The present invention relates generally to optical communications, and more particularly, to dynamic multidimensional optical networking based on spatial and spectral processing.
In current optical networks, the need to establish lightpaths in arbitrary directions, and switch them on-demand has led to the adoption of photonic routing devices mostly in the form of reconfigurable optical add-drop multiplexers (ROADM), and photonic crossconnects (PXC). With such technologies, optical switching and routing can be done at or above the per-wavelength level (i.e. “at the fiber level”). However, these optical switching and routing principles can only operate at per-wavelength or per-fiber granularity, which significantly limits flexibility and reduces bandwidth efficiency in future mixed-rate, heterogeneous optical networks with predominantly dynamic traffic demands. For example, switching at fiber-level granularity may cause unnecessary re-direction of certain wavelengths, which can result in substantial bandwidth waste. Conversely, switching at the wavelength level enables finer granularity, but could insert unnecessary complexity to the overall ROADM design.
Switching at interim granularity, so called “waveband switching”, has been considered for some time as a more practical alternative. However, this previously proposed concept has assumed that waveband consists of a number of wavelengths aligned to an ITU-T defined wavelength grid. With the introduction of optical orthogonal frequency division multiplexing (OFDM), novel frequency-domain degrees of freedom have been added to the waveband switching approach, and are exploited in this work. Moreover, with the advent of multicore and multimode optical fibers for throughput maximization, coarse switching at the fiber level may now require that the overall wavelength spectrum be switched not just from one fiber to another, but from one fiber core to another. While previous work has considered physical-layer benefits of multimode and multicore fiber transmission, to the best of our knowledge, no previous work exists on exploiting this spatial dimension for optical networking (i.e. switching and routing).
Accordingly, there is a need for. dynamic multidimensional optical networking based on spatial and spectral processing
The present invention is directed to an optical network including a multidimensional coder and modulator for handling multiple-in-multiple-out MIMO spatial lightpath properties and content of any specific supercarrier, a spatial mode multiplexer responsive to orthogonal frequency division multiplexing OFDM transmissions and the multidimensional coder, a spatial-spectral routing node coupled over a fiber link to the spatial mode multiplexer for performing switching granularity by a spatial mode reconnection, a multidimensional decoder and demodulator; and a spatial mode demultiplexer coupled over a fiber link to the spatial-spectral routing node and responsive to the multidimensional decoder and demodulator.
These and other advantages of the invention will be apparent to those of ordinary skill in the art by reference to the following detailed description and the accompanying drawings.
The invention introduces and develops a logical hierarchical structure for next generation dynamic optical networking based on novel spatial and frequency domain switching and routing functionalities. The roles of spatial multiple input multiple output (MIMO) techniques and OFDM super/sub carriers are defined, as well as the impact of advanced coded modulation, which represents the third cornerstone in the proposed multidimensional and dynamic networking concept. Finally, to enable the dynamic spatial and spectral domain optical networking discussed above, a judicious selection of modulation formats and forward error correction (FEC) schemes is highly important. For example, while certain longer lightpaths might require higher robustness with respect to the optical signal to noise ratio (OSNR), for others, the key priority might be higher spectral efficiency. Consequently, a distance versus information capacity trade-off emerges that is handled via multidimensional coded modulation in the present invention.
The fundamental structure of a bandwidth granularity and multiplexing hierarchy at the entrance point of any specific optical fiber transmission line is shown in
Based on the above architecture (
In a first embodiment of
In a second embodiment of
To enable the spectral domain networking proposed here, instead of fixed grid, a flexible grid or even “gridless” spectral arrangement is used to provide much more flexibility from a networking perspective, since an arbitrary portion of the spectrum could be selected and routed on-demand in a designated direction. Therefore, future routing devices should have the capability of routing optical spectrum slots. The ITU-T grid definition can stay in place for the reference purposes, but this time the spectrum between two neighboring wavelength grid points is subject to optical routing. The same approach currently suggested for flexible grid handling could be eventually used for dynamic switching and routing of spectrum slots. Moreover, the employment of wavelength agile devices (i.e. tunable lasers and filters) will enable flexible wavelength grooming and routing. Tunable lasers should have tuning speed on the microsecond level to enable spectral arrangement per request, while tunable filters should possess comparable tuning speed with respect to both the central wavelength and in the band-pass region.
The aggregate design of space-spectrum routing node (500) based on spatial MIMO and OFDM super/subband selection, as shown in
Multidimensional coded modulation, the third aspect of the proposed invention, employs all available degrees of freedom; namely, amplitude, phase polarization, orthogonal subcarriers and orbital angular momentum (OAM). The properties of hybrid multidimensional schemes are the best suited to handle MIMO spatial lightpath properties, as well as the content of any specific supercarrier. By increasing the number of dimensions, we can increase the aggregate data rate of the system while ensuring reliable transmission at these ultra-high speeds using capacity-approaching low density parity check (LDPC) codes. Apart from increasing the aggregate data rate, a D-dimensional space when compared to the conventional two-dimensional (2D) space can provide larger Euclidean distances between signal constellation points, resulting in improved BER performance.
The multidimensional coder and modulator (200) transmitter-side architecture is shown in
The 2MeNOAM-dimensional demodulator architecture (800) is shown in
The detailed operational principle of multidimensional coded-modulator (203) is depicted in
From the foregoing it can be appreciated that the invention achieves much higher bandwidth flexibility and efficiency compared to previous optical switching and routing techniques, by exploiting novel spatial and spectral domains in optical fiber. The spatial multiplexing domain (i.e. via the use of multiple core and/or multiple modes in optical fibers) thus emerges as a novel and appealing networking tool, closely related to MIMO processing techniques. Moreover, OFDM supercarriers (in all-optical OFDM) and subcarriers (in electronic-based OFDM), together with individual wavelengths, can be considered as spectral (i.e. frequency-domain) contributors to optical networking that enable the spectral efficiency and granularity benefits outlined above.
The inventive spectral and spatial domains emerge for physical-layer transmission, defined by OFDM and spatial MIMO techniques. However, in prior art, these techniques were not exploited for dynamic optical networking. In this solution, we have introduced and developed a hierarchy for exploiting these new degrees of freedom for flexible switching, routing and dynamic lightpath assignment. Specifically, spatial-domain lightpath routing in multicore and multimode (specifically, few-mode) fibers was discussed, as well as dynamic signal grooming by all-optical and electrical OFDM techniques, and its integration with multidimensional coded modulation. The new and different parts of the solution are thus the function blocks of (200), (500), and (800) in
The foregoing is to be understood as being in every respect illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is not to be determined from the Detailed Description, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. It is to be understood that the embodiments shown and described herein are only illustrative of the principles of the present invention and that those skilled in the art may implement various modifications without departing from the scope and spirit of the invention. Those skilled in the art could implement various other feature combinations without departing from the scope and spirit of the invention.
This application claims priority to provisional application No. 61/569,412 filed Dec. 12, 2012, the contents thereof are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6925258 | Lo | Aug 2005 | B2 |
8355638 | Essiambre et al. | Jan 2013 | B2 |
8391655 | Ryf | Mar 2013 | B2 |
8515278 | Cheng et al. | Aug 2013 | B2 |
8538275 | Essiambre et al. | Sep 2013 | B2 |
20020034191 | Shattil | Mar 2002 | A1 |
20090282314 | Djordjevic et al. | Nov 2009 | A1 |
20100211849 | Djordjevic et al. | Aug 2010 | A1 |
20100232804 | Djordjevic et al. | Sep 2010 | A1 |
20100329670 | Essiambre et al. | Dec 2010 | A1 |
20100329671 | Essiambre et al. | Dec 2010 | A1 |
20120224861 | Winzer et al. | Sep 2012 | A1 |
20120230687 | Okamoto et al. | Sep 2012 | A1 |
Entry |
---|
Zhu et al: “Seven-core multicore fiber transmissions for passive optical network”, Optics Express, vol. 18, Mo. 11, May 24, 2010, pp. 11117-11122. |
Number | Date | Country | |
---|---|---|---|
20130148963 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61569412 | Dec 2011 | US |