Aug 2012 B2
8271325 Silverman et al. Sep 2012 B2
8271847 Langner Sep 2012 B2
8307115 Hughes Nov 2012 B1
8312226 Hughes Nov 2012 B2
8352608 Keagy et al. Jan 2013 B1
8363658 Delker Jan 2013 B1
8370583 Hughes Feb 2013 B2
8379874 Simon Feb 2013 B1
8386797 Danilak Feb 2013 B1
8392684 Hughes Mar 2013 B2
8442052 Hughes May 2013 B1
8447740 Huang et al. May 2013 B1
8473714 Hughes et al. Jun 2013 B2
8489562 Hughes et al. Jul 2013 B1
8516158 Wu Aug 2013 B1
8553757 Florencio et al. Oct 2013 B2
8565118 Shukla et al. Oct 2013 B2
8570869 Ojala et al. Oct 2013 B2
8576816 Lamy-Bergot et al. Nov 2013 B2
8595314 Hughes Nov 2013 B1
8613071 Day et al. Dec 2013 B2
8681614 McCanne et al. Mar 2014 B1
8699490 Zheng et al. Apr 2014 B2
8700771 Ramankutty et al. Apr 2014 B1
8706947 Vincent Apr 2014 B1
8725988 Hughes et al. May 2014 B2
8732423 Hughes May 2014 B1
8738865 Hughes et al. May 2014 B1
8743683 Hughes Jun 2014 B1
8755381 Hughes et al. Jun 2014 B2
8775413 Brown et al. Jul 2014 B2
8811431 Hughes Aug 2014 B2
8843627 Baldi et al. Sep 2014 B1
8850324 Clemm et al. Sep 2014 B2
8885632 Hughes et al. Nov 2014 B2
8891554 Biehler Nov 2014 B2
8913987 Lee et al. Dec 2014 B2
8929380 Hughes et al. Jan 2015 B1
8929402 Hughes Jan 2015 B1
8930650 Hughes et al. Jan 2015 B1
9003541 Patidar Apr 2015 B1
9036662 Hughes May 2015 B1
9054876 Yagnik Jun 2015 B1
9092342 Hughes et al. Jul 2015 B2
9106530 Wang Aug 2015 B1
9130991 Hughes Sep 2015 B2
9131510 Wang Sep 2015 B2
9143455 Hughes Sep 2015 B1
9152574 Hughes et al. Oct 2015 B2
9171251 Camp et al. Oct 2015 B2
9191342 Hughes et al. Nov 2015 B2
9202304 Baenziger et al. Dec 2015 B1
9253277 Hughes et al. Feb 2016 B2
9306818 Aumann et al. Apr 2016 B2
9307442 Bachmann et al. Apr 2016 B2
9363248 Hughes Jun 2016 B1
9363309 Hughes Jun 2016 B2
9380094 Florencio et al. Jun 2016 B2
9397951 Hughes Jul 2016 B1
9438538 Hughes et al. Sep 2016 B2
9549048 Hughes Jan 2017 B1
9584403 Balasubramanian et al. Feb 2017 B2
9584414 Sung et al. Feb 2017 B2
9613071 Hughes Apr 2017 B1
9626224 Hughes et al. Apr 2017 B2
9647949 Varki et al. May 2017 B2
9712463 Hughes et al. Jul 2017 B1
9716644 Wei et al. Jul 2017 B2
9717021 Hughes et al. Jul 2017 B2
9875344 Hughes et al. Jan 2018 B1
9906630 Hughes Feb 2018 B2
9948496 Hughes et al. Apr 2018 B1
9961010 Hughes et al. May 2018 B2
9967056 Hughes May 2018 B1
10091172 Hughes Oct 2018 B1
10164861 Hughes et al. Dec 2018 B2
10257082 Hughes Apr 2019 B2
10313930 Hughes et al. Jun 2019 B2
10326551 Hughes Jun 2019 B2
10432484 Hughes et al. Oct 2019 B2
10637721 Hughes et al. Apr 2020 B2
10719588 Hughes et al. Jul 2020 B2
10771370 Hughes et al. Sep 2020 B2
10771394 Hughes Sep 2020 B2
10805840 Hughes et al. Oct 2020 B2
10812361 Hughes et al. Oct 2020 B2
20010026231 Satoh Oct 2001 A1
20010034712 Colvin Oct 2001 A1
20010054084 Kosmynin Dec 2001 A1
20020007413 Garcia-Luna-Aceves et al. Jan 2002 A1
20020009079 Jungck et al. Jan 2002 A1
20020010702 Ajtai et al. Jan 2002 A1
20020010765 Border Jan 2002 A1
20020040475 Yap et al. Apr 2002 A1
20020056747 Matsuyama et al. May 2002 A1
20020061027 Abiru et al. May 2002 A1
20020065998 Buckland May 2002 A1
20020071436 Border et al. Jun 2002 A1
20020078242 Viswanath Jun 2002 A1
20020101822 Ayyagari et al. Aug 2002 A1
20020107988 Jordan Aug 2002 A1
20020116424 Radermacher et al. Aug 2002 A1
20020129158 Zhang et al. Sep 2002 A1
20020129260 Benfield et al. Sep 2002 A1
20020131434 Vukovic et al. Sep 2002 A1
20020150041 Reinshmidt et al. Oct 2002 A1
20020159454 Delmas Oct 2002 A1
20020163911 Wee et al. Nov 2002 A1
20020169818 Stewart et al. Nov 2002 A1
20020181494 Rhee Dec 2002 A1
20020188871 Noehring et al. Dec 2002 A1
20020194324 Guha Dec 2002 A1
20030002664 Anand Jan 2003 A1
20030009558 Ben-Yehezkel Jan 2003 A1
20030012400 McAuliffe et al. Jan 2003 A1
20030033307 Davis et al. Feb 2003 A1
20030046572 Newman et al. Mar 2003 A1
20030048750 Kobayashi Mar 2003 A1
20030048785 Calvignac et al. Mar 2003 A1
20030067940 Edholm Apr 2003 A1
20030069958 Jalava Apr 2003 A1
20030097592 Adusumilli May 2003 A1
20030123481 Neale et al. Jul 2003 A1
20030123671 He et al. Jul 2003 A1
20030131079 Neale et al. Jul 2003 A1
20030133568 Stein et al. Jul 2003 A1
20030142658 Ofuji et al. Jul 2003 A1
20030149661 Mitchell et al. Aug 2003 A1
20030149869 Gleichauf Aug 2003 A1
20030204619 Bays Oct 2003 A1
20030214502 Park et al. Nov 2003 A1
20030214954 Oldak et al. Nov 2003 A1
20030233431 Reddy et al. Dec 2003 A1
20040008711 Lahti et al. Jan 2004 A1
20040047308 Kavanagh et al. Mar 2004 A1
20040083299 Dietz et al. Apr 2004 A1
20040085894 Wang et al. May 2004 A1
20040086114 Rarick May 2004 A1
20040088376 McCanne et al. May 2004 A1
20040114569 Naden et al. Jun 2004 A1
20040117571 Chang et al. Jun 2004 A1
20040123139 Aiello et al. Jun 2004 A1
20040158644 Albuquerque et al. Aug 2004 A1
20040179542 Murakami et al. Sep 2004 A1
20040181679 Dettinger et al. Sep 2004 A1
20040199771 Morten et al. Oct 2004 A1
20040202110 Kim Oct 2004 A1
20040203820 Billhartz Oct 2004 A1
20040205332 Bouchard et al. Oct 2004 A1
20040243571 Judd Dec 2004 A1
20040250027 Heflinger Dec 2004 A1
20040255048 Lev et al. Dec 2004 A1
20050010653 McCanne Jan 2005 A1
20050044270 Grove et al. Feb 2005 A1
20050053094 Cain et al. Mar 2005 A1
20050055372 Springer et al. Mar 2005 A1
20050055399 Savchuk Mar 2005 A1
20050071453 Ellis et al. Mar 2005 A1
20050091234 Hsu et al. Apr 2005 A1
20050111460 Sahita May 2005 A1
20050131939 Douglis et al. Jun 2005 A1
20050132252 Fifer et al. Jun 2005 A1
20050141425 Foulds Jun 2005 A1
20050171937 Hughes et al. Aug 2005 A1
20050177603 Shavit Aug 2005 A1
20050177716 Ginter Aug 2005 A1
20050182849 Chandrayana et al. Aug 2005 A1
20050190694 Ben-Nun et al. Sep 2005 A1
20050207443 Kawamura et al. Sep 2005 A1
20050210151 Abdo et al. Sep 2005 A1
20050220019 Melpignano Oct 2005 A1
20050220097 Swami et al. Oct 2005 A1
20050235119 Sechrest et al. Oct 2005 A1
20050240380 Jones Oct 2005 A1
20050243743 Kimura Nov 2005 A1
20050243835 Sharma et al. Nov 2005 A1
20050256972 Cochran et al. Nov 2005 A1
20050278459 Boucher et al. Dec 2005 A1
20050283355 Itani et al. Dec 2005 A1
20050286526 Sood et al. Dec 2005 A1
20060010243 Duree Jan 2006 A1
20060013210 Bordogna et al. Jan 2006 A1
20060026425 Douceur et al. Feb 2006 A1
20060031936 Nelson et al. Feb 2006 A1
20060036901 Yang et al. Feb 2006 A1
20060039354 Rao et al. Feb 2006 A1
20060045096 Farmer et al. Mar 2006 A1
20060059171 Borthakur et al. Mar 2006 A1
20060059173 Hirsch et al. Mar 2006 A1
20060109805 Malamal et al. May 2006 A1
20060117385 Mester et al. Jun 2006 A1
20060136913 Sameske Jun 2006 A1
20060143497 Zohar et al. Jun 2006 A1
20060193247 Naseh et al. Aug 2006 A1
20060195547 Sundarrajan et al. Aug 2006 A1
20060195840 Sundarrajan et al. Aug 2006 A1
20060212426 Shakara et al. Sep 2006 A1
20060218390 Loughran et al. Sep 2006 A1
20060227717 Van et al. Oct 2006 A1
20060248017 Koka et al. Nov 2006 A1
20060250965 Irwin Nov 2006 A1
20060268932 Singh et al. Nov 2006 A1
20060280205 Cho Dec 2006 A1
20070002804 Xiong et al. Jan 2007 A1
20070008884 Tang Jan 2007 A1
20070011424 Sharma et al. Jan 2007 A1
20070038815 Hughes Feb 2007 A1
20070038816 Hughes et al. Feb 2007 A1
20070038858 Hughes Feb 2007 A1
20070050475 Hughes Mar 2007 A1
20070076693 Krishnaswamy Apr 2007 A1
20070076708 Kolakowski et al. Apr 2007 A1
20070081513 Torsner Apr 2007 A1
20070097874 Hughes et al. May 2007 A1
20070110046 Farrell et al. May 2007 A1
20070115812 Hughes May 2007 A1
20070127372 Khan et al. Jun 2007 A1
20070130114 Li et al. Jun 2007 A1
20070140129 Bauer et al. Jun 2007 A1
20070150497 De et al. Jun 2007 A1
20070160200 Ishikawa et al. Jul 2007 A1
20070174428 Lev et al. Jul 2007 A1
20070179900 Daase et al. Aug 2007 A1
20070192863 Kapoor et al. Aug 2007 A1
20070195702 Yuen et al. Aug 2007 A1
20070195789 Yao Aug 2007 A1
20070198523 Hayim Aug 2007 A1
20070226320 Hager et al. Sep 2007 A1
20070237104 Alon et al. Oct 2007 A1
20070244987 Pedersen et al. Oct 2007 A1
20070245079 Bhattacharjee et al. Oct 2007 A1
20070248084 Whitehead Oct 2007 A1
20070258468 Bennett Nov 2007 A1
20070260746 Mirtorabi et al. Nov 2007 A1
20070263554 Finn Nov 2007 A1
20070276983 Zohar et al. Nov 2007 A1
20070280245 Rosberg Dec 2007 A1
20080005156 Edwards et al. Jan 2008 A1
20080013532 Garner et al. Jan 2008 A1
20080016301 Chen Jan 2008 A1
20080028467 Kommareddy et al. Jan 2008 A1
20080031149 Hughes et al. Feb 2008 A1
20080031240 Hughes et al. Feb 2008 A1
20080037432 Cohen et al. Feb 2008 A1
20080071818 Apanowicz et al. Mar 2008 A1
20080095060 Yao Apr 2008 A1
20080133536 Bjorner et al. Jun 2008 A1
20080133561 Dubnicki et al. Jun 2008 A1
20080184081 Hama et al. Jul 2008 A1
20080205445 Kumar et al. Aug 2008 A1
20080217399 Leblanc Sep 2008 A1
20080222044 Gottlieb Sep 2008 A1
20080229137 Samuels et al. Sep 2008 A1
20080243992 Jardetzky et al. Oct 2008 A1
20080267217 Colville et al. Oct 2008 A1
20080285463 Oran Nov 2008 A1
20080300887 Chen Dec 2008 A1
20080313318 Vermeulen et al. Dec 2008 A1
20080320151 McCanne et al. Dec 2008 A1
20090006801 Shultz et al. Jan 2009 A1
20090024763 Stepin et al. Jan 2009 A1
20090037448 Thomas Feb 2009 A1
20090060198 Little Mar 2009 A1
20090063696 Wang et al. Mar 2009 A1
20090063756 Asipov Mar 2009 A1
20090080460 Kronewitter et al. Mar 2009 A1
20090089048 Pouzin Apr 2009 A1
20090092137 Haigh et al. Apr 2009 A1
20090100483 McDowell Apr 2009 A1
20090158417 Khanna et al. Jun 2009 A1
20090168786 Sarkar Jul 2009 A1
20090175172 Prytz et al. Jul 2009 A1
20090182864 Khan et al. Jul 2009 A1
20090183229 Ohnishi Jul 2009 A1
20090204961 Dehaan et al. Aug 2009 A1
20090234966 Samuels et al. Sep 2009 A1
20090245114 Vijayaraghavan Oct 2009 A1
20090265707 Goodman et al. Oct 2009 A1
20090274294 Itani Nov 2009 A1
20090279550 Romrell et al. Nov 2009 A1
20090281984 Black Nov 2009 A1
20100005222 Brant et al. Jan 2010 A1
20100011125 Yang et al. Jan 2010 A1
20100020693 Thakur Jan 2010 A1
20100054142 Moiso et al. Mar 2010 A1
20100070605 Hughes et al. Mar 2010 A1
20100077251 Liu et al. Mar 2010 A1
20100082545 Bhattacharjee et al. Apr 2010 A1
20100085964 Weir et al. Apr 2010 A1
20100115137 Kim et al. May 2010 A1
20100121957 Roy et al. May 2010 A1
20100124239 Hughes May 2010 A1
20100131957 Kami May 2010 A1
20100150158 Cathey et al. Jun 2010 A1
20100169467 Shukla et al. Jul 2010 A1
20100177663 Johansson et al. Jul 2010 A1
20100225658 Coleman Sep 2010 A1
20100232443 Pandey Sep 2010 A1
20100242106 Harris et al. Sep 2010 A1
20100246584 Ferguson et al. Sep 2010 A1
20100290364 Black Nov 2010 A1
20100318892 Teevan et al. Dec 2010 A1
20100322071 Avdanin et al. Dec 2010 A1
20100333212 Carpenter Dec 2010 A1
20110002346 Wu Jan 2011 A1
20110022812 Van et al. Jan 2011 A1
20110113472 Fung et al. May 2011 A1
20110126005 Carpenter et al. May 2011 A1
20110131411 Lin et al. Jun 2011 A1
20110154169 Gopal et al. Jun 2011 A1
20110154329 Arcese et al. Jun 2011 A1
20110181448 Koratagere Jul 2011 A1
20110219181 Hughes et al. Sep 2011 A1
20110225322 Demidov et al. Sep 2011 A1
20110225647 Dilley Sep 2011 A1
20110258049 Ramer et al. Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110276963 Wu et al. Nov 2011 A1
20110299537 Saraiya et al. Dec 2011 A1
20120005549 Ichiki et al. Jan 2012 A1
20120036325 Mashtizadeh et al. Feb 2012 A1
20120069131 Abelow Mar 2012 A1
20120117571 Davis May 2012 A1
20120147894 Mulligan et al. Jun 2012 A1
20120173759 Agarwal et al. Jul 2012 A1
20120185775 Clemm et al. Jul 2012 A1
20120196566 Lee Aug 2012 A1
20120198346 Clemm et al. Aug 2012 A1
20120218130 Boettcher et al. Aug 2012 A1
20120221611 Watanabe et al. Aug 2012 A1
20120230345 Ovsiannikov Sep 2012 A1
20120239872 Hughes et al. Sep 2012 A1
20120254128 Bath et al. Oct 2012 A1
20120290636 Kadous et al. Nov 2012 A1
20120331528 Fu Dec 2012 A1
20130018722 Libby Jan 2013 A1
20130018765 Fork et al. Jan 2013 A1
20130031642 Dwivedi Jan 2013 A1
20130044751 Casado et al. Feb 2013 A1
20130058354 Casado et al. Mar 2013 A1
20130080619 Assuncao et al. Mar 2013 A1
20130083806 Suarez et al. Apr 2013 A1
20130086236 Baucke et al. Apr 2013 A1
20130086594 Cottrell Apr 2013 A1
20130094501 Hughes Apr 2013 A1
20130103655 Fanghaenel et al. Apr 2013 A1
20130117494 Hughes et al. May 2013 A1
20130121209 Padmanabhan et al. May 2013 A1
20130141259 Hazarika et al. Jun 2013 A1
20130142050 Luna Jun 2013 A1
20130151273 Jones Jun 2013 A1
20130163594 Sharma et al. Jun 2013 A1
20130212379 Dixon et al. Aug 2013 A1
20130250951 Koganti Sep 2013 A1
20130263125 Shamsee et al. Oct 2013 A1
20130266007 Kumbhare et al. Oct 2013 A1
20130282970 Hughes et al. Oct 2013 A1
20130325986 Brady et al. Dec 2013 A1
20130343191 Kim et al. Dec 2013 A1
20140020107 Dodgson et al. Jan 2014 A1
20140052864 Van et al. Feb 2014 A1
20140075554 Cooley Mar 2014 A1
20140086069 Frey et al. Mar 2014 A1
20140101426 Senthurpandi Apr 2014 A1
20140108360 Kunath et al. Apr 2014 A1
20140114742 Lamontagne et al. Apr 2014 A1
20140123213 Vank et al. May 2014 A1
20140157429 Kinoshita et al. Jun 2014 A1
20140181381 Hughes et al. Jun 2014 A1
20140269705 Decusatis et al. Sep 2014 A1
20140279078 Nukala et al. Sep 2014 A1
20140295815 Cho Oct 2014 A1
20140321290 Jin et al. Oct 2014 A1
20140379937 Hughes et al. Dec 2014 A1
20150033316 Scarlata et al. Jan 2015 A1
20150052351 Nodehi et al. Feb 2015 A1
20150058488 Backholm Feb 2015 A1
20150074291 Hughes Mar 2015 A1
20150074361 Hughes et al. Mar 2015 A1
20150074821 Hoshi Mar 2015 A1
20150078397 Hughes et al. Mar 2015 A1
20150110113 Levy et al. Apr 2015 A1
20150120663 Le et al. Apr 2015 A1
20150127701 Chu et al. May 2015 A1
20150135338 Moskal May 2015 A1
20150143505 Border et al. May 2015 A1
20150170221 Shah Jun 2015 A1
20150281099 Banavalikar Oct 2015 A1
20150281391 Hughes et al. Oct 2015 A1
20150312054 Barabash et al. Oct 2015 A1
20150334210 Hughes Nov 2015 A1
20150365293 Madrigal et al. Dec 2015 A1
20160014051 Hughes et al. Jan 2016 A1
20160034305 Shear et al. Feb 2016 A1
20160093193 Silvers et al. Mar 2016 A1
20160112255 Li Apr 2016 A1
20160142310 Means May 2016 A1
20160218947 Hughes et al. Jul 2016 A1
20160255000 Gattani et al. Sep 2016 A1
20160255542 Hughes et al. Sep 2016 A1
20160359740 Parandehgheibi et al. Dec 2016 A1
20160380886 Blair et al. Dec 2016 A1
20170026467 Barsness et al. Jan 2017 A1
20170111692 An Apr 2017 A1
20170149679 Hughes et al. May 2017 A1
20170187581 Hughes et al. Jun 2017 A1
20170359238 Hughes et al. Dec 2017 A1
20180089994 Dhondse et al. Mar 2018 A1
20180121634 Hughes et al. May 2018 A1
20180123861 Hughes et al. May 2018 A1
20180131711 Chen et al. May 2018 A1
20180205494 Hughes Jul 2018 A1
20180227216 Hughes Aug 2018 A1
20180227223 Hughes Aug 2018 A1
20190089620 Hefel et al. Mar 2019 A1
20190104207 Goel et al. Apr 2019 A1
20190149447 Hughes et al. May 2019 A1
20190230038 Hughes Jul 2019 A1
20190245771 Wu et al. Aug 2019 A1
20190253187 Hughes Aug 2019 A1
20190260683 Anthony Aug 2019 A1
20190274070 Hughes et al. Sep 2019 A1
20190280917 Hughes et al. Sep 2019 A1
20200021506 Hughes et al. Jan 2020 A1
20200213185 Hughes et al. Jul 2020 A1
20200358687 Hughes et al. Nov 2020 A1
Foreign Referenced Citations (3)
Number Date Country
1507353 Feb 2005 EP
05-061964 Mar 1993 JP
0135226 May 2001 WO
Non-Patent Literature Citations (23)
Entry
Business Wire, ““Silver Peak Systems Delivers Family of Appliances for Enterprise-Wide Centralization of Branch Office Infrastructure; Innovative Local Instance Networking Approach Overcomes Traditional Application Acceleration Pitfalls”” (available at http://www.businesswire.com/news/home/20050919005450/en/Silver-Peak-Systems-Delivers-Family-Appliances-Enterprise-Wide#.UVzkPk7u-1.
“Decision Granting Motion to Terminate”, Inter Partes Review Case No. IPR2014-00245, Feb. 7, 2018, 4 pages.
“IPsec Anti-Replay Window: Expanding and Disabling,” Cisco IOS Security Configuration Guide. 2005-2006 Cisco Systems, Inc. Last updated: Sep. 12, 2006, 14 pages.
“Notice of Entry of Judgement Accompanied by Opinion”, United States Court of Appeals for the Federal Circuit, Case: 15-2072, Oct. 24, 2017, 6 pages.
“Shared LAN Cache Datasheet”, 1996, <http://www.lancache.com/slcdata.htm>.
Douglis, F. et al., “Application specific Delta-encoding via Resemblance Detection”, Published in the 2003 USENIX Annual Technical Conference.
Final Written Decision, dated Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00402.
Final Written Decision, dated Dec. 30, 2014, Inter Partes Review Case No. IPR2013-00403.
Final Written Decision, dated Jun. 9, 2015, Inter Partes Review Case No. IPR2014-00245.
Hong, B et al. “Duplicate data elimination in a SAN file system”, In Proceedings of the 21st Symposium on Mass Storage Systems (MSS '04), Goddard, MD, Apr. 2004. IEEE.
Knutsson, Bjorn et al., “Transparent Proxy Signalling”, Journal of Communications and Networks, vol. 3, No. 2, Jun. 2001.
Manber, Udi, “Finding Similar Files in a Large File System”, TR 93-33 Oct. 1994, Department of Computer Science, University of Arizona. < http://webglimpse.net/pubs/TR93-33.pdf>. Also appears in the 1994 winter USENIX Technical Conference.
Muthitacharoen, Athicha etal., “A Low-bandwidth Network File System,” 2001, in Proc. of the 18th ACM Symposium on Operating Systems Principles, Banff, Canada, pp. 174-187.
Newton, “Newton's Telecom Dictionary”, 17th Ed., 2001, 5 pages.
Riverbed, “Riverbed Awarded Patent on Core WDS Technology” (available at: http://www.riverbed.com/about/news-articles/pressreleases/riverbed-awarded-patent-on-core-wds-technology.html (last visited Aug. 8, 2014)).
Riverbed, “Riverbed Introduces Market-Leading WDS Solutions for Disaster Recovery and Business Application Acceleration” (available at http://www.riverbed.com/about/news-articles/pressreleases/riverbed-introduces-market-leading-wds-solutions-fordisaster-recovery-and-business-application-acceleration.html (last visited Aug. 8, 2014).
Riverbed, “The Riverbed Optimization System (RiOS) v4.0: A Technical Overview” (explaining “Data Security” through segmentation) (available at http://mediacms.riverbed.com/documents/TechOverview-Riverbed-RiOS_4_0.pdf (last visited Aug. 8, 2014)).
Silver Peak Systems, “The Benefits of Byte-level WAN Deduplication” (2008).
Singh et al.; “Future of Internet Security—IPSEC”; 2005; pp. 1-8.
Spring et al., “A protocol-independent technique for eliminating redundant network traffic”, ACM SIGCOMM Computer Communication Review, vol. 30, Issue 4 (Oct. 2000) pp. 87-95, Year of Publication: 2000.
Tseng, Josh, “When accelerating secure traffic is not secure” (available at http://www.riverbed.com/blogs/whenaccelerati.html?&isSearch=true&pageSize=3&page=2 (last visited Aug. 8, 2014)).
You, L. L. and Karamanolis, C. 2004. “Evaluation of efficient archival storage techniques”, In Proceedings of the 21st IEEE Symposium on Mass Storage Systems and Technologies (MSST).
You, L. L. et al., “Deep Store an Archival Storage System Architecture” Data Engineering, 2005. ICDE 2005. Proceedings of the 21st Inti. Conf. on Data Eng., Tokyo, Japan, Apr. 5-8, 2005, pp. 12.
Related Publications (1)
Number Date Country
20210192016 A1 Jun 2021 US
Continuations (4)
Number Date Country
Parent 17139795 Dec 2020 US
Child 17161626 US
Parent 16875866 May 2020 US
Child 17139795 US
Parent 15856669 Dec 2017 US
Child 16875866 US
Parent 14479131 Sep 2014 US
Child 15856669 US