This disclosure relates to communication networks. More specifically, this disclosure relates to a system and method for dynamically establishing overlay tunnels.
The exponential growth of the Internet has made it a popular delivery medium for a variety of applications running on physical and virtual devices. Such applications have brought with them an increasing demand for bandwidth. As a result, equipment vendors race to build larger and faster switches with versatile capabilities, such as network virtualization and multi-tenancy, to accommodate a plurality of tenant networks. Since Internet traffic is becoming more diverse, network virtualization is becoming progressively more important as a value proposition for network architects. In addition, the evolution of virtual computing has made multi-tenancy attractive and, consequently, placed additional requirements on the network. For example, virtual servers are being allocated to a large number of tenants while a respective tenant operates multiple virtualized networks. It is often desirable that the network infrastructure can provide a large number of virtualized networks to support multi-tenancy and ensure network separation among the tenants.
A flexible way of implementing network virtualization and multi-tenancy is using overlay networks for extending a tenant network. Network virtualization edge is a network entity that implements network virtualization functions. Typically, the network virtualization edge is implemented in host machines, which host virtualized servers (e.g., virtual machines). However, the number of virtualized networks cannot grow infinitely in a host machine. It is limited by processing capacity and design complexity, to name a few factors. Furthermore, host machines with higher capability are usually more complex and expensive. More importantly, host machines often cannot provide large number of virtualized networks due to the limited capability of a virtualization manager (e.g., a hypervisor running the virtual machines).
While network virtualization supports many desirable features, some issues remain unsolved in efficiently facilitating virtualized networks for multiple tenants.
One embodiment of the present invention provides a dynamic overlay tunnel orchestration system. During operation, the system detects the appearance of a first virtual machine running on a hypervisor of a first host machine coupled to a first switch in a network. The system identifies a first virtual local area network (VLAN) associated with the first virtual machine and determines whether an overlay tunnel exists between the first switch and a second switch coupling a second virtual machine belonging to the first VLAN. If no such overlay tunnel exists, the system generates an instruction for the first and second switches to establish a first overlay tunnel between the first and second switches.
In a variation on this embodiment, the system allocates a network identifier for the first VLAN. The network identifier indicates traffic belonging to the first VLAN in the first overlay tunnel.
In a further variation, the system maintains a mapping between the first VLAN and a tuple comprising the first overlay tunnel and the network identifier.
In a variation on this embodiment, the system refrains from instructing the first and second switches to establish the first overlay tunnel in response to determining that an overlay tunnel exists between the first and second switches.
In a variation on this embodiment, the system detects the removal of the first virtual machine from the first host machine and determines whether the first overlay tunnel provides an overlay service to the first and second switches. If the first overlay tunnel does not provide an overlay service, the system generates an instruction for the first and second switches to terminate the first overlay tunnel between the first and second switches.
In a further variation, determining whether the first overlay tunnel provides an overlay service to the first and second switches includes one or more of: determining whether the first overlay tunnel carries traffic belonging to a second VLAN, and determining whether a third virtual machine belonging to the first VLAN is running on the hypervisor of the first host machine.
In a further variation, the removal of the first virtual machine includes: migration of the first virtual machine; and deletion of the first virtual machine.
In a variation on this embodiment, the system obtains information associated with the first virtual machine from a notification message from a notification agent in the hypervisor of the first host machine.
One embodiment of the present invention provides a switch. The switch includes a storage device, a tunnel management module, and a mapping module. During operation, the tunnel management module establishes an overlay tunnel with a second switch based on a first instruction identifying the tunnel endpoint switches of the overlay tunnel. The mapping module maintains, in the storage device, a mapping between a first tuple and a second tuple. The first tuple includes a media access control (MAC) address and a virtual local area network (VLAN) identifier of a virtual machine. The second tuple includes the overlay tunnel and a network identifier. The network identifier indicates traffic belonging to the VLAN in the overlay tunnel.
In a variation on this embodiment, the virtual machine is coupled to the second switch. The first instruction includes the VLAN identifier, the overlay tunnel, and the network identifier.
In a variation on this embodiment, the switch further includes a forwarding module, which encapsulates a packet in a tunnel encapsulation header associated with the overlay tunnel based on the mapping. The tunnel encapsulation header includes the network identifier.
In a variation on this embodiment, the tunnel management module terminates the overlay tunnel with the second switch based on a second instruction identifying tunnel endpoint switches for the overlay tunnel.
In the figures, like reference numerals refer to the same figure elements.
The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.
In embodiments of the present invention, the problem of efficiently facilitating overlay tunnels for virtual machines in a network is solved by dynamically orchestrating an overlay tunnel between switch pairs coupling virtual machines belonging to the same layer-2 broadcast domain (e.g., the same virtual local area network (VLAN)). Examples of a tunnel include, but are not limited to, Virtual Extensible Local Area Network (VXLAN); Generic Routing Encapsulation (GRE); and GRE variants, such as Network Virtualization using GRE (NVGRE) and openvSwitch GRE.
Suppose that two virtual machines residing on two different host machines belong to a same VLAN but are separated by a network (e.g., a layer-3 network). With existing technologies, the virtualization managers (e.g., hypervisors and Hyper-Vs) running the virtual machines establish an overlay tunnel to extend the VLAN across the network. However, the capacity of a virtualization manager is limited by the processing capacity of the host machine hosting the virtualization manager and the virtual machines. To overcome such limitations, the responsibilities of managing and maintaining overlay tunnels can be offloaded to the switches of the network. In traditional overlay networks, the orchestration of overlay tunnels among the switches are static and pre-determined based on the network architecture. The switches are configured to establish the overlay tunnels between a respective switch pair in the network during the boot up process. These tunnels typically do not change, even when new virtual machines are added or existing ones are removed or migrated.
To solve this problem, since the overlay tunnels are managed by the switches, the responsibilities of encapsulating and decapsulating packets with tunnel headers is offloaded from the virtualization managers to the switches. In some embodiments, the switches use switch modules (e.g., switch hardware) to manage the tunnels. As a result, the switches can encapsulate and decapsulate packets more efficiently than the virtualization managers.
In addition, an overlay module running on a configuration manager can collect information about appearance and removal of virtual machines on the virtualization managers. For example, a virtualization manager can include a notification agent, which provides the information to the overlay module. Based on this information, the overlay module dynamically determines whether to establish or terminate a tunnel between a switch pair. The overlay module determines the necessity of an overlay tunnel based on the lifecycle of the virtual machines. The overlay module establishes an overlay tunnel between any two switches when both switches are coupled to virtual machines requiring overlay services (e.g., virtual machines belonging to a same VLAN). The overlay module removes a tunnel when a virtual machine no longer requires the services provided by the overlay tunnel (e.g., when a virtual machine is removed).
In some embodiments, the network is a fabric switch. In a fabric switch, any number of switches coupled in an arbitrary topology may logically operate as a single switch. The fabric switch can be an Ethernet fabric switch or a virtual cluster switch (VCS), which can operate as a single Ethernet switch. Any member switch may join or leave the fabric switch in “plug-and-play” mode without any manual configuration. In some embodiments, a respective switch in the fabric switch is a Transparent Interconnection of Lots of Links (TRILL) routing bridge (RBridge). In some further embodiments, a respective switch in the fabric switch is an IP routing-capable switch (e.g., an IP router).
It should be noted that a fabric switch is not the same as conventional switch stacking. In switch stacking, multiple switches are interconnected at a common location (often within the same rack), based on a particular topology, and manually configured in a particular way. These stacked switches typically share a common address, e.g., an IP address, so they can be addressed as a single switch externally. Furthermore, switch stacking requires a significant amount of manual configuration of the ports and inter-switch links. The need for manual configuration prohibits switch stacking from being a viable option in building a large-scale switching system. The topology restriction imposed by switch stacking also limits the number of switches that can be stacked. This is because it is very difficult, if not impossible, to design a stack topology that allows the overall switch bandwidth to scale adequately with the number of switch units.
In contrast, a fabric switch can include an arbitrary number of switches with individual addresses, can be based on an arbitrary physical topology, and does not require extensive manual configuration. The switches can reside in the same location, or be distributed over different locations. These features overcome the inherent limitations of switch stacking and make it possible to build a large “switch farm,” which can be treated as a single, logical switch. Due to the automatic configuration capabilities of the fabric switch, an individual physical switch can dynamically join or leave the fabric switch without disrupting services to the rest of the network.
Furthermore, the automatic and dynamic configurability of the fabric switch allows a network operator to build its switching system in a distributed and “pay-as-you-grow” fashion without sacrificing scalability. The fabric switch's ability to respond to changing network conditions makes it an ideal solution in a virtual computing environment, where network loads often change with time.
It should also be noted that a fabric switch is distinct from a VLAN. A fabric switch can accommodate a plurality of VLANs. A VLAN is typically identified by a VLAN tag. In contrast, the fabric switch is identified by a fabric identifier (e.g., a cluster identifier), which is assigned to the fabric switch. Since a fabric switch can be represented as a logical chassis, the fabric identifier can also be referred to as a logical chassis identifier. A respective member switch of the fabric switch is associated with the fabric identifier. In some embodiments, a fabric switch identifier is pre-assigned to a member switch. As a result, when the switch joins a fabric switch, other member switches identifies the switch to be a member switch of the fabric switch.
In this disclosure, the term “fabric switch” refers to a number of interconnected physical switches which can form a single, scalable network of switches. The member switches of the fabric switch can operate as individual switches. The member switches of the fabric switch can also operate as a single logical switch in the provision and control plane, the data plane, or both. “Fabric switch” should not be interpreted as limiting embodiments of the present invention to a plurality of switches operating as a single, logical switch. In this disclosure, the terms “fabric switch” and “fabric” are used interchangeably.
Although the present disclosure is presented using examples based on an encapsulation protocol, embodiments of the present invention are not limited to networks defined using one particular encapsulation protocol associated with a particular Open System Interconnection Reference Model (OSI reference model) layer. For example, embodiments of the present invention can also be applied to a multi-protocol label switching (MPLS) network. In this disclosure, the term “encapsulation” is used in a generic sense, and can refer to encapsulation in any networking layer, sub-layer, or a combination of networking layers.
The term “end device” can refer to any device external to a network (e.g., does not perform forwarding in that network). Examples of an end device include, but are not limited to, a physical or virtual machine, a conventional layer-2 switch, a layer-3 router, or any other type of network device. Additionally, an end device can be coupled to other switches or hosts further away from a layer-2 or layer-3 network. An end device can also be an aggregation point for a number of network devices to enter the network. An end device hosting one or more virtual machines can be referred to as a host machine. In this disclosure, the terms “end device” and “host machine” are used interchangeably.
The term “hypervisor” is used in a generic sense, and can refer to any virtualization manager (e.g., a virtual machine manager). Any software, firmware, or hardware that creates and runs virtual machines can be a “hypervisor.” The term “virtual machine” is also used in a generic sense and can refer to software implementation of a machine or device. Any virtual device which can execute a software program similar to a physical device can be a “virtual machine.”
The term “VLAN” is used in a generic sense, and can refer to any virtualized network. Any virtualized network comprising a segment of physical networking devices, software network resources, and network functionality can be can be referred to as a “VLAN.” “VLAN” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. “VLAN” can be replaced by other terminologies referring to a virtualized network or network segment, such as “Virtual Private Network (VPN),” “Virtual Private LAN Service (VPLS),” or “Easy Virtual Network (EVN).”
The term “packet” refers to a group of bits that can be transported together across a network. “Packet” should not be interpreted as limiting embodiments of the present invention to layer-3 networks. “Packet” can be replaced by other terminologies referring to a group of bits, such as “frame,” “cell,” or “datagram.”
The term “switch” is used in a generic sense, and can refer to any standalone or fabric switch operating in any network layer. “Switch” can be a physical device or software running on a computing device. “Switch” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. Any device that can forward traffic to an external device or another switch can be referred to as a “switch.” Examples of a “switch” include, but are not limited to, a layer-2 switch, a layer-3 router, a TRILL RBridge, or a fabric switch comprising a plurality of similar or heterogeneous smaller physical switches.
The term “edge port” refers to a port on a network which exchanges data frames with a device outside of the network (i.e., an edge port is not used for exchanging data frames with another member switch of a network). The term “inter-switch port” refers to a port which sends/receives data frames among member switches of the network. A link between inter-switch ports is referred to as an “inter-switch link.” The terms “interface” and “port” are used interchangeably.
The term “switch identifier” refers to a group of bits that can be used to identify a switch. Examples of a switch identifier include, but are not limited to, a media access control (MAC) address, an Internet Protocol (IP) address, an RBridge identifier, or a combination thereof. In this disclosure, “switch identifier” is used as a generic term, is not limited to any bit format, and can refer to any format that can identify a switch.
The term “tunnel” refers to a data communication where one or more networking protocols are encapsulated using another networking protocol. Although the present disclosure is presented using examples based on a layer-3 encapsulation of a layer-2 protocol, “tunnel” should not be interpreted as limiting embodiments of the present invention to layer-2 and layer-3 protocols. A “tunnel” can be established for and using any networking layer, sub-layer, or a combination of networking layers.
Network Architecture
Switch 103 is coupled to end devices 120 and 130. Switches 102 and 105 are coupled to end devices 140 and 150, respectively. End devices 120, 130, 140, and 150 are host machines, each hosting a plurality of virtual machines. Switches in network 100 use edge ports to communicate with end devices and inter-switch ports to communicate with other switches. For example, switch 103 is coupled to end devices, such as end device 120, via edge ports and to switches 101, 102, and 104 via inter-switch ports. End devices 120, 130, 140, and 150 include hypervisors 122, 132, 142, and 152, respectively. Virtual machines (VMs) 124 and 126 run on hypervisor 122; virtual machines 134 and 136 run on hypervisor 132; virtual machines 144 and 146 run on hypervisor 142; and virtual machines 154 and 156 run on hypervisor 152.
In this example, virtual machines 124, 134, 144, 146, and 154 belong to a tenant 1 and virtual machines 126, 136, and 156 belong to a tenant 2. Tenant 1 deploys VLANs 112 and 114, and tenant 2 deploys VLAN 112. Hence, the same VLAN identifier for VLAN 112 can be used by multiple tenants. Virtual machines 124 and 144 are in VLAN 112 of tenant 1, virtual machines 134, 146, and 154 are in VLAN 114 of tenant 1, and virtual machines 126, 136, and 156 are in VLAN 112 of tenant 2. Since network 100 is serving a plurality of tenants, each deploying a plurality of VLANs, a respective switch of network 100 can serve both tenants 1 and 2, and a plurality of switches can serve the same tenant 1 or 2.
With existing technologies, since virtual machines 124 and 144 belong to a same VLAN 112 but are separated by network 100, hypervisors 122 and 142 establish an overlay tunnel to extend VLAN 112 across network 100. However, the capacity of hypervisors 122 and 142 is limited by the processing capacity of host machines 120 and 140, respectively. To overcome such limitations, the responsibilities of managing and maintaining overlay tunnels can be offloaded to the switches. In traditional overlay networks, the switches of network 100 are configured to establish the overlay tunnels between a respective switch pair in network 100 during the boot up process. These tunnels typically do not change, even when new virtual machines are added or existing ones are removed or migrated.
To solve this problem, an end device 110 operating as a configuration manager can dynamically orchestrate overlay tunnels in network 100 between switches coupling virtual machines belonging to the same VLAN. These switches can be referred to as tunnel endpoints. A tunnel is identified by the switch identifiers (e.g., IP addresses) of the tunnel endpoints. Configuration manager 110 can be an administrator device from which network 100 can be configured. End device 110 can be coupled with network 100 via one or more links (denoted with a dashed line) of one or more networks. Since the responsibility of managing overlay tunnels is offloaded to the switches of network 100, the responsibilities of encapsulating and decapsulating packets with tunnel headers is offloaded from hypervisors to the switches in network 100. In some embodiments, the switches use switch hardware to manage the tunnels. As a result, the switches can encapsulate and decapsulate packets more efficiently than the hypervisors.
In some embodiments, an overlay module 172 running on configuration manager 110 can collect information about appearance and removal of virtual machines. For example, when virtual machines 124 and 144 are created (or instantiated) on hypervisors 122 and 142, overlay module 172 collects this information. Based on this information, overlay module 172 determines that virtual machines 124 and 144 belong to a same VLAN 112 of tenant 1. As a result, overlay module 172 dynamically determines to establish an overlay tunnel between switches 102 and 103. Overlay module 172 sends a control message to switches 102 and 104 instructing them to establish an overlay tunnel. Upon receiving the control message, switches 102 and 103 establish a tunnel 162 (e.g., a VXLAN tunnel) between them.
In the same way, overlay module 172 determines that virtual machines 134 and 154 belong to a same VLAN 114 of tenant 1. Hence, based on an instruction from overlay module 172, switches 103 and 105 establish a tunnel 164 between them. This instruction includes the identifying information of switches 103 and 105. Furthermore, since switch 102 is coupled to a virtual machine 146 belonging to VLAN 114 of tenant 1, switches 102 and 103 use an already established tunnel 162 to carry traffic of VLAN 114. In the same way, overlay module 172 determines that virtual machines 126, 136, and 156 belong to a same VLAN 112 of tenant 2. Switches 103 and 105 then use already established tunnel 164 to carry traffic of VLAN 112 of tenant 2. Hence, the same tunnel can be used to carry traffic of different tenants. In this example, since switches 102 and 105 don't share a layer-2 broadcast domain, overlay module 172 determines that switches 102 and 105 may not need an overlay tunnel to forward traffic between host machines 140 and 150.
It should be noted that even though the same tunnel 162 can carry traffic of both VLANs 112 and 114 of tenant 1, these VLANs can use separate network identifiers (e.g., VXLAN Network Identifiers or VNIs). In other words, packets encapsulated with tunnel encapsulation headers carry different network identifiers for packets of VLANs 112 and 114. In the same way, even though the same tunnel 164 can carry traffic of both VLAN 114 of tenant 1 and VLAN 112 of tenant 2, these VLANs use separate network identifiers. The use of separate network identifiers allows the switches to use the same tunnel and maintain VLAN separations.
Overlay module 172 determines the necessity of overlay tunnel 162 based on the lifecycle of virtual machines coupled to switches 102 and 103. Suppose that virtual machines 144 and 146 are not coupled with switch 102 (e.g., due to a migration or a removal). Overlay module 172 determines that switch 102 does not have any virtual machine coupled with it. As a result, overlay module 172 terminates tunnel 162 since virtual machines 144 and 146 no longer require the services provided by overlay tunnel 162, such as extending VLANs 112 and 114 of tenant 1 across network 100.
To facilitate information to virtual machine management module 170, hypervisors 132 and 152 run notification agents 182 and 184, respectively. In some embodiments, notification agents 182 and 184 facilitate a messaging architecture (e.g., OpenStack Nova) for virtual machine management module 170 and can send messages to virtual machine management module 170 regarding appearance and removal of virtual machines on hypervisors 132 and 152, respectively. When virtual machine management module 170 receives such messages, overlay module 172 obtains the information provided in the messages. It should be noted that overlay module 172 only obtains information regarding the virtual machines from virtual machine management module 170. The overlay tunnel orchestration facilitated by overlay module 172 can be a capability independent of the native capabilities of virtual machine management module 170.
In addition, when a virtual machine is added to or removed from host machine 130, hypervisor 132 sends a discovery message 180 to switch 103. In this way, switch 103 identifies the media access control (MAC) address of the virtual machine. In some embodiments, discovery message 180 is based on a Link Layer Discovery Protocol (LLDP). Switch 103 can further construct a notification message indicating that switch 103 has learned the MAC addresses of virtual machines 134 and 136 and sends the notification message to switch 105. In this way, switch 105 determines that virtual machines 134 and 136 are reachable via switch 103. In the same way, switch 105 discovers appearance or removal of a virtual machine in host machine 150 and shares the information with switch 103.
Based on the information provided by notification agents 182 and 184, overlay module 172 dynamically determines whether to establish or terminate a tunnel between a switch pair. During operation, notification agent 182 detects that a virtual machine 124 has appeared in host machine 120. Notification agent 182 then sends a message comprising the virtual MAC address and VLAN 114 of virtual machine 124 to virtual machine management module 170. When the message reaches virtual machine management module 170, overlay module 172 obtains the information. Overlay module 172 determines that there is no other virtual machine in VLAN 114 of tenant 1 coupled with network 100. However, when virtual machine 154 appears in host machine 150, overlay module 172 obtains the MAC address and VLAN 114 of virtual machine 154. Overlay module 172 determines that both virtual machines 124 and 154 belong to the same VLAN 114 of tenant 1.
Based on this information, overlay module 172 determines that host machine 120 is coupled to switch 103 and host machine 150 is coupled to switch 105. Overlay module 172 generates a notification message instructing switches 103 and 105 to establish an overlay tunnel. In some embodiments, an overlay tunnel formation is disabled for hypervisors 122 and 152 (e.g., by an administrator). This allows a hypervisor to forward a layer-2 frame to a switch. Overlay module 172 can assign a network identifier for VLAN 114 of tenant 1, maintain a mapping between them, and send the mapping to switches 103 and 105. Upon receiving the instruction, switches 103 and 105 establish tunnel 164 between them.
On the other hand, when virtual machines 126 and 156 are created, notification agents 182 and 184, respectively, notify virtual machine management module 170. Overlay module 172 obtains the information regarding virtual machines 126 and 156, and determines that virtual machines 126 and 156 belong to VLAN 112 of tenant 2. Overlay module 172 determines that since tunnel 164 has already been established between switches 103 and 105, another tunnel is not needed to forward packets between hypervisors 122 and 124.
To forward a packet to virtual machine 154, virtual machine 124 provides the packet to hypervisor 122, which in turn, forwards the packet to switch 103. Switch 103 encapsulates the packet in a tunnel encapsulation header, includes the network identifier in the encapsulation header, and forwards the encapsulated packet to switch 105 via tunnel 164. The network identifier allows separation of traffic in network 100 between VLAN 114 of tenant 1 and VLAN 112 of tenant 2.
Tunnel Mapping
For example, since tunnel 162 carries traffic belonging to VLAN 112 of tenant 1, overlay module 172 maintains a tunnel mapping 202, which maps VLAN 112 and tenant 1 to tunnel 162 and a VNI 222 allocated for VLAN 112 of tenant 1. In tunnel mapping 202, tunnel 162 is identified by switch identifiers of the tunnel endpoints of tunnel 162. In other words, tunnel mapping 202 maps a tuple comprising VLAN 112 and tenant 1 to another tuple comprising tunnel 162 and VNI 222. Similarly, since tunnel 162 also carries traffic belonging to VLAN 114 of tenant 1, tunnel mapping 202 further maps VLAN 114 and tenant 1 to tunnel 162 and a VNI 224 allocated for VLAN 114 of tenant 1. VNIs 222 and 224 distinguish traffic belonging to VLANs 112 and 114, respectively, in tunnel 162. Tunnel mapping 202 allows the same tunnel 162 to carry traffic of both VLANs 112 and 114 of tenant 1 by using VNIs 222 and 224, respectively, in the tunnel encapsulation header (e.g., a VXLAN header).
In the same way, since tunnel 164 carries traffic belonging to VLAN 114 of tenant 1, tunnel mapping 202 further maps VLAN 114 and tenant 1 to tunnel 164 and a VNI 226 allocated for VLAN 114 of tenant 1. Similarly, since tunnel 164 also carries traffic belonging to VLAN 112 of tenant 2, tunnel mapping 202 further maps VLAN 112 and tenant 2 to tunnel 164 and a VNI 228 allocated for VLAN 112 of tenant 2. VNIs 226 and 228 distinguish traffic belonging to VLAN 114 of tenant 1 and VLAN 112 of tenant 2, respectively, in tunnel 164. It should be noted that overlay module 172 allocates both VNIs 224 and 226 for VLAN 114 of tenant 1, but for tunnels 162 and 164, respectively. In some embodiments, VNIs 224 and 226 have the same identifier value.
Overlay module 172 constructs a notification message comprising tunnel mapping 202 and sends the notification message to a switch, such as switch 103, in network 100. In some embodiments, overlay module 172 only includes the mapping of the tunnels for which switch 103 is a tunnel endpoint (i.e., the tunnels initiated or terminated at switch 103) in the notification message. When switch 103 learns a MAC address of a remote virtual machine, which is not coupled to switch 103, switch 103 creates a forwarding mapping 206 for that MAC address.
Suppose that MAC addresses 252, 254, 256, and 258 belong to virtual machines 144, 146, 154, and 156, respectively. When switch 103 learns MAC address 252 (e.g., either from a local port or from a notification message from switch 102), switch 103 determines that virtual machine 144 belongs to VLAN 112 of tenant 1. Based on the mappings received from overlay module 172, switch 103 creates an entry in forwarding mapping 206 for MAC address 252. Since tunnel 162 carries traffic from switch 103 to virtual machine 144, forwarding mapping 206 maps MAC address 252, VLAN 112, and tenant 1 to tunnel 162 and VNI 222 based on the mappings received from overlay module 172. In other words, tunnel mapping 206 maps a tuple comprising MAC address 252, VLAN 112, and tenant 1 to another tuple comprising tunnel 162 and VNI 222.
In the same way, forwarding mapping 206 maps MAC address 254, VLAN 114, and tenant 1 to tunnel 162 and VNI 224; MAC address 256, VLAN 114, and tenant 1 to tunnel 164 and VNI 226; and MAC address 258, VLAN 112, and tenant 2 to tunnel 164 and VNI 228. Forwarding mapping 206 allows switch 103 to determine which tunnel and VNI to use for forwarding packets via the overlay tunnels. Since a tunnel is identified based on the switch identifiers (e.g., IP addresses) of the tunnel endpoints, switch 103 can determine the destination address for a tunnel encapsulation header from forwarding mapping 206.
For example, upon receiving a packet destined to virtual machine 156 from virtual machine 136, switch 103 obtains forwarding information from forwarding mapping 206. Switch 103 encapsulates the packet with a tunnel encapsulation header, sets the source and destination addresses of the encapsulation header as the switch identifiers (e.g., IP addresses) of switches 103 and 105, respectively, and includes VNI 228 as the network identifier of the encapsulation header. Switch 103 can obtain an egress port for the encapsulated packed based on the destination address of the encapsulation header and transmit the packet via the egress port.
Tunnel Termination
Overlay module 172 determines the necessity of an overlay tunnel based on the lifecycle of the virtual machines. Hence, overlay module 172 removes a tunnel when a virtual machine no longer requires the services provided by the overlay tunnel (e.g., when a virtual machine is removed).
Overlay module 172 obtains this information from notification agent 184. Overlay module 172 determines virtual machine 156 to be a new virtual machine running on hypervisor 142 and determines whether to establish a tunnel to accommodate the new virtual machine. Since virtual machines 126 and 136 are coupled to switch 103 and in VLAN 112 of tenant 2, tunnel 162 can carry traffic between migrated virtual machine 156 and virtual machine 126 (or 136). To facilitate this, in some embodiments, overlay module 172 updates tunnel mapping 202 to map VLAN 112 and tenant 2 to tunnel 162 and VNI 228, thereby associating VNI 228 with tunnel 162. Overlay module 172 can provide this updated information to switch 102.
Overlay module 172 then checks whether tunnel 164 is needed to forward traffic. Overlay module 172 determines that host machine 150 is still hosting virtual machine 154. As a result, the packets between virtual machines 134 and 154, which belong to the same VLAN 112 of tenant 2, are still forwarded via tunnel 164. Hence, overlay module 172 determines that tunnel 164 is needed to forward traffic. Switches 103 and 105 thus continue to maintain tunnel 164 between them. In this way, overlay module 172 ensures that even when a virtual machine migrates, the associated overlay tunnel continues carry traffic if another virtual machine needs the overlay tunnel.
Suppose that virtual machine 154 is removed (denoted with a cross). Overlay module 172 obtains this information from notification agent 184 and determines that host machine 150 is not hosting any virtual machine that needs an overlay tunnel. As a result, overlay module 172 determines that tunnel 164 is not needed to forward traffic. Overlay module 172 then generates a notification message instructing to terminate tunnel 164 and sends the notification message to switches 103 and 105. Upon receiving the notification message, switches 103 and 105 terminate tunnel 164, thereby removing an unused overlay tunnel from network 100.
Operations of an Overlay Module
If a tunnel between the switch and the other switch doesn't exist, the overlay module allocates a VNI for the VLAN for the tunnel between the switch and the other switch (operation 414). The overlay module generates a mapping between the VLAN and the (tunnel, VNI) tuple (operation 416). The mapping can further include a tenant to which the VLAN belong. The overlay module generates a control message comprising the mapping and an instruction for establishing the tunnel based on the mapping (operation 418). The overlay module then identifies respective egress ports for the switch and the other switch, and transmits the control message via the identified ports (operation 420).
If the overlay module has transmitted the control message (operation 420), the same VLAN is not configured in another switch (operation 408), or a tunnel between the switch and the other switch already exists (operation 410), the overlay module may not create an overlay tunnel for the other switch. It should be noted that the overlay module can allocate a VNI for a VLAN even when the tunnel exists. The overlay module then checks whether all switches have been checked (operation 412). If all switches have not been checked, the overlay module continues to check whether the same VLAN is configured in another switch (operation 408) and whether a tunnel between the switch and the other switch already exists (operation 410).
The overlay module checks whether the tunnel carries traffic of another VLAN (operation 462). In this way, the overlay module determines whether the tunnel still provides an overlay service to the tunnel endpoint switches. If the tunnel does not carry traffic of another VLAN, the tunnel can be terminated. The overlay module then removes the mapping between the VLAN and the (tunnel, VNI) tuple (operation 466). The overlay module generates a control message comprising the mapping and an instruction for terminating the tunnel based on the mapping (operation 468). The overlay module then identifies respective egress ports for tunnel endpoint switches and transmits the control message via the identified ports (operation 470).
If another virtual machine in the same VLAN is coupled to the switch (operation 458), the overlay module may not terminate the overlay tunnel. If the overlay module has transmitted the control message (operation 470) or another virtual machine in the same VLAN is coupled to the switch (operation 462), the overlay module checks whether all tunnels carrying the traffic of the VLAN have been checked (operation 464). If all tunnels carrying the traffic of the VLAN have not been checked, the overlay module continues to identify the next tunnel which has been carrying traffic of the VLAN (operation 460).
Operations of a Switch
Exemplary Computer System and Switch
Computer system 750 further includes a virtual machine management module 770, an overlay module 772, and a notification module 780. During operation, virtual machine management module 770 detects the appearance of a virtual machine running on a hypervisor of a host machine coupled to a switch 700. Virtual machine management module 770 can obtain such information from a notification agent in the hypervisor, as described in conjunction with
Overlay module 772 allocates a network identifier for the VLAN and maintains, in storage device 790, a mapping between the VLAN and a tuple comprising the overlay tunnel (e.g., identified by switch identifiers) and the network identifier. In some embodiments, overlay module 772 detects the removal of the virtual machine from the host machine and determines whether the overlay tunnel provides an overlay service to the switches. If not, overlay module 772 generates an instruction for the switches to terminate the overlay tunnel.
In some embodiments, switch 700 includes a fabric switch module 724, which maintains a membership in a network of interconnected switches. A respective switch of the network is associated with a group identifier identifying the network. Switch 700 then maintains a configuration database in a storage device 740 that maintains the configuration state of a respective switch within the fabric switch. Switch 700 maintains the state of the fabric switch, which is used to join other switches. Under such a scenario, communication ports 702 can include inter-switch communication channels for communication within a fabric switch. This inter-switch communication channel can be implemented via a regular communication port and based on any open or proprietary format (e.g., a TRILL or IP protocol).
In this example, switch 700 further includes a number of communication ports 702, a packet processor 710, a tunnel management module 730, a mapping module 730, a forwarding module 722, and a storage device 740. Tunnel management module 730 establishes an overlay tunnel with a remote switch based on an instruction for establishing the tunnel. Mapping module 730 maintains, in storage device 740, a mapping between a first tuple and a second tuple. The first tuple includes a MAC address and a VLAN identifier of a virtual machine. The second tuple includes the overlay tunnel and a network identifier.
Forwarding module 722 encapsulates a packet in a tunnel encapsulation header associated with the overlay tunnel based on the mapping. In some embodiments, packet processor 710 determines an egress port from communication ports 702 based on the destination address of the encapsulated packet and transmits the encapsulated packet via the egress port. Tunnel management module 730 terminates the overlay tunnel based on another instruction for terminating the tunnel.
Note that the above-mentioned modules can be implemented in hardware as well as in software. In one embodiment, these modules can be embodied in computer-executable instructions stored in a memory which is coupled to one or more processors in switch 700. When executed, these instructions cause the processor(s) to perform the aforementioned functions.
In summary, embodiments of the present invention provide a switch, a system, and a method for facilitating dynamic overlay tunnel orchestration. In one embodiment, the system detects the appearance of a first virtual machine running on a hypervisor of a first host machine coupled to a first switch in a network. The system identifies a VLAN associated with the first virtual machine and determines whether an overlay tunnel exists between the first switch and a second switch coupling a second virtual machine belonging to the first VLAN. If no such overlay tunnel exists, the system generates an instruction for the first and second switches to establish a first overlay tunnel between the first and second switches.
The methods and processes described herein can be embodied as code and/or data, which can be stored in a computer-readable non-transitory storage medium. When a computer system reads and executes the code and/or data stored on the computer-readable non-transitory storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the medium.
The methods and processes described herein can be executed by and/or included in hardware modules or apparatus. These modules or apparatus may include, but are not limited to, an application-specific integrated circuit (ASIC) chip, a field-programmable gate array (FPGA), a dedicated or shared processor that executes a particular software module or a piece of code at a particular time, and/or other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.
The foregoing descriptions of embodiments of the present invention have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit this disclosure. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. The scope of the present invention is defined by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 62/144,709, titled “Method and Apparatus for Dynamic Orchestration of NVE Overlay Transport” by inventors Ritesh Madapurath, Sachin Hollai, Manjunath A. G. Gowda, and Sanjeev Joshi, filed 8 Apr. 2015, the disclosure of which is incorporated by reference herein. The present disclosure is related to U.S. Pat. No. 8,867,552, titled “Virtual Cluster Switching,” by inventors Suresh Vobbilisetty and Dilip Chatwani, issued 21 Oct. 2014, the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
829529 | Keathley | Aug 1906 | A |
2854352 | Gronemeyer | Sep 1958 | A |
5390173 | Spinney | Feb 1995 | A |
5802278 | Isfeld | Sep 1998 | A |
5878232 | Marimuthu | Mar 1999 | A |
5879173 | Poplawski | Mar 1999 | A |
5959968 | Chin | Sep 1999 | A |
5973278 | Wehrill, III | Oct 1999 | A |
5983278 | Chong | Nov 1999 | A |
5995262 | Hirota | Nov 1999 | A |
6041042 | Bussiere | Mar 2000 | A |
6085238 | Yuasa | Jul 2000 | A |
6092062 | Lohman | Jul 2000 | A |
6104696 | Kadambi | Aug 2000 | A |
6122639 | Babu | Sep 2000 | A |
6185214 | Schwartz | Feb 2001 | B1 |
6185241 | Sun | Feb 2001 | B1 |
6295527 | McCormack | Sep 2001 | B1 |
6331983 | Haggerty | Dec 2001 | B1 |
6438106 | Pillar | Aug 2002 | B1 |
6498781 | Bass | Dec 2002 | B1 |
6542266 | Phillips | Apr 2003 | B1 |
6553029 | Alexander | Apr 2003 | B1 |
6571355 | Linnell | May 2003 | B1 |
6583902 | Yuen | Jun 2003 | B1 |
6633761 | Singhal | Oct 2003 | B1 |
6636963 | Stein | Oct 2003 | B1 |
6771610 | Seaman | Aug 2004 | B1 |
6870840 | Hill | Mar 2005 | B1 |
6873602 | Ambe | Mar 2005 | B1 |
6920503 | Nanji | Jul 2005 | B1 |
6937576 | DiBenedetto | Aug 2005 | B1 |
6956824 | Mark | Oct 2005 | B2 |
6957269 | Williams | Oct 2005 | B2 |
6975581 | Medina | Dec 2005 | B1 |
6975864 | Singhal | Dec 2005 | B2 |
7016352 | Chow | Mar 2006 | B1 |
7061877 | Gummalla | Jun 2006 | B1 |
7062177 | Grivna | Jun 2006 | B1 |
7097308 | Kim et al. | Aug 2006 | B2 |
7173934 | Lapuh | Feb 2007 | B2 |
7197308 | Singhal | Mar 2007 | B2 |
7206288 | Cometto | Apr 2007 | B2 |
7274694 | Cheng | Sep 2007 | B1 |
7310664 | Merchant | Dec 2007 | B1 |
7313637 | Tanaka | Dec 2007 | B2 |
7315545 | Chowdhury et al. | Jan 2008 | B1 |
7316031 | Griffith | Jan 2008 | B2 |
7330897 | Baldwin | Feb 2008 | B2 |
7380025 | Riggins | May 2008 | B1 |
7397768 | Betker | Jul 2008 | B1 |
7397794 | Lacroute | Jul 2008 | B1 |
7430164 | Bare | Sep 2008 | B2 |
7453888 | Zabihi | Nov 2008 | B2 |
7477894 | Sinha | Jan 2009 | B1 |
7480258 | Shuen | Jan 2009 | B1 |
7508757 | Ge | Mar 2009 | B2 |
7558195 | Kuo | Jul 2009 | B1 |
7558273 | Grosser | Jul 2009 | B1 |
7571447 | Ally | Aug 2009 | B2 |
7599901 | Mital | Oct 2009 | B2 |
7653056 | Dianes | Jan 2010 | B1 |
7688736 | Walsh | Mar 2010 | B1 |
7688960 | Aubuchon | Mar 2010 | B1 |
7690040 | Frattura | Mar 2010 | B2 |
7706255 | Kondrat et al. | Apr 2010 | B1 |
7716370 | Devarapalli | May 2010 | B1 |
7720076 | Dobbins | May 2010 | B2 |
7729296 | Choudhary | Jun 2010 | B1 |
7787480 | Mehta | Aug 2010 | B1 |
7792920 | Istvan | Sep 2010 | B2 |
7796593 | Ghosh | Sep 2010 | B1 |
7801021 | Triantafillis | Sep 2010 | B1 |
7808992 | Homchaudhuri | Oct 2010 | B2 |
7836332 | Hara | Nov 2010 | B2 |
7843906 | Chidambaram et al. | Nov 2010 | B1 |
7843907 | Abou-Emara | Nov 2010 | B1 |
7860097 | Lovett | Dec 2010 | B1 |
7898959 | Arad | Mar 2011 | B1 |
7912091 | Krishnan | Mar 2011 | B1 |
7924837 | Shabtay | Apr 2011 | B1 |
7937438 | Miller | May 2011 | B1 |
7937756 | Kay | May 2011 | B2 |
7945941 | Sinha | May 2011 | B2 |
7949638 | Goodson | May 2011 | B1 |
7957386 | Aggarwal | Jun 2011 | B1 |
8018938 | Fromm | Sep 2011 | B1 |
8027354 | Portolani | Sep 2011 | B1 |
8054832 | Shukla | Nov 2011 | B1 |
8068442 | Kompella | Nov 2011 | B1 |
8078704 | Lee | Dec 2011 | B2 |
8090805 | Chawla | Jan 2012 | B1 |
8102781 | Smith | Jan 2012 | B2 |
8102791 | Tang | Jan 2012 | B2 |
8116307 | Thesayi | Feb 2012 | B1 |
8125928 | Mehta | Feb 2012 | B2 |
8134922 | Elangovan | Mar 2012 | B2 |
8155150 | Chung | Apr 2012 | B1 |
8160063 | Maltz | Apr 2012 | B2 |
8160080 | Arad | Apr 2012 | B1 |
8170038 | Belanger | May 2012 | B2 |
8175107 | Yalagandula | May 2012 | B1 |
8095774 | Lambeth | Jun 2012 | B1 |
8194674 | Pagel | Jun 2012 | B1 |
8195774 | Lambeth | Jun 2012 | B2 |
8204061 | Sane | Jun 2012 | B1 |
8213313 | Doiron | Jul 2012 | B1 |
8213336 | Smith | Jul 2012 | B2 |
8230069 | Korupolu | Jul 2012 | B2 |
8239960 | Frattura | Aug 2012 | B2 |
8249069 | Raman | Aug 2012 | B2 |
8270401 | Barnes | Sep 2012 | B1 |
8295291 | Ramanathan | Oct 2012 | B1 |
8295921 | Wang | Oct 2012 | B2 |
8301686 | Appajodu | Oct 2012 | B1 |
8339994 | Gnanasekaran | Dec 2012 | B2 |
8351352 | Eastlake | Jan 2013 | B1 |
8369335 | Jha | Feb 2013 | B2 |
8369347 | Xiong | Feb 2013 | B2 |
8392496 | Linden | Mar 2013 | B2 |
8451717 | Srikrishnan | May 2013 | B2 |
8462774 | Page | Jun 2013 | B2 |
8465774 | Page | Jun 2013 | B2 |
8467375 | Blair | Jun 2013 | B2 |
8520595 | Yadav | Aug 2013 | B2 |
8553710 | White | Oct 2013 | B1 |
8595479 | Radhakrishnan | Nov 2013 | B2 |
8599850 | Jha | Dec 2013 | B2 |
8599864 | Chung | Dec 2013 | B2 |
8615008 | Natarajan | Dec 2013 | B2 |
8619788 | Sankaran | Dec 2013 | B1 |
8625616 | Vobbilisetty | Jan 2014 | B2 |
8705526 | Hasan | Apr 2014 | B1 |
8706905 | McGlaughlin | Apr 2014 | B1 |
8717895 | Koponen | May 2014 | B2 |
8724456 | Hong | May 2014 | B1 |
8792501 | Rustagi | Jul 2014 | B1 |
8798045 | Aybay | Aug 2014 | B1 |
8798055 | An | Aug 2014 | B1 |
8804732 | Hepting | Aug 2014 | B1 |
8804736 | Drake | Aug 2014 | B1 |
8806031 | Kondur | Aug 2014 | B1 |
8826385 | Congdon | Sep 2014 | B2 |
8918631 | Kumar | Dec 2014 | B1 |
8937865 | Kumar | Jan 2015 | B1 |
8948181 | Kapadia | Feb 2015 | B2 |
8971173 | Choudhury | Mar 2015 | B1 |
8995272 | Agarwal | Mar 2015 | B2 |
9019976 | Gupta | Apr 2015 | B2 |
9178793 | Marlow | Nov 2015 | B1 |
9231890 | Vobbilisetty | Jan 2016 | B2 |
9350680 | Thayalan | May 2016 | B2 |
9401818 | Venkatesh | Jul 2016 | B2 |
9438447 | Basso | Sep 2016 | B2 |
9450870 | Ananthapadmanabha | Sep 2016 | B2 |
9524173 | Guntaka | Dec 2016 | B2 |
9626255 | Guntaka | Apr 2017 | B2 |
9628407 | Guntaka | Apr 2017 | B2 |
20010005527 | Vaeth | Jun 2001 | A1 |
20010055274 | Hegge | Dec 2001 | A1 |
20020019904 | Katz | Feb 2002 | A1 |
20020021701 | Lavian | Feb 2002 | A1 |
20020027885 | Ben-Ami | Mar 2002 | A1 |
20020039350 | Wang | Apr 2002 | A1 |
20020054593 | Morohashi | May 2002 | A1 |
20020087723 | Williams | Jul 2002 | A1 |
20020091795 | Yip | Jul 2002 | A1 |
20020138628 | Tingley | Sep 2002 | A1 |
20020161867 | Cochran | Oct 2002 | A1 |
20030026290 | Umayabashi | Feb 2003 | A1 |
20030041085 | Sato | Feb 2003 | A1 |
20030093567 | Lolayekar | May 2003 | A1 |
20030097464 | Martinez | May 2003 | A1 |
20030097470 | Lapuh | May 2003 | A1 |
20030123393 | Feuerstraeter | Jul 2003 | A1 |
20030147385 | Montalvo | Aug 2003 | A1 |
20030152075 | Hawthorne | Aug 2003 | A1 |
20030174706 | Shankar | Sep 2003 | A1 |
20030189905 | Lee | Oct 2003 | A1 |
20030189930 | Terrell | Oct 2003 | A1 |
20030208616 | Laing | Nov 2003 | A1 |
20030216143 | Roese | Nov 2003 | A1 |
20030223428 | BlanquerGonzalez | Dec 2003 | A1 |
20030233534 | Bernhard | Dec 2003 | A1 |
20040001433 | Gram | Jan 2004 | A1 |
20040003094 | See | Jan 2004 | A1 |
20040010600 | Baldwin | Jan 2004 | A1 |
20040088668 | Bornowski | Jan 2004 | A1 |
20040037295 | Tanaka | Feb 2004 | A1 |
20040047349 | Fujita | Mar 2004 | A1 |
20040049699 | Griffith | Mar 2004 | A1 |
20040057430 | Paavolainen | Mar 2004 | A1 |
20040081171 | Finn | Apr 2004 | A1 |
20040088437 | Stimac | May 2004 | A1 |
20040095900 | Siegel | May 2004 | A1 |
20040117508 | Shimizu | Jun 2004 | A1 |
20040120326 | Yoon | Jun 2004 | A1 |
20040156313 | Hofmeister et al. | Aug 2004 | A1 |
20040165595 | Holmgren | Aug 2004 | A1 |
20040165596 | Garcia | Aug 2004 | A1 |
20040205234 | Barrack | Oct 2004 | A1 |
20040213232 | Regan | Oct 2004 | A1 |
20040225725 | Enomoto | Nov 2004 | A1 |
20040243673 | Goyal | Dec 2004 | A1 |
20050007951 | Lapuh | Jan 2005 | A1 |
20050025179 | McLaggan | Feb 2005 | A1 |
20050036488 | Kalkunte | Feb 2005 | A1 |
20050044199 | Shiga | Feb 2005 | A1 |
20050074001 | Mattes | Apr 2005 | A1 |
20050094568 | Judd | May 2005 | A1 |
20050094630 | Valdevit | May 2005 | A1 |
20050108375 | Hallak-Stamler | May 2005 | A1 |
20050111352 | Ho | May 2005 | A1 |
20050122979 | Gross | Jun 2005 | A1 |
20050152335 | Lodha | Jul 2005 | A1 |
20050157645 | Rabie et al. | Jul 2005 | A1 |
20050157751 | Rabie | Jul 2005 | A1 |
20050169188 | Cometto | Aug 2005 | A1 |
20050195813 | Ambe | Sep 2005 | A1 |
20050207423 | Herbst | Sep 2005 | A1 |
20050213561 | Yao | Sep 2005 | A1 |
20050220096 | Friskney | Oct 2005 | A1 |
20050259586 | Hafid | Nov 2005 | A1 |
20050265330 | Suzuki | Dec 2005 | A1 |
20050265356 | Kawarai | Dec 2005 | A1 |
20050278565 | Frattura | Dec 2005 | A1 |
20060007869 | Hirota | Jan 2006 | A1 |
20060018302 | Ivaldi | Jan 2006 | A1 |
20060023707 | Makishima | Feb 2006 | A1 |
20060029055 | Perera | Feb 2006 | A1 |
20060034292 | Wakayama | Feb 2006 | A1 |
20060036648 | Frey | Feb 2006 | A1 |
20060036765 | Weyman | Feb 2006 | A1 |
20060039366 | Ghosh | Feb 2006 | A1 |
20060059163 | Frattura | Mar 2006 | A1 |
20060062187 | Rune | Mar 2006 | A1 |
20060072550 | Davis | Apr 2006 | A1 |
20060083172 | Jordan | Apr 2006 | A1 |
20060083254 | Ge | Apr 2006 | A1 |
20060092860 | Higashitaniguchi | May 2006 | A1 |
20060093254 | Mozdy | May 2006 | A1 |
20060098589 | Kreeger | May 2006 | A1 |
20060126511 | Youn | Jun 2006 | A1 |
20060140130 | Kalkunte | Jun 2006 | A1 |
20060155828 | Ikeda | Jul 2006 | A1 |
20060168109 | Warmenhoven | Jul 2006 | A1 |
20060184937 | Abels | Aug 2006 | A1 |
20060206655 | Chappell | Sep 2006 | A1 |
20060209886 | Silberman | Sep 2006 | A1 |
20060221960 | Borgione | Oct 2006 | A1 |
20060227776 | Chandrasekaran | Oct 2006 | A1 |
20060235995 | Bhatia | Oct 2006 | A1 |
20060242311 | Mai | Oct 2006 | A1 |
20060242398 | Fontijn | Oct 2006 | A1 |
20060245439 | Sajassi | Nov 2006 | A1 |
20060251067 | DeSanti | Nov 2006 | A1 |
20060256767 | Suzuki | Nov 2006 | A1 |
20060265515 | Shiga | Nov 2006 | A1 |
20060285499 | Tzeng | Dec 2006 | A1 |
20060291388 | Amdahl | Dec 2006 | A1 |
20060291480 | Cho | Dec 2006 | A1 |
20060294413 | Filz | Dec 2006 | A1 |
20070036178 | Hares | Feb 2007 | A1 |
20070053294 | Ho | Mar 2007 | A1 |
20070061817 | Atkinson | Mar 2007 | A1 |
20070074052 | Hemmah | Mar 2007 | A1 |
20070081530 | Nomura | Apr 2007 | A1 |
20070083625 | Chamdani | Apr 2007 | A1 |
20070086362 | Kato | Apr 2007 | A1 |
20070094464 | Sharma | Apr 2007 | A1 |
20070097968 | Du | May 2007 | A1 |
20070098006 | Parry | May 2007 | A1 |
20070110068 | Sekiguchi | May 2007 | A1 |
20070116224 | Burke | May 2007 | A1 |
20070116422 | Reynolds | May 2007 | A1 |
20070121617 | Kanekar | May 2007 | A1 |
20070130295 | Rastogi | Jun 2007 | A1 |
20070156659 | Lim | Jul 2007 | A1 |
20070177525 | Wijnands | Aug 2007 | A1 |
20070177597 | Ju | Aug 2007 | A1 |
20070183313 | Narayanan | Aug 2007 | A1 |
20070183393 | Boyd | Aug 2007 | A1 |
20070206762 | Chandra | Sep 2007 | A1 |
20070211712 | Fitch | Sep 2007 | A1 |
20070220059 | Lu | Sep 2007 | A1 |
20070226214 | Smits | Sep 2007 | A1 |
20070230472 | Jesuraj | Oct 2007 | A1 |
20070238343 | Velleca | Oct 2007 | A1 |
20070258449 | Bennett | Nov 2007 | A1 |
20070274234 | Kubota | Nov 2007 | A1 |
20070280223 | Pan | Dec 2007 | A1 |
20070289017 | Copelandiii | Dec 2007 | A1 |
20070297406 | Rooholamini | Dec 2007 | A1 |
20080052487 | Akahane | Feb 2008 | A1 |
20080056135 | Lee | Mar 2008 | A1 |
20080056300 | Williams | Mar 2008 | A1 |
20080057918 | Abrant | Mar 2008 | A1 |
20080065760 | Damm | Mar 2008 | A1 |
20080075078 | Watanabe | Mar 2008 | A1 |
20080080517 | Roy | Apr 2008 | A1 |
20080095160 | Yadav | Apr 2008 | A1 |
20080101386 | Gray | May 2008 | A1 |
20080112133 | Torudbakken | May 2008 | A1 |
20080112400 | Dunbar et al. | May 2008 | A1 |
20080133760 | Berkvens | Jun 2008 | A1 |
20080159260 | Vobbilisetty | Jul 2008 | A1 |
20080159277 | Vobbilisetty | Jul 2008 | A1 |
20080165705 | Umayabashi | Jul 2008 | A1 |
20080172492 | Raghunath | Jul 2008 | A1 |
20080181196 | Regan | Jul 2008 | A1 |
20080181243 | Vobbilisetty | Jul 2008 | A1 |
20080186968 | Farinacci | Aug 2008 | A1 |
20080186981 | Seto | Aug 2008 | A1 |
20080205377 | Chao | Aug 2008 | A1 |
20080219172 | Mohan | Sep 2008 | A1 |
20080225852 | Raszuk | Sep 2008 | A1 |
20080225853 | Melman | Sep 2008 | A1 |
20080228897 | Ko | Sep 2008 | A1 |
20080240129 | Elmeleegy | Oct 2008 | A1 |
20080253380 | Cazares | Oct 2008 | A1 |
20080267179 | Lavigne | Oct 2008 | A1 |
20080279196 | Friskney | Nov 2008 | A1 |
20080285458 | Lysne | Nov 2008 | A1 |
20080285555 | Ogasahara | Nov 2008 | A1 |
20080288020 | Einav | Nov 2008 | A1 |
20080298248 | Roeck | Dec 2008 | A1 |
20080304498 | Jorgensen | Dec 2008 | A1 |
20080304519 | Koenen | Dec 2008 | A1 |
20080310342 | Kruys | Dec 2008 | A1 |
20090022069 | Khan | Jan 2009 | A1 |
20090024734 | Merbach | Jan 2009 | A1 |
20090037607 | Farinacci | Feb 2009 | A1 |
20090037977 | Gai | Feb 2009 | A1 |
20090041046 | Hirata | Feb 2009 | A1 |
20090042270 | Dolly | Feb 2009 | A1 |
20090044270 | Shelly | Feb 2009 | A1 |
20090052326 | Bergamasco | Feb 2009 | A1 |
20090067422 | Poppe | Mar 2009 | A1 |
20090067442 | Killian | Mar 2009 | A1 |
20090079560 | Fries | Mar 2009 | A1 |
20090080345 | Gray | Mar 2009 | A1 |
20090083445 | Ganga | Mar 2009 | A1 |
20090092042 | Yuhara | Apr 2009 | A1 |
20090092043 | Lapuh | Apr 2009 | A1 |
20090094354 | Rastogi | Apr 2009 | A1 |
20090106298 | Furusho | Apr 2009 | A1 |
20090106405 | Mazarick | Apr 2009 | A1 |
20090113408 | Toeroe | Apr 2009 | A1 |
20090116381 | Kanda | May 2009 | A1 |
20090122700 | Aboba | May 2009 | A1 |
20090129384 | Regan | May 2009 | A1 |
20090129389 | DeFretay | May 2009 | A1 |
20090138577 | Casado | May 2009 | A1 |
20090138752 | Graham | May 2009 | A1 |
20090144720 | Roush | Jun 2009 | A1 |
20090161584 | Guan | Jun 2009 | A1 |
20090161670 | Shepherd | Jun 2009 | A1 |
20090168647 | Holness | Jul 2009 | A1 |
20090199177 | Edwards | Aug 2009 | A1 |
20090204965 | Tanaka | Aug 2009 | A1 |
20090213783 | Moreton | Aug 2009 | A1 |
20090213867 | Devireddy | Aug 2009 | A1 |
20090222879 | Kostal | Sep 2009 | A1 |
20090225752 | Mitsumori | Sep 2009 | A1 |
20090232031 | Vasseur | Sep 2009 | A1 |
20090245112 | Okazaki | Oct 2009 | A1 |
20090245137 | Hares | Oct 2009 | A1 |
20090245242 | Carlson | Oct 2009 | A1 |
20090246137 | Hadida | Oct 2009 | A1 |
20090249444 | Macauley | Oct 2009 | A1 |
20090252049 | Ludwig | Oct 2009 | A1 |
20090252061 | Small | Oct 2009 | A1 |
20090252503 | Ishigami | Oct 2009 | A1 |
20090260083 | Szeto | Oct 2009 | A1 |
20090279558 | Davis | Nov 2009 | A1 |
20090279701 | Moisand | Nov 2009 | A1 |
20090292858 | Lambeth | Nov 2009 | A1 |
20090316721 | Kanda | Dec 2009 | A1 |
20090323698 | LeFaucheur | Dec 2009 | A1 |
20090323708 | Ihle | Dec 2009 | A1 |
20090327392 | Tripathi | Dec 2009 | A1 |
20090327462 | Adams | Dec 2009 | A1 |
20100002382 | Aybay | Jan 2010 | A1 |
20100027420 | Smith | Feb 2010 | A1 |
20100027429 | Jorgens | Feb 2010 | A1 |
20100042869 | Szabo | Feb 2010 | A1 |
20100046471 | Hattori | Feb 2010 | A1 |
20100054260 | Pandey | Mar 2010 | A1 |
20100061269 | Banerjee | Mar 2010 | A1 |
20100074175 | Banks | Mar 2010 | A1 |
20100085981 | Gupta | Apr 2010 | A1 |
20100097941 | Carlson | Apr 2010 | A1 |
20100103813 | Allan | Apr 2010 | A1 |
20100103939 | Carlson | Apr 2010 | A1 |
20100114818 | Lier | May 2010 | A1 |
20100131636 | Suri | May 2010 | A1 |
20100157844 | Casey | Jun 2010 | A1 |
20100158024 | Sajassi | Jun 2010 | A1 |
20100165877 | Shukla | Jul 2010 | A1 |
20100165995 | Mehta | Jul 2010 | A1 |
20100168467 | Johnston | Jul 2010 | A1 |
20100169467 | Shukla | Jul 2010 | A1 |
20100169948 | Budko | Jul 2010 | A1 |
20100182920 | Matsuoka | Jul 2010 | A1 |
20100189119 | Sawada | Jul 2010 | A1 |
20100192225 | Ma | Jul 2010 | A1 |
20100195489 | Zhou | Aug 2010 | A1 |
20100195529 | Liu | Aug 2010 | A1 |
20100214913 | Kompella | Aug 2010 | A1 |
20100215042 | Sato | Aug 2010 | A1 |
20100215049 | Raza | Aug 2010 | A1 |
20100220724 | Rabie | Sep 2010 | A1 |
20100226368 | Mack-Crane | Sep 2010 | A1 |
20100226381 | Mehta | Sep 2010 | A1 |
20100246388 | Gupta | Sep 2010 | A1 |
20100246580 | Kaganoi | Sep 2010 | A1 |
20100254703 | Kirkpatrick | Oct 2010 | A1 |
20100257263 | Casado | Oct 2010 | A1 |
20100258263 | Douxchamps | Oct 2010 | A1 |
20100265849 | Harel | Oct 2010 | A1 |
20100271960 | Krygowski | Oct 2010 | A1 |
20100272107 | Papp | Oct 2010 | A1 |
20100281106 | Ashwood-Smith | Nov 2010 | A1 |
20100284414 | Agarwal | Nov 2010 | A1 |
20100284418 | Gray | Nov 2010 | A1 |
20100284698 | McColloch | Nov 2010 | A1 |
20100287262 | Elzur | Nov 2010 | A1 |
20100287548 | Zhou | Nov 2010 | A1 |
20100290464 | Assarpour | Nov 2010 | A1 |
20100290472 | Raman | Nov 2010 | A1 |
20100290473 | Enduri | Nov 2010 | A1 |
20100299527 | Arunan | Nov 2010 | A1 |
20100303071 | Kotalwar | Dec 2010 | A1 |
20100303075 | Tripathi | Dec 2010 | A1 |
20100303083 | Belanger | Dec 2010 | A1 |
20100309820 | Rajagopalan | Dec 2010 | A1 |
20100309912 | Mehta | Dec 2010 | A1 |
20100316055 | Belanger | Dec 2010 | A1 |
20100329110 | Rose | Dec 2010 | A1 |
20100329265 | Lapuh | Dec 2010 | A1 |
20110007738 | Berman | Jan 2011 | A1 |
20110019678 | Mehta | Jan 2011 | A1 |
20110032945 | Mullooly | Feb 2011 | A1 |
20110035489 | McDaniel | Feb 2011 | A1 |
20110035498 | Shah | Feb 2011 | A1 |
20110044339 | Kotalwar | Feb 2011 | A1 |
20110044352 | Chaitou | Feb 2011 | A1 |
20110051723 | Rabie | Mar 2011 | A1 |
20110058547 | Waldrop | Mar 2011 | A1 |
20110064086 | Xiong | Mar 2011 | A1 |
20110064089 | Hidaka | Mar 2011 | A1 |
20110072208 | Gulati | Mar 2011 | A1 |
20110085557 | Gnanasekaran | Apr 2011 | A1 |
20110085560 | Chawla | Apr 2011 | A1 |
20110085562 | Bao | Apr 2011 | A1 |
20110085563 | Kotha | Apr 2011 | A1 |
20110088011 | Ouali | Apr 2011 | A1 |
20110110266 | Li | May 2011 | A1 |
20110134802 | Rajagopalan | Jun 2011 | A1 |
20110134803 | Dalvi | Jun 2011 | A1 |
20110134924 | Hewson | Jun 2011 | A1 |
20110134925 | Safrai | Jun 2011 | A1 |
20110142053 | VanDerMerwe | Jun 2011 | A1 |
20110142062 | Wang | Jun 2011 | A1 |
20110149526 | Turner | Jun 2011 | A1 |
20110158113 | Nanda | Jun 2011 | A1 |
20110161494 | McDysan | Jun 2011 | A1 |
20110161695 | Okita | Jun 2011 | A1 |
20110176412 | Stine | Jul 2011 | A1 |
20110188373 | Saito | Aug 2011 | A1 |
20110194403 | Sajassi | Aug 2011 | A1 |
20110194563 | Shen | Aug 2011 | A1 |
20110225540 | d'Entremont | Sep 2011 | A1 |
20110228767 | Singla | Sep 2011 | A1 |
20110228780 | Ashwood-Smith | Sep 2011 | A1 |
20110231570 | Altekar | Sep 2011 | A1 |
20110231574 | Saunderson | Sep 2011 | A1 |
20110235523 | Jha | Sep 2011 | A1 |
20110243133 | Villait | Oct 2011 | A9 |
20110243136 | Raman | Oct 2011 | A1 |
20110246669 | Kanada | Oct 2011 | A1 |
20110255538 | Srinivasan | Oct 2011 | A1 |
20110255540 | Mizrahi | Oct 2011 | A1 |
20110261828 | Smith | Oct 2011 | A1 |
20110268118 | Schlansker | Nov 2011 | A1 |
20110268120 | Vobbilisetty | Nov 2011 | A1 |
20110268125 | Vobbilisetty | Nov 2011 | A1 |
20110273988 | Tourrilhes | Nov 2011 | A1 |
20110273990 | Rajagopalan | Nov 2011 | A1 |
20110274114 | Dhar | Nov 2011 | A1 |
20110280572 | Vobbilisetty | Nov 2011 | A1 |
20110286357 | Haris | Nov 2011 | A1 |
20110286457 | Ee | Nov 2011 | A1 |
20110286462 | Kompella | Nov 2011 | A1 |
20110055274 | Hegge | Dec 2011 | A1 |
20110292947 | Vobbilisetty | Dec 2011 | A1 |
20110296052 | Guo | Dec 2011 | A1 |
20110299391 | Vobbilisetty | Dec 2011 | A1 |
20110299413 | Chatwani | Dec 2011 | A1 |
20110299414 | Yu | Dec 2011 | A1 |
20110299527 | Yu | Dec 2011 | A1 |
20110299528 | Yu | Dec 2011 | A1 |
20110299531 | Yu | Dec 2011 | A1 |
20110299532 | Yu | Dec 2011 | A1 |
20110299533 | Yu | Dec 2011 | A1 |
20110299534 | Koganti | Dec 2011 | A1 |
20110299535 | Vobbilisetty | Dec 2011 | A1 |
20110299536 | Cheng | Dec 2011 | A1 |
20110317559 | Kern | Dec 2011 | A1 |
20110317703 | Dunbar et al. | Dec 2011 | A1 |
20120011240 | Hara | Jan 2012 | A1 |
20120014261 | Salam | Jan 2012 | A1 |
20120014387 | Dunbar | Jan 2012 | A1 |
20120020220 | Sugita | Jan 2012 | A1 |
20120027017 | Rai | Feb 2012 | A1 |
20120033663 | Guichard | Feb 2012 | A1 |
20120033665 | Jacob | Feb 2012 | A1 |
20120033668 | Humphries | Feb 2012 | A1 |
20120033669 | Mohandas | Feb 2012 | A1 |
20120033672 | Page | Feb 2012 | A1 |
20120039163 | Nakajima | Feb 2012 | A1 |
20120042095 | Kotha | Feb 2012 | A1 |
20120063363 | Li | Mar 2012 | A1 |
20120075991 | Sugita | Mar 2012 | A1 |
20120099567 | Hart | Apr 2012 | A1 |
20120099602 | Nagapudi | Apr 2012 | A1 |
20120099863 | Xu | Apr 2012 | A1 |
20120102160 | Breh | Apr 2012 | A1 |
20120106339 | Mishra | May 2012 | A1 |
20120117438 | Shaffer | May 2012 | A1 |
20120131097 | Baykal | May 2012 | A1 |
20120131289 | Taguchi | May 2012 | A1 |
20120134266 | Roitshtein | May 2012 | A1 |
20120136999 | Roitshtein | May 2012 | A1 |
20120147740 | Nakash | Jun 2012 | A1 |
20120158997 | Hsu | Jun 2012 | A1 |
20120163164 | Terry | Jun 2012 | A1 |
20120170491 | Kern | Jul 2012 | A1 |
20120177039 | Berman | Jul 2012 | A1 |
20120210416 | Mihelich | Aug 2012 | A1 |
20120221636 | Surtani | Aug 2012 | A1 |
20120230225 | Matthews | Sep 2012 | A1 |
20120239918 | Huang | Sep 2012 | A1 |
20120240182 | Narayanaswamy | Sep 2012 | A1 |
20120243359 | Keesara | Sep 2012 | A1 |
20120243539 | Keesara | Sep 2012 | A1 |
20120250502 | Brolin | Oct 2012 | A1 |
20120260079 | Mruthyunjaya | Oct 2012 | A1 |
20120275297 | Subramanian | Nov 2012 | A1 |
20120275347 | Banerjee | Nov 2012 | A1 |
20120278804 | Narayanasamy | Nov 2012 | A1 |
20120281700 | Koganti | Nov 2012 | A1 |
20120287785 | Kamble | Nov 2012 | A1 |
20120294192 | Masood | Nov 2012 | A1 |
20120294194 | Balasubramanian | Nov 2012 | A1 |
20120230800 | Kamble | Dec 2012 | A1 |
20120320800 | Kamble | Dec 2012 | A1 |
20120320926 | Kamath et al. | Dec 2012 | A1 |
20120327766 | Tsai et al. | Dec 2012 | A1 |
20120327937 | Melman et al. | Dec 2012 | A1 |
20130003535 | Sarwar | Jan 2013 | A1 |
20130003549 | Matthews | Jan 2013 | A1 |
20130003608 | Lei | Jan 2013 | A1 |
20130003737 | Sinicrope | Jan 2013 | A1 |
20130003738 | Koganti | Jan 2013 | A1 |
20130003747 | Raman | Jan 2013 | A1 |
20130016606 | Cirkovic | Jan 2013 | A1 |
20130028072 | Addanki | Jan 2013 | A1 |
20130034015 | Jaiswal | Feb 2013 | A1 |
20130034021 | Jaiswal | Feb 2013 | A1 |
20130034094 | Cardona | Feb 2013 | A1 |
20130044629 | Biswas | Feb 2013 | A1 |
20130058354 | Casado | Mar 2013 | A1 |
20130066947 | Ahmad | Mar 2013 | A1 |
20130067466 | Combs | Mar 2013 | A1 |
20130070762 | Adams | Mar 2013 | A1 |
20130083693 | Himura | Apr 2013 | A1 |
20130097345 | Munoz | Apr 2013 | A1 |
20130114595 | Mack-Crane et al. | May 2013 | A1 |
20130121142 | Bai | May 2013 | A1 |
20130124707 | Ananthapadmanabha | May 2013 | A1 |
20130124750 | Anumala | May 2013 | A1 |
20130127848 | Joshi | May 2013 | A1 |
20130132296 | Manfred | May 2013 | A1 |
20130135811 | Dunwoody | May 2013 | A1 |
20130136123 | Ge | May 2013 | A1 |
20130145008 | Kannan | Jun 2013 | A1 |
20130148546 | Eisenhauer | Jun 2013 | A1 |
20130148663 | Xiong | Jun 2013 | A1 |
20130156425 | Kirkpatrick | Jun 2013 | A1 |
20130163591 | Shukla | Jun 2013 | A1 |
20130194914 | Agarwal | Aug 2013 | A1 |
20130201992 | Masaki | Aug 2013 | A1 |
20130215754 | Tripathi | Aug 2013 | A1 |
20130219473 | Schaefer | Aug 2013 | A1 |
20130223221 | Xu | Aug 2013 | A1 |
20130223438 | Tripathi | Aug 2013 | A1 |
20130223449 | Koganti | Aug 2013 | A1 |
20130238802 | Sarikaya | Sep 2013 | A1 |
20130250947 | Zheng | Sep 2013 | A1 |
20130250951 | Koganti | Sep 2013 | A1 |
20130250958 | Watanabe | Sep 2013 | A1 |
20130259037 | Natarajan | Oct 2013 | A1 |
20130266015 | Qu | Oct 2013 | A1 |
20130268590 | Mahadevan | Oct 2013 | A1 |
20130272135 | Leong | Oct 2013 | A1 |
20130294451 | Li | Nov 2013 | A1 |
20130297757 | Han | Nov 2013 | A1 |
20130301425 | Chandra | Nov 2013 | A1 |
20130301642 | Radhakrishnan | Nov 2013 | A1 |
20130308492 | Baphna | Nov 2013 | A1 |
20130308641 | Ackley | Nov 2013 | A1 |
20130308647 | Rosset | Nov 2013 | A1 |
20130315125 | Ravishankar | Nov 2013 | A1 |
20130315246 | Zhang | Nov 2013 | A1 |
20130315586 | Kipp | Nov 2013 | A1 |
20130318219 | Kancherla | Nov 2013 | A1 |
20130322427 | Stiekes | Dec 2013 | A1 |
20130329605 | Nakil | Dec 2013 | A1 |
20130332660 | Talagala | Dec 2013 | A1 |
20130336104 | Talla | Dec 2013 | A1 |
20130346583 | Low | Dec 2013 | A1 |
20140013324 | Zhang | Jan 2014 | A1 |
20140019608 | Kawakami | Jan 2014 | A1 |
20140019639 | Ueno | Jan 2014 | A1 |
20140025736 | Wang | Jan 2014 | A1 |
20140029412 | Janardhanan | Jan 2014 | A1 |
20140029419 | Jain | Jan 2014 | A1 |
20140044126 | Sabhanatarajan | Feb 2014 | A1 |
20140050223 | Foo | Feb 2014 | A1 |
20140056298 | Vobbilisetty | Feb 2014 | A1 |
20140059225 | Gasparakis | Feb 2014 | A1 |
20140064056 | Sakata | Mar 2014 | A1 |
20140071987 | Janardhanan | Mar 2014 | A1 |
20140086253 | Yong | Mar 2014 | A1 |
20140092738 | Grandhi | Apr 2014 | A1 |
20140105034 | Huawei | Apr 2014 | A1 |
20140112122 | Kapadia | Apr 2014 | A1 |
20140140243 | Ashwood-Smith | May 2014 | A1 |
20140157251 | Hooker | Jun 2014 | A1 |
20140169368 | Grover | Jun 2014 | A1 |
20140188996 | Lie | Jul 2014 | A1 |
20140192804 | Ghanwani | Jul 2014 | A1 |
20140195695 | Okita | Jul 2014 | A1 |
20140201733 | Benny | Jul 2014 | A1 |
20140241147 | Rajagopalan | Aug 2014 | A1 |
20140258446 | Bursell | Sep 2014 | A1 |
20140269701 | Kaushik | Sep 2014 | A1 |
20140269709 | Benny | Sep 2014 | A1 |
20140269720 | Srinivasan | Sep 2014 | A1 |
20140269733 | Venkatesh | Sep 2014 | A1 |
20140298091 | Carlen | Oct 2014 | A1 |
20140355477 | Moopath | Dec 2014 | A1 |
20140362854 | Addanki | Dec 2014 | A1 |
20140362859 | Addanki | Dec 2014 | A1 |
20150009992 | Zhang | Jan 2015 | A1 |
20150010007 | Matsuhira | Jan 2015 | A1 |
20150016300 | Devireddy | Jan 2015 | A1 |
20150030031 | Zhou | Jan 2015 | A1 |
20150092593 | Kompella | Apr 2015 | A1 |
20150100958 | Banavalikar | Apr 2015 | A1 |
20150103826 | Davis | Apr 2015 | A1 |
20150110111 | Song | Apr 2015 | A1 |
20150110487 | Fenkes | Apr 2015 | A1 |
20150117256 | Sabaa | Apr 2015 | A1 |
20150117454 | Koponen | Apr 2015 | A1 |
20150127618 | Alberti | May 2015 | A1 |
20150139234 | Hu | May 2015 | A1 |
20150143369 | Zheng | May 2015 | A1 |
20150172098 | Agarwal | Jun 2015 | A1 |
20150188753 | Anumala | Jul 2015 | A1 |
20150188770 | Naiksatam | Jul 2015 | A1 |
20150195093 | Ramasubramani | Jul 2015 | A1 |
20150222506 | Kizhakkiniyil | Aug 2015 | A1 |
20150248298 | Gavrilov | Sep 2015 | A1 |
20150263897 | Ganichev | Sep 2015 | A1 |
20150263899 | Tubaltsev | Sep 2015 | A1 |
20150263991 | MacChiano | Sep 2015 | A1 |
20150281066 | Koley | Oct 2015 | A1 |
20150301901 | Rath | Oct 2015 | A1 |
20150347468 | Bester | Dec 2015 | A1 |
20160072899 | Tung | Mar 2016 | A1 |
20160087885 | Tripathi | Mar 2016 | A1 |
20160139939 | Bosch | May 2016 | A1 |
20160182458 | Shatzkamer | Jun 2016 | A1 |
20160188527 | Cherian | Jun 2016 | A1 |
20160212040 | Bhagavathiperumal | Jul 2016 | A1 |
20160344640 | Söderlund | Nov 2016 | A1 |
20170012880 | Yang | Jan 2017 | A1 |
20170026197 | Venkatesh | Jan 2017 | A1 |
20170097841 | Chang | Apr 2017 | A1 |
20170223756 | Sebastian | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
1735062 | Feb 2006 | CN |
1777149 | May 2006 | CN |
101064682 | Oct 2007 | CN |
101459618 | Jun 2009 | CN |
101471899 | Jul 2009 | CN |
101548511 | Sep 2009 | CN |
101645880 | Feb 2010 | CN |
102098237 | Jun 2011 | CN |
102148749 | Aug 2011 | CN |
102301663 | Dec 2011 | CN |
102349268 | Feb 2012 | CN |
102378176 | Mar 2012 | CN |
102404181 | Apr 2012 | CN |
102415065 | Apr 2012 | CN |
102415065 | Apr 2012 | CN |
102801599 | Nov 2012 | CN |
102801599 | Nov 2012 | CN |
102088388 | Apr 2014 | CN |
0579567 | May 1993 | EP |
0579567 | Jan 1994 | EP |
0993156 | Apr 2000 | EP |
0993156 | Dec 2000 | EP |
1398920 | Mar 2004 | EP |
1398920 | Mar 2004 | EP |
1916807 | Apr 2008 | EP |
2001167 | Oct 2008 | EP |
2854352 | Apr 2015 | EP |
2874359 | May 2015 | EP |
2008056838 | May 2008 | WO |
2009042919 | Apr 2009 | WO |
2010111142 | Sep 2010 | WO |
2010111142 | Sep 2010 | WO |
2011132568 | Oct 2011 | WO |
2011140028 | Nov 2011 | WO |
2011140028 | Nov 2011 | WO |
2012033663 | Mar 2012 | WO |
2012093429 | Jul 2012 | WO |
2014031781 | Feb 2014 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 14/510,913, dated Jun. 30, 2017. |
Office Action for U.S. Appl. No. 15/005,946, dated Jul. 14, 2017. |
Office Action for U.S. Appl. No. 13/092,873, dated Jul. 19, 2017. |
Office Action for U.S. Appl. No. 15/047,539, dated Aug. 7, 2017. |
Office Action for U.S. Appl. No. 14/830,035, dated Aug. 28, 2017. |
Office Action for U.S. Appl. No. 13/098,490, dated Aug. 24, 2017. |
Office Action for U.S. Appl. No. 13/786,328, dated Aug. 21, 2017. |
Office Action for U.S. Appl. No. 14/662,095, dated Mar. 24, 2017. |
Office Action for U.S. Appl. No. 15/005,967, dated Mar. 31, 2017. |
Office Action for U.S. Appl. No. 15/215,377, dated Apr. 7, 2017. |
Office Action for U.S. Appl. No. 13/098,490, dated Apr. 6, 2017. |
Office Action for U.S. Appl. No. 14/662,092, dated Mar. 29, 2017. |
Office Action dated Jan. 31, 2017, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011. |
Office Action dated Jan. 27, 2017, U.S. Appl. No. 14/216,292, filed Mar. 17, 2014. |
Office Action dated Jan. 26, 2017, U.S. Appl. No. 13/786,328, filed Mar. 5, 2013. |
Office Action dated Dec. 2, 2016, U.S. Appl. No. 14/512,268, filed Oct. 10, 2014. |
Office Action dated Dec. 1, 2016, U.S. Appl. No. 13/899,849, filed May 22, 2013. |
Office Action dated Dec. 1, 2016, U.S. Appl. No. 13/656,438, filed Oct. 19, 2012. |
Office Action dated Nov. 30, 2016, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012. |
Office Action dated Nov. 21, 2016, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012. |
Office Action dated Feb. 8, 2017, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014. |
Office Action dated Feb. 8, 2017, U.S. Appl. No. 14/822,380, filed Aug. 10, 2015. |
Office Action for U.S. Appl. No. 13/288,822, dated May 26, 2017. |
Office Action for U.S. Appl. No. 14/329,447, dated Jun. 8, 2017. |
Eastlake, D. et al., ‘RBridges: TRILL Header Options’, Dec. 24, 2009, pp. 1-17, TRILL Working Group. |
Perlman, Radia et al., ‘RBridge VLAN Mapping’, TRILL Working Group, Dec. 4, 2009, pp. 1-12. |
Touch, J. et al., ‘Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement’, May 2009, Network Working Group, pp. 1-17. |
Switched Virtual Networks. ‘Internetworking Moves Beyond Bridges and Routers’ Data Communications, McGraw Hill. New York, US, vol. 23, No. 12, Sep. 1, 1994 (Sep. 1, 1994), pp. 66-70,72,74, XP000462385 ISSN: 0363-6399. |
Knight S et al: ‘Virtual Router Redundancy Protocol’ Internet Citation Apr. 1, 1998 (Apr. 1, 1998), XP002135272 Retrieved from the Internet: URL:flp://ftp.isi.edu/in-notes/rfc2338.txt [retrieved on Apr. 10, 2000]. |
Office Action dated Jun. 18, 2015, U.S. Appl. No. 13/098,490, filed May 2, 2011. |
Perlman R: ‘Challenges and opportunities in the design of TRILL: a routed layer 2 technology’, 2009 IEEE GLOBECOM Workshops, Honolulu, HI, USA, Piscataway, NJ, USA, Nov. 30, 2009 (Nov. 30, 2009), pp. 1-6, XP002649647, DOI: 10.1109/GLOBECOM.2009.5360776 ISBN: 1-4244-5626-0 [retrieved on Jul. 19, 2011]. |
TRILL Working Group Internet-Draft Intended status: Proposed Standard RBridges: Base Protocol Specificaiton Mar. 3, 2010. |
Office Action dated Jun. 16, 2015, U.S. Appl. No. 13/048,817, filed Mar. 15, 2011. |
Knight P et al: ‘Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standardization Efforts’, IEEE Communications Magazine, IEEE Servicee Center, Piscataway, US, vol. 42, No. 6, Jun. 1, 2004 (Jun. 1, 2004), pp. 124-131, XP001198207, ISSN: 0163-8604, DOI: 10.1109/MCOM.2004.1304248. |
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 29, 2013. |
Perlman, Radia et al., ‘RBridges: Base Protocol Specification; Draft-ietf-trill-rbridge-protocol-16.txt’, Mar. 3, 2010, pp. 1-117. |
‘An Introduction to Brocade VCS Fabric Technology’, Brocade white paper, http://community.brocade.com/docs/DOC-2954, Dec. 3, 2012. |
Brocade, ‘Brocade Fabrics OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions’, pp. 1-6, 2009 Brocade Communications Systems, Inc. |
Brocade, ‘FastIron and TurboIron 24x Configuration Guide’, Feb. 16, 2010. |
Brocade, ‘The Effortless Network: Hyperedge Technology for the Campus LAN’ 2012. |
Brocade ‘Brocade Unveils’ The Effortless Network, http://newsroom.brocade.com/press-releases/brocade-unveils-the-effortless-network-nasdaq-brcd-0859535, 2012. |
Christensen, M. et al., ‘Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches’, May 2006. |
FastIron Configuration Guide Supporting Ironware Software Release 07.0.00, Dec. 18, 2009. |
Foundary FastIron Configuration Guide, Software Release FSX 04.2.00b, Software Release FWS 04.3.00, Software Release FGS 05.0.00a, Sep. 2008. |
Knight, ‘Network Based IP VPN Architecture using Virtual Routers’, May 2003. |
Kreeger, L. et al., ‘Network Virtualization Overlay Control Protocol Requirements draft-kreeger-nvo3-overlay-cp-00’, Jan. 30, 2012. |
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT)’, draft-lapuh-network-smlt-08, Jul. 2008. |
Lapuh, Roger et al., ‘Split Multi-Link Trunking (SMLT)’, Network Working Group, Oct. 2012. |
Louati, Wajdi et al., ‘Network-based virtual personal overlay networks using programmable virtual routers’, IEEE Communications Magazine, Jul. 2005. |
Narten, T. et al., ‘Problem Statement: Overlays for Network Virtualization d raft-narten-n vo3-over I ay-problem -statement-01’, Oct. 31, 2011. |
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, from Park, Jung H., dated Jul. 18, 2013. |
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Jul. 24, 2014. |
Office Action for U.S. Appl. No. 13/365,993, filed Feb. 3, 2012, from Cho, Hong Sol., dated Jul. 23, 2013. |
Office Action for U.S. Appl. No. 13/742,207 dated Jul. 24, 2014, filed Jan. 15, 2013. |
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Apr. 26, 2013. |
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jan. 4, 2013. |
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jun. 7, 2012. |
Office Action for U.S. Appl. No., 12/950,974, filed Nov. 19, 2010, dated Dec. 20, 2012. |
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated May 24, 2012. |
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Apr. 25, 2013. |
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Dec. 3, 2012. |
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Jun. 11, 2013. |
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Mar. 18, 2013. |
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Jul. 31, 2013. |
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Feb. 22, 2013. |
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jun. 11, 2013. |
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Oct. 2, 2013. |
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Oct. 26, 2012. |
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated May 16, 2013. |
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated May 22, 2013. |
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Jun. 21, 2013. |
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, dated Jun. 10, 2013. |
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jan. 28, 2013. |
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jul. 3, 2013. |
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Feb. 5, 2013. |
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Jul. 16, 2013. |
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 5, 2013. |
Office Action for U.S. Appl. No. 13/092,864, filed Apr. 22, 2011, dated Sep. 19, 2012. |
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jun. 19, 2013. |
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Mar. 4, 2013. |
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Sep. 5, 2013. |
Office Action for U.S. Appl. No. 13/098,360, filed Apr. 29, 2011, dated May 31, 2013. |
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Jul. 9, 2013. |
Office Action for U.S. Appl. No, 13/184,526, filed Jul. 16, 2011, dated Jan. 28, 2013. |
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated May 22, 2013. |
Office Action for U.S. Appl. No. 13/365,808, filed Jul. 18, 2013, dated Jul. 18, 2013. |
Perlman, Radia et al., ‘Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology’, 2009. |
S. Nadas et al., ‘Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6’, Internet Engineering Task Force, Mar. 2010. |
‘RBridges: Base Protocol Specification’, IETF Draft, Perlman et al., Jun. 26, 2009. |
U.S. Appl. No. 13/030,806 Office Action dated Dec. 3, 2012. |
Office action dated Apr. 26, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010. |
Office action dated Sep. 12, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010. |
Office action dated Dec. 21, 2012, U.S. Appl. No. 13/098,490, filed May 2, 2011. |
Office action dated Mar. 27, 2014, U.S. Appl. No. 13/098,490, filed May 2, 2011. |
Office action dated Jul. 9, 2013, U.S. Appl. No. 13/098,490, filed May 2, 2011. |
Office action dated May 22, 2013, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011. |
Office action dated Dec. 5, 2012, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011. |
Office action dated Apr. 9, 2014, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011. |
Office action dated Feb. 5, 2013, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011. |
Office action dated Jan. 10, 2014, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011. |
Office action dated Jun. 10, 2013, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011. |
Office action dated Jan. 16, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011. |
Office action dated Mar. 18, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011. |
Office action dated Jul. 31, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011. |
Office action dated Aug. 29, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011. |
Office action dated Mar. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011. |
Office action dated Jun. 21, 2013, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011. |
Office action dated Aug. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011. |
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011. |
Office Action dated Mar. 26, 2014, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011. |
Office action dated Jul. 3, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011. |
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011. |
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011. |
Office action dated Dec. 20, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010. |
Office action dated May 24, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010. |
Office action dated Jan. 6, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011. |
Office action dated Sep. 5, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011. |
Office action dated Mar. 4, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011. |
Office action dated Jan. 4, 2013, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010. |
Office action dated Jun. 7, 2012, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010. |
Office action dated Sep. 19, 2012, U.S. Appl. No. 13/092,864, filed Apr. 22, 2011. |
Office action dated May 31, 2013, U.S. Appl. No. 13/098,360, filed Apr. 29, 2011. |
Office action dated Jul. 7, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011. |
Office action dated Oct. 2, 2013, U.S. Appl. No. 13/044,326, filed Mar. 9, 2011. |
Office Action dated Dec. 19, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011. |
Office action dated Dec. 3, 2012, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011. |
Office action dated Apr. 22, 2014, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011. |
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011. |
Office action dated Apr. 25, 2013, U.S. Appl. No. 13/030,688, filed Feb. 18, 2011. |
Office action dated Feb. 22, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011. |
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011. |
Office action dated Oct. 26, 2012, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011. |
Office action dated May 16, 2013, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011. |
Office action dated Aug. 4, 2014, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011. |
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011. |
Office action dated Dec. 2, 2013, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011. |
Office action dated May 22, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011. |
Office action dated Aug. 21, 2014, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011. |
Office action dated Nov. 29, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011. |
Office action dated Jun. 19, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011. |
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/365,808, filed Feb. 3, 2012. |
Office Action dated Mar. 6, 2014, U.S. Appl. No. 13/425,238, filed Mar. 20, 2012. |
Office action dated Nov. 12, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011. |
Office action dated Jun. 13, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011. |
Office Action dated Jun. 18, 2014, U.S. Appl. No. 13/440,861, filed Apr. 5, 2012. |
Office Action dated Feb. 28, 2014, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012. |
Office Action dated May 9, 2014, U.S. Appl. No. 13/484,072, filed May 30, 2012. |
Office Action dated May 14, 2014, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012. |
Office Action dated Feb. 20, 2014, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012. |
Office Action dated Jun. 6, 2014, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012. |
Brocade ‘An Introduction to Brocade VCS Fabric Technology’, Dec. 3, 2012. |
Huang, Nen-Fu et al., ‘An Effective Spanning Tree Algorithm for a Bridged LAN’, Mar. 16, 1992. |
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT) draft-lapuh-network-smlt-08’, Jan. 2009. |
Mckeown, Nick et al. “OpenFlow: Enabling Innovation in Campus Networks”, Mar. 14, 2008, www.openflow.org/documents/openflow-wp-latest.pdf. |
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Jul. 17, 2014. |
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, from Jaroenchonwanit, Bunjob, dated Jan. 16, 2014. |
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Jul. 7, 2014. |
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Apr. 9, 2014. |
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jul. 25, 2014. |
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Jun. 20, 2014. |
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Aug. 7, 2014. |
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 6, 2014. |
Office Action for U.S. Appl. No. 13/556,061, filed Jul. 23, 2012, dated Jun. 6, 2014. |
Office Action for U.S. Appl. No. 13/950,974, filed Nov. 19, 2010, from Haile, Awet A., dated Dec. 2, 2012. |
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Sep. 12, 2012. |
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Dec. 21, 2012. |
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Mar. 27, 2014. |
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Jun. 13, 2013. |
Office Action for U.S. Appl. No. 13/044,301, dated Mar. 9, 2011. |
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated Dec. 5, 2012. |
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 7, 2014. |
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Nov. 10, 2014. |
Office Action for U.S. Appl. No. 13/157,942, filed Jun. 10, 2011. |
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 5, 2015. |
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Dec. 2, 2013. |
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Feb. 28, 2014. |
Office Action for U.S. Appl. No. 13/533,843, filed Jun. 26, 2012, dated Oct. 21, 2013. |
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Jan. 5, 2015. |
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Feb. 20, 2014. |
Office Action for U.S. Appl. No. 13/669,357, filed Nov. 5, 2012, dated Jan. 30, 2015. |
Office Action for U.S. Appl. No. 13/851,026, filed Mar. 26, 2013, dated Jan. 30, 2015. |
Office Action for U.S. Appl. No. 13/092,887, dated Jan. 6, 2014. |
Zhai F. Hu et al. ‘RBridge: Pseudo-Nickname; draft-hu-trill-pseudonode-nickname-02.txt’, May 15, 2012. |
Abawajy J. “An Approach to Support a Single Service Provider Address Image for Wide Area Networks Environment” Centre for Parallel and Distributed Computing, School of Computer Science Carleton University, Ottawa, Ontario, K1S 5B6, Canada. |
Office action dated Oct. 2, 2014, for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011. |
Kompella, Ed K. et al., ‘Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling’ Jan. 2007. |
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Feb. 23, 2015. |
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jan. 29, 2015. |
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Jan. 26, 2015. |
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Mar. 13, 2015. |
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 27, 2015. |
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 12, 2015. |
Office Action for U.S. Appl. No. 13/786,328, filed Mar. 5, 2013, dated Mar. 13, 2015. |
Office Action for U.S. Appl. No. 14/577,785, filed Dec. 19, 2014, dated Apr. 13, 2015. |
Rosen, E. et al., “BGP/MPLS VPNs”, Mar. 1999. |
Office action dated Jun. 8, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014. |
Office Action dated May 21, 2015, U.S. Appl. No. 13/288,822, filed Nov. 3, 2011. |
Office action dated Apr. 30, 2015, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012. |
Office Action dated Apr. 1, 2015 U.S. Appl. No. 13/656,438 filed Oct. 19, 2012. |
Office Action dated Jun. 10, 2015, U.S. Appl. No. 13/890,150, filed May 8, 2013. |
Mahalingam “VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks” Oct. 17, 2013 pp. 1-22, Sections 1, 4 and 4.1. |
Siamak Azodolmolky et al. “Cloud computing networking: Challenges and opportunities for innovations”, IEEE Communications Magazine, vol. 51, No. 7, Jul. 1, 2013. |
Office Action dated Jul. 31, 2015, U.S. Appl. No. 13/598,204, filed Aug. 29, 2014. |
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014. |
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014. |
Office Action dated Aug. 21, 2015, U.S. Appl. No. 13/776,217, filed Feb. 25, 2013. |
Office Action dated Aug. 19, 2015, U.S. Appl. No. 14/156,374, filed Jan. 15, 2014. |
Office Action dated Sep. 2, 2015, U.S. Appl. No. 14/151,693, filed Jan. 9, 2014. |
Office Action dated Sep. 17, 2015, U.S. Appl. No. 14/577,785, filed Dec. 19, 2014. |
Office Action dated Sep. 22, 2015 U.S. Appl. No. 13/656,438 filed Oct. 19, 2012. |
Office Action dated Nov. 5, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014. |
Office Action dated Oct. 19, 2015, U.S. Appl. No. 14/215,996, filed Mar. 17, 2014. |
Office Action dated Sep. 18, 2015, U.S. Appl. No. 13/345,566, filed Jan. 6, 2012. |
Open Flow Switch Specification Version 1.1.0, Feb. 28, 2011. |
Open Flow Switch Specification Version 1.0.0, Dec. 31, 2009. |
Open Flow Configuration and Management Protocol 1.0 (OF-Config 1.0) Dec. 23, 2011. |
Open Flow Switch Specification Version 1.2 Dec. 5, 2011. |
Office action dated Feb. 2, 2016, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011. |
Office Action dated Feb. 2, 2016. U.S. Appl. No. 14/154,106, filed Jan. 13, 2014. |
Office Action dated Feb. 3, 2016, U.S. Appl. No. 13/098,490, filed May 2, 2011. |
Office Action dated Feb. 4, 2016, U.S. Appl. No. 13/557,105, filed Jul. 24, 2012. |
Office Action dated Feb. 11, 2016, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014. |
Office Action dated Feb. 24, 2016, U.S. Appl. No. 13/971,397, filed Aug. 20, 2013. |
Office Action dated Feb. 24, 2016, U.S. Appl. No. 12/705,508, filed Feb. 12, 2010. |
Office Action dated Jul. 6, 2016, U.S. Appl. No. 14/618,941, filed Feb. 10, 2015. |
Office Action dated Jul. 20, 2016, U.S. Appl. No. 14/510,913, filed Oct. 9, 2014. |
Office Action dated Jul. 29, 2016, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014. |
Office Action dated Jul. 28, 2016, U.S. Appl. No. 14/284,212, filed May 21, 2016. |
Office Action for U.S. Appl. No. 14/817,097, dated May 4, 2017. |
Office Action for U.S. Appl. No. 14/872,966, dated Apr. 20, 2017. |
Office Action for U.S. Appl. No. 14/680,915, dated May 3, 2017. |
Office Action for U.S. Appl. No. 14/792,166, dated Apr. 26, 2017. |
Office Action for U.S. Appl. No. 14/660,803, dated May 17, 2017. |
Office Action for U.S. Appl. No. 14/488,173, dated May 12, 2017. |
“Network based IP VPN Architecture using Virtual Routers” Paul Knight et al. |
Yang Yu et al “A Framework of using OpenFlow to handle transient link failure”, TMEE, 2011 International Conference on, IEEE, Dec. 16, 2011. |
Office Action for U.S. Appl. No. 15/227,789, dated Feb. 27, 2017. |
Office Action for U.S. Appl. No. 14/822,380, dated Feb. 8, 2017. |
Office Action for U.S. Appl. No. 14/704,660, dated Feb. 27, 2017. |
Office Action for U.S. Appl. No. 14/510,913, dated Mar. 3, 2017. |
Office Action for U.S. Appl. No. 14/473,941, dated Feb. 8, 2017. |
Office Action for U.S. Appl. No. 14/329,447, dated Feb. 10, 2017. |
Office Action for U.S. Appl. No. 14/216,292, dated Oct. 6, 2017. |
Office Action dated Oct. 25, 2017, U.S. Appl. No. 14/867,865, filed Sep. 28, 2015. |
Office action dated Oct. 26, 2017, U.S. Appl. No. 14/817,097, filed Aug. 3, 2015. |
Office Action dated Mar. 20, 2018, U.S. Appl. No. 14/867,865, filed Sep. 28, 2015. |
Extended European Search Report dated Nov. 29, 2018 in European Application No. 16777296.1-1224. |
Bhumip Khasnabish ZTE USA et al: “Mobility and Interconnection of Virtual Machines and Virtual Network Elements; draft-khasnabish-vmmi-problems-03.txt”, Internet Engineering Task Force, IETF; Standard Working Draft, Internet Society (ISOC) 4, (Dec. 30, 2012), pp. 1-29, XP015089268. |
Number | Date | Country | |
---|---|---|---|
20160299775 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62144709 | Apr 2015 | US |