The present invention relates to power converters such as those used in power supplies, and more particularly, using dynamic optimization of efficiency by using maximum efficiency point tracking (or minimum input power point tracking).
In designing power electronics converter systems such as DC-DC converters, several design parameters need to be optimized to improve the efficiency and converter performance. Some of these parameters are load dependant, input voltage/output voltage dependent, components dependent, and/or temperature dependent. Designing such parameters for a specific load, input, output, components, and temperature may improve single design point efficiency but will not result in maximum efficiency and performance at different load and line conditions and will not guarantee improvement at that design point because of the components and temperature variations.
Digital controllers are increasingly being used especially in complex systems including power electronics systems because of their advantages such as the ability to perform sophisticated and enhanced control schemes, low power consumption, reliability, reconfiguration flexibility, elimination of component tolerances and ageing, and ease of integration and interface with digital systems. Of course, there are still some disadvantages/challenges in using digital controllers for analog systems such as DC-DC converters in power electronics including the required high resolution needed from the digital controller to satisfy the converter's tight regulation requirements and the required high speed digital controller to satisfy the converter's dynamic requirements. These two requirements also result in increased cost. Fortunately, digital controller technology is rapidly advancing making faster digital controllers with higher resolutions available at lower cost.
The ability of a digital controller to perform sophisticated algorithms makes it easy to apply adaptive control algorithms where system parameters can be adaptively adjusted in response to system behavior to achieve better performance and stability. An adaptive controller is therefore intuitively a controller that can modify its behavior after changes in the controlled plant or in the environment.
One important parameter that should be optimized in isolated and non-isolated converters is the dead time between the turn ON and turn OFF of the switches to avoid switch body diode conduction. For example, MOSFET body-diode conduction in the secondary side topology, such as the current doubler topology, should be avoided for better efficiency, especially for low-output voltage, high-output current applications where the body-diodes conduction loss becomes more severe requiring the smallest possible dead time (delay time) between turning ON and OFF the primary-side switches and turning OFF and ON the corresponding secondary-side switches (Synchronous Rectifiers or SRs). At the same time, this dead time should be long enough to avoid the two secondary SR switches short circuiting when the two of them are ON at the same instant and the voltage is applied from the primary side.
The selection and optimization of this dead time is not an easy task and is difficult to achieve at all load/input conditions and at different components parasitics and temperatures. One way to accomplish this is to fix the dead time to a constant value that satisfies the worst condition. This can be achieved by a simple RC (Resistive-Capacitive) delay circuitry to set the dead time between turning ON and OFF the corresponding switches. This method is simple but unfortunately results in lower efficiency since the dead time has to be set long enough to cover the whole load/input range and to cover other variations such as temperature variations. Another way is to set the dead time by detecting the switch-body diode conduction and modifying the dead time accordingly. This method reduces body diode losses and therefore improves efficiency. However, the body diodes still conduct and losses are still considerable especially at higher switching frequencies and higher output currents. It is also difficult to implement in isolated topologies because of the delays caused by the isolators used in generating the drive signals and the transformer leakage inductance, which vary at different load and line conditions.
A power converter in accordance with an aspect of the invention has a control method that optimizes efficiency by dynamically optimizing a controlled parameter. A change in efficiency of the converter after changing at least one controlled parameter is determined. The direction of change in efficiency of the converter is compared to a direction of the change in the controlled parameter. The controlled parameter is changed in a positive direction when the direction in the change in the efficiency of the converter and the direction of the change in the controlled parameter are the same and changed in a negative direction when the direction in the change in the efficiency of the converter and the direction of the change in the controlled parameter are opposite.
In an aspect of the invention, the controlled parameter includes dead time between turn-on and turn-off and between turn-off and turn-on of the primary and corresponding secondary side SR switches of the controller and drive voltage(s) for the switches.
In an aspect of the invention, the controlled parameter includes drive voltage(s) for the switches.
In an aspect of the invention, the controlled parameter includes the dead time and the drive voltage(s).
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
A method of controlling power converters in accordance with this invention, referred to herein as Maximum Efficiency Point Tracking (“MEPT”), tracks system efficiency and dynamically optimizes one or more system parameters, referred to herein as “controlled parameters” to maximize efficiency, or in other words minimum input power point causing efficiency maximization. In this regard, a system or controlled parameter is a parameter affecting operation of the system that is controlled or varied to optimize efficiency. The inventive MEPT method tracks the efficiency of the converter to find the optimized value of the parameter(s) that are dynamically adjusted by tracking the direction of change of the efficiency (ΔEff.) of the converter, that is, whether it is increasing or decreasing, and the direction of change of the controlled parameter (ΔCP), that is, whether it is being incremented or decremented and dynamically adjusting the controlled parameter accordingly.
(Eff(n) is the current efficiency value under the current controlled parameter value CP(n) and Eff(n−1) is the previous efficiency value under the previous controlled parameter value CP(n−1)).
The inventive MEPT method is now described with reference to the example of
The inventive MEPT method is illustratively implemented in controller 206. In this regard, controller 206 may, by way of example and not of limitation, be a microcontroller and the control for converter 200 implemented by software programmed in controller 206. It should be understood that controller 206 and the control functions it implements could be hard wired digital logic, application specific integrated circuits, and the like. It should be understood that the description of the inventive MEPT method as applied to converter 200 is by way of example and not of limitation, and the MEPT method can be applied to converters other than the isolated half-bridge DC-DC converter. Converter 200 can be controlled using conventional symmetric control, asymmetric (complementary) control, or duty—cycle-shifted (DCS) control. In the following example, converter 200 is DCS controlled but it should be understood that this is by way of example and not of limitation as other types of control, such as those just mentioned, can also be used to control converter 200.
Primary side 202 of converter 200 has primary switches S1, S2, and capacitors CS1, CS2. A plus side of a DC voltage source Vin is coupled to one side of capacitor CS1 and to one side of primary switch S2. A negative or common side of Vin is coupled to common as is one side of capacitor CS2 and one side of primary switch S1. Second sides of capacitors CS1 and CS2 are coupled together at junction A and second sides of primary switches S1, S2 are coupled together at junction B. Junction A is coupled to one side of a primary winding 208 of a transformer T1 and junction B is coupled to the other side of primary winding 108 of transformer T1.
Secondary side 204 of converter 200 includes secondary switches Sa, Sb, inductors L1, L2, and output capacitor Co, which are coupled together in a current doubler topology as mentioned. One side of secondary switch Sa is coupled to one side of secondary winding 210 of transformer T1 and to one side of inductor L1, and a second side of secondary switch Sa is coupled to common. One side of secondary switch Sb is coupled to the other side of secondary winding 210 of transformer T1 and to one side of inductor L2. Second sides of inductors L1, L2 are coupled together and provide a positive output 214 of converter 200. Output capacitor Co is coupled between the junction of inductors L1, L2 and common.
FIGS. 5(a) and 5(b) show efficiency versus dead time curves that show how the inventive MEPT method is used to optimize dead time at different load and input voltage conditions. The MEPT method tracks the efficiency of the converter, such as converter 200, and updates the optimized dead time value as the efficiency of the converter changes due to varying conditions. This results in a significant efficiency improvement compared to a converter without the MEPT control method, especially at higher load currents and switching frequencies with wide load and line variations.
Calculating the efficiency of a converter requires accurate sensing and use of four signals, i.e., the output voltage (Vo) of the converter, the output current (Io) of the converter, the input voltage (Vin) of the converter, and the input current (Iin) of the converter. It also requires three multiplications, which use large controller resources and calculation time. Moreover, since the efficiency calculation involves the use of four sensed signals, calculation error is magnified due to any errors in sensing the four signals.
A closer look at these four signals shows that for certain line (Vin) and load (Io) points at a fixed regulated output voltage (Vo), the input current (Iin) is a sufficient parameter to indicate the change in the converter efficiency, that is, whether the converter efficiency is increasing or decreasing. The maximum efficiency point occurs at the minimum input current point for a given input voltage, i.e., for fixed Vin, Io, and Vo, the converter efficiency is higher when Iin is smaller since the converter input power will be minimized for a fixed output power. Therefore Iin is illustratively used to determine converter efficiency in the implementation of the MEPT method as described below. Note that using Iin to determine converter efficiency means that implementing the MEPT method does not require sensing any additional signals beyond those usually sensed, since Iin is usually sensed anyway for protection and/or control purposes.
ΔIin=Iin(n−1)−Iin(n) (4)
Δtd=td(n)−td(n−1) (5)
At 614, a check is made to see if ΔIin has sufficient value (ie) to update td. If so, the program proceeds to 616. If not, the program branches back to start after waiting a predetermined number of switching cycles at 610.
At 616, Iin (n−1) and td(n−1) are updated by setting them equal to Iin (n) and td (n), respectively.
At 618, a check is made to determine if the signs (positive or negative) of Equations (4) and (5) are the same. If they are, the current efficiency-dead time point is located on the left side of tdo as shown in FIG. (4) and at 620 td is incremented by tstep to move towered the maximum efficiency point. If not, the current efficiency-dead time point is located on the right side of tdo as shown in FIG. (4) and at 622 td is decremented by tstep to move toward the maximum efficiency point.
The program then branches back to start after waiting a predetermined number of switching cycles at 610.
Dead time is only one of the system parameters that can be optimized using the inventive MEPT method to improve the efficiency of the converter. Examples of other parameters include the driving voltages value(s) applied to gates of the FETs that are typically used as the primary and secondary side switches, switching frequency applied to primary-side switches, the dead time between high and low side switches, and intermediate bus voltages in cascaded converter systems. The MEPT method dynamically tracks the maximum efficiency by adjusting those parameters with the input voltage variation, load change and ambient temperature change. For example, the driving voltages affect the conduction loss and drive loss. The higher drive voltage, the more drive loss and less conduction loss. Under certain load and input voltage condition, there exists an optimum drive voltage corresponding to maximum efficiency. Peak efficiency under a set of optimized parameters varies for different load and converter input voltages. The inventive MEPT method searches for a set of optimum parameters to peak the efficiency. For multi-parameter optimization, the efficiency peaking may be done sequentially. For example, if dead time values, drive voltage values and intermediate bus voltage values are adjusted in a system to peak efficiency, the bus voltage values can be optimized first, then driving voltages values and then dead time values. After all three parameters are adjusted, or after a certain interval, the method starts the sequence over. It should be understood that these parameters can be adjusted in other sequential orders. That is, driving voltages values or dead time could be adjusted first followed by the sequential adjustment of the other two parameters. Other advanced multi-dimension searching methods may be utilized to peak the efficiency.
In the example described below, the voltage of the gate signals used to drive the primary side switches, the secondary side switches, or both, is advantageously optimized using the inventive MEPT method to optimize converter efficiency. The driving voltage applied to the gates of FETs, which are typically used as the primary and secondary side switches in a converter, causes stored charge to be accumulated in the internal gate-to-drain and gate-to-source capacitances of the FETs. Repeatedly discharging this stored charge results in a power loss, and thus decreased efficiency. At the same time, the level of voltage applied to a FET gate influences conduction characteristics (Rdson) of the FET, which also results in a power loss. These two effects tend to work in opposite directions—a higher gate voltage results in lower Rdson but also results in a higher gate charge and higher drive loss.
Because these two effects have opposing slope, an optimum value exists for the driving voltage to minimize net power loss in switching the FET which is optimized using the inventive MEPT method as described below with reference to
In converter 700, a variable voltage source 702 has a voltage output(s) coupled to a voltage input(s) of driver circuit 207 and has control inputs coupled to outputs of controller 206. Variable voltage source 702, under control of controller 206, provides the voltage(s) to driver circuit 207 that driver circuit 207 switches to the gates of primary switches S1, S2, secondary switches Sa, Sb, or both, under control of controller 206.
The MEPT method is again illustratively implemented in controller 206 and optimizes the voltage provided by voltage source 702 that is applied to the gates of primary and secondary side switches S1, S2, Sa, Sb (which are illustratively FETs) by driver circuit 207 to switch them.
It should be understood that the inventive MEPT method can be used to control more than one parameter of a converter. For example, it could be used to control both dead time(s), as discussed above with reference to
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 60/581,986 filed on Jun. 21, 2004.
Number | Date | Country | |
---|---|---|---|
60581986 | Jun 2004 | US |