1. Field of the Invention
The present invention relates to patient monitoring and therapy. Although embodiments make specific reference to monitoring impedance and electrocardiogram signals with an adherent patch, the system methods and device described herein may be applicable to many applications in which physiological monitoring is used, for example wireless physiological monitoring for extended periods.
Patients are often treated for diseases and/or conditions associated with a compromised status of the patient, for example a compromised physiologic status. In some instances, a patient may report symptoms that require diagnosis to determine the underlying cause. For example, a patient may report fainting or dizziness that requires diagnosis, in which long term monitoring of the patient can provide useful information as to the physiologic status of the patient. In some instances, a patient may have suffered a heart attack and require care and/or monitoring after release from the hospital. One example of a device to provide long term monitoring of a patient is the Holter monitor, or ambulatory electrocardiography device. In addition to measuring heart signals with electrocardiograms, known physiologic can include many kinds of measurements, for example impedance measurements to measure hydration of the patient.
Work in relation to embodiments of the present invention suggests that known methods and apparatus for long term monitoring of patients may be less than ideal. At least some of the known devices may not be configured to transmit data optimally from a patient measurement device a patient monitoring center, for example from a wearable device to a backend server. For example, when several patients are monitored many wireless devices may be used. At least some of these devices may be allowed to communicate simultaneously through a single gateway device, such that communication through the gateway device may become slow, for example somewhat slower than ideal. In at least some instances, important information may not pass through the gateway to a remote site in a timely manner. In addition, at least some of the known communication schemes may not provide a well maintained path from the gateway to the remote site and/or backend server, such that communication from the gateway to the remote site and/or backend server can be further delayed in some instances. Some of the known systems for patient monitoring can be expensive and/or cumbersome to use, such that at least some patients may be deprived of the potential benefit of extended monitoring such as at home monitoring.
Some of the known communication systems may be less than ideal for patient monitoring. Although some known wireless devices can permit pairing, at least some of these known pairing schemes may not provide sufficient flexibility and ease of use for patient monitoring. Known pairing schemes, for example Bluetooth connections for cellular phones, can be somewhat cumbersome and may not be well suited for patient monitoring in at least some instances. Although hard wiring may facilitate paring with some devices in some instances, hardwiring may result in less flexibility and may not be well suited for patient monitoring, for example when a device paired with hard wiring is replaced with another hard wired device.
Therefore, a need exists for improved patient monitoring. Ideally, such improved patient monitoring would avoid at least some of the short-comings of the present methods and devices.
2. Description of the Background Art
The following U.S. Patents and Publications may describe relevant background art: U.S. Pat. Nos. 4,121,573; 4,955,381; 4,981,139; 5,080,099; 5,353,793; 5,511,553; 5,544,661; 5,558,638; 5,724,025; 5,772,586; 5,862,802; 5,944,659; 6,047,203; 6,117,077; 6,129,744; 6,225,901; 6,385,473; 6,416,471; 6,454,707; 6,527,711; 6,527,729; 6,551,252; 6,595,927; 6,595,929; 6,605,038; 6,645,153; 6,659,947; 6,821,249; 6,980,851; 6,988,989; 7,020,508; 7,054,679; 7,130,396; 7,153,262; 2003/0092975; 2004/0225199; 2005/0113703; 2005/0131288; 2006/0010090; 2006/0031102; 2006/0074462; 2006/0089679; 2006/0122474; 2006/0142820; 2006/0155183; 2006/0202816; 2006/0224051; 2006/0235281; 2006/0264730; 2007/0015973; 2007/0180047; 2007/0038038; and 2007/0021678.
Embodiments of the present invention provide improved systems, devices and methods to transmit data from a patient device to a location, for example a remote location, where the patient is monitored. The system may comprise a server system, for example a backend server system, a gateway and a patient device, for example a patient worn device to collect patient data. The gateway can be configured to communicate with the patient worn device in response to a list transmitted from the server, for example an approved patient device list transmitted from the server to the gateway. In some embodiments, the gateway may exclude communication with patient worn devices that are not on the list. For example, the list may limit the number of patient worn devices that can communicate with each gateway. The transmitted list received at each gateway can control data transmitted from the patient device to the gateway and also data transmitted from the gateway to the server, such that the communication from the device on the list to the server is maintained and appropriate information can be reliably sent from the patient device to the server. This reliability of the communication from that patient worn device to the server can be especially important for treating a patient with a health condition, for example when the data transmitted comprises cardiac data that can be used to save the patient's life. The system may comprise a plurality of patient worn devices and a plurality of gateways, each configured to transmit data to a backend server. The system can transmit data reliably when there are many patches and patients configured to transmit data on the system, such that many people can benefit from monitoring. For example the plurality of patient worn devices may comprise at least about 10 patient worn devices, for example 100 or more patient worn devices, and a plurality of gateways, for example at least about 5 gateways, for example 50 or more gateways.
In a first aspect, embodiments of the present invention provide a system for monitoring a patient. The system comprises a server system. A patient device is coupled to the patient to measure patient data. The patient device comprises a communications module configured to transmit a device identifier. A gateway is configured to communicate with the server and the patient device. The gateway is configured to communicate with the patient device in response to the device identifier.
The patient device may comprise at least one of an adherent patient device, a wearable patient device, an implantable patient device, or an injectable patient device.
In many embodiments, the gateway is configured to pair with the patient device in response to the device identifier. The device identifier may comprise a unique device identifier. For example, the unique identifier may comprise a serial number of the patient device. The device identifier may comprise a link key to establish paired communication between the patient device and the gateway. At least one of the server system, the patient device or the gateway can be configured to determine an encryption key from the link key, and the patient device can be configured to encrypt the patient data for transmission with the encryption key.
In many embodiments, the patient device and the gateway are configured to communicate with paired communication in response to the device identifier. The gateway and the patient device can be configured to exchange a link key so as to pair the gateway with the patient device. For example, the gateway and the patient device may be configured to communicate with a communication protocol comprising at least one of a Zigbee protocol or a Bluetooth protocol.
In many embodiments, the gateway may comprise a list of device identifiers, and the list may comprise the device identifier. The list comprises a plurality of device identifiers, and each of the plurality of device identifiers may comprise a unique identifier specific to the patient device. For example, the list may comprise a range of identifiers and the device identifier can be within the range.
In many embodiments, the system comprises a plurality of patient devices, and the gateway is configured to pair with the plurality of patient devices, in which each patient device comprises a unique identifier. The gateway may be configured to pair simultaneously with the plurality of patient devices, and each device may be configured to transmit the unique identifier with patient data from the device.
In some embodiments, the gateway is configured to pair sequentially with the plurality of patient devices, and each device is configured to transmit the patient data when paired with the gateway.
In many embodiments, the server system comprises a list of allowable patient devices, in which the list comprises the device identifier, and the device identifier is transmitted from the server system to the gateway. The server system may comprise at least one processor comprising a tangible medium configured to receive patient data. For example, the server system comprises a plurality of processors.
In many embodiments, the patient device comprises at least one of an implantable device, a device worn by the patient or a device adhered to the patient.
In many embodiments, the server system comprises a backend server system at a site remote from the patient. The gateway and the server may be configured to communicate with at least a cellular connection, a dedicated connection or a prioritized internet connection.
In another aspect, embodiments of the present invention provide a system for monitoring a plurality of patients. The system comprises a plurality of patient devices. Each device is configured to couple to one of the plurality of patients to measure data from the patient, and each patient device comprises a unique patient device identifier. A server system comprises a tangible medium configured to store a list with the unique patient device identifier for each device. A plurality of gateways are configured communicate with the server system and the plurality of patient devices. Each gateway of the plurality of gateways is configured to communicate with at least one of the plurality of patient devices in response to the list.
In many embodiments, each gateway of the plurality of gateways is configured to exclude communication with each of the plurality of patient devices not identified on a gateway device list transmitted to the gateway.
In many embodiments, each gateway of the plurality of gateways comprises a unique gateway identifier. Each gateway of the plurality of gateways can be configured to communicate with at least one of the plurality of patient devices in response to the unique gateway identifier. For example, the unique gateway identifier for each gateway of the plurality of gateways may comprise a serial number.
In many embodiments, the server system comprises a tangible medium configured to transmit a gateway specific patient device list to each gateway. The gateway specific patient device list transmitted to each gateway may comprise a unique gateway specific patient device list transmitted in response to a unique gateway identifier. Each unique gateway specific patient device list may comprise at least one different unique patient device identifier. Each gateway of the plurality of gateways may be configured to exclude communication with each of the plurality of patient devices not identified on the gateway specific patient device list transmitted to the gateway. Each unique gateway specific patient device list may comprise separate unique patient device identifiers.
In many embodiments, each gateway of the plurality of gateways is configured to transmit the unique gateway identifier to the server with patient data and the unique patient device identifier.
In many embodiments, each gateway of the plurality of gateways comprises a gateway device list of allowed patient devices and is configured to communicate with each device identified on the gateway device list.
In many embodiments, each gateway is configured to transmit patient data and the unique patient device identifier from each patient device to the server system when the device is adhered to the patient.
In many embodiments, the plurality of gateways comprises at least about five gateways and the plurality of patient measurement devices comprises at least about ten patient measurement devices. Each gateway of the plurality of gateways can be configured to communicate with at least two patient devices, and each patient device may be allowed to communicate with no more than two gateways in response to the list.
In many embodiments, the list comprises at least one of a binary file, a hexadecimal file, an ASCII file or an encrypted file stored on the tangible medium of the server system. The server system may be configured to transmit at least a portion the list of unique patient device identifiers to the plurality of gateways.
FIG. 1A1 shows the patient monitoring system of
FIG. 1A2 shows a master approved patient device list and corresponding gateway approved patient device lists for the patient monitoring system of
FIG. 1A3 shows an updated master approved patient device list and corresponding updated gateway approved patient device lists for the patient monitoring system of
FIG. 1D1 shows an equivalent circuit that can be used to determine optimal frequencies for determining patient hydration, according to embodiments of the present invention;
Embodiments of the present invention relate to patient monitoring. Although embodiments make specific reference to monitoring impedance, accelerometer and electrocardiogram signals with an adherent device, the system methods and device described herein may be applicable to any application in which physiological monitoring is used, for example wireless physiological monitoring for extended periods.
Embodiments of the present invention can be used with systems where many patients are measured and many gateways are used, such that the transmission of data from the devices occurs in a controlled manner that maintains the integrity of communication channels from each measurement device to a server system.
A patient device is configured to measure patient data. To measure patient data, the patient device can be at least one of worn by the patient, attached to the patient, implanted in the patient or worn by the patient. Therefore, many devices that transmit wireless data through a gateway can be incorporated with embodiments. For example, a gateway device can receive data from at least one patient worn device, for example a plurality of patient worn devices. Examples of patient worn devices that can be used to transmit wireless data include known wearable devices such as a Holter monitor or ambulatory electrocardiography device. The patient device may also comprise one or more implantable devices with wireless communication capabilities, for example as described in U.S. Pat. Nos. 6,164,284; 6,185,452; and 6,208,894. In an exemplary embodiment, the patient device may comprise injectable devices injected into the patient, which injectable devices are configured for wireless communication with an adherent device adhered to the patient, which adherent device communicates wirelessly with the gateway, for example as described in U.S. Pat. App. No. 60/972,316, filed on Sep. 14, 2007, entitled “Adherent Multi-Sensor Device with Implantable Device Communications Capabilities”. The patient device may comprise one or more adherent devices simultaneously adhered to the patient, for example with a first adherent device adhered to a chest of the patient to measure patient physiology and a second adherent device adhered to a limb of the patient to measure patient movement, for example as described in U.S. Pat. App. No. 61/055,656, filed on May 23, 2008, entitled “Adherent Device for Sleep Disordered Breathing”. The patient device may also comprise one or more of a plurality of patient worn device that are sequentially placed on the patient to measure physiologic status of the patient, for example as described in U.S. Pat. App. No. 60/972,537, filed on Sep. 14, 2007, entitled “Adherent Device with Multiple Physiological Sensors”.
The gateway is configured to transmit data from the patient device to the backend server system at the remote site. The gateway comprises a list of approved devices. The data transmitted from the device can be controlled with a list, for example a list of approved devices.
In specific embodiments, an adherent device is configured to adhere to the skin of the patient with an adherent patch, for example breathable tape, to measure patient data. The device may comprise impedance circuitry coupled to at least four electrodes and can be configured to measure at least one of patient hydration or respiration, for example to detect sleep apnea and/or hypopnea. The impedance circuitry may be used to measure hydration of the patient, which can be useful evaluating the physiologic status of the patient, for example in combination with the detected sleep apnea and/or hypopnea. An accelerometer can be mechanically coupled to the adherent patch such that the accelerometer can be coupled to and move with the skin of the patient, thereby providing an accurate and reliable measurement of the orientation and/or activity of the patient, which can be helpful in determining that the patient is asleep. The accelerometer can be mechanically coupled to the adherent patch such that the accelerometer can detect motion of the jaw and/or legs. Electrocardiogram circuitry to generate an electrocardiogram signal may be coupled to at least two of the at least four electrodes, such that the sleep apnea and/or hypopnea can be detected in response to a heart rate variability from the electrocardiogram signal.
Embodiments of the present invention can be used to transmit important data relevant to patients with health conditions. For example, decompensation is failure of the heart to maintain adequate blood circulation. Although the heart can maintain at least some pumping of blood, the quantity is inadequate to maintain healthy tissues. Several symptoms can result from decompensation including pulmonary congestion, breathlessness, faintness, cardiac palpitation, edema of the extremities, and enlargement of the liver. Cardiac decompensation can result in slow or sudden death. Sudden Cardiac Arrest (hereinafter “SCA”), also referred to as sudden cardiac death, is an abrupt loss of cardiac pumping function that can be caused by a ventricular arrhythmia, for example ventricular tachycardia and/or ventricular fibrillation. Although decompensation and SCA can be related in that patients with decompensation are also at an increased risk for SCA, decompensation is primarily a mechanical dysfunction caused by inadequate blood flow, and SCA is primarily an electrical dysfunction caused by inadequate and/or inappropriate electrical signals of the heart.
In many embodiments, the adherent devices described herein may be used for 90 day monitoring, or more, and may comprise completely disposable components and/or reusable components, and can provide reliable data acquisition and transfer. In many embodiments, the patch is configured for patient comfort, such that the adherent patch can be worn and/or tolerated by the patient for extended periods, for example 90 days or more. The patch may be worn continuously for at least seven days, for example 14 days, and then replaced with another patch. Adherent devices with comfortable patches that can be worn for extended periods and in which patches can be replaced and the electronics modules reused are described in U.S. Pat. App. Nos. 60/972,537, entitled “Adherent Device with Multiple Physiological Sensors”; and 60/972,629, entitled “Adherent Device with Multiple Physiological Sensors”, both filed on Sep. 14, 2007, the full disclosures of which have been previously incorporated herein by reference. In many embodiments, the adherent patch comprises a tape, which comprises a material, preferably breathable, with an adhesive, such that trauma to the patient skin can be minimized while the patch is worn for the extended period. The printed circuit board may comprise a flex printed circuit board that can flex with the patient to provide improved patient comfort.
Monitoring system 10 includes components to transmit data to a remote center 106. Remote center 106 can be located in a different building from the patient, for example in the same town as the patient, and can be located as far from the patient as a separate continent from the patient, for example the patient located on a first continent and the remote center located on a second continent. Adherent patient device 100 can communicate wirelessly to an intermediate device 102, for example with a single wireless hop from the adherent device on the patient to the intermediate device. Intermediate device 102 comprises a communication gateway. Intermediate device 102 comprising the communication gateway can communicate with remote center 106 with a connection 104 in many ways. For example, connection 104 may comprise at least one of an internet connection or with a cellular connection.
In many embodiments, monitoring system 10 comprises a distributed processing system with at least one processor comprising a tangible medium of device 100, at least one processor 102P of intermediate device 102, and at least one processor 106P at remote center 106, each of which processors can be in electronic communication with the other processors. At least one processor 102P comprises a tangible medium 102T, and tangible medium 102T may be configured so as to comprise a list 106L of approved devices and/or device identifiers. The list 106L is used to control and/or limit which adherent devices communicate with intermediate device 102. At least one processor 106P comprises a tangible medium 106T, and tangible medium 106T may be configured so as to comprise a master list 106L of approved device identifiers. The master list and/or components of master list 106L can be transmitted to tangible medium 102T from processor 106P so as to control which devices are allowed to communicate with intermediate device 102, which may comprise an intermediate gateway device.
Remote processor 106P may comprise a backend server located at the remote center. Remote center 106 can be in communication with a health care provider 108A with a communication system 107A, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Health care provider 108A, for example a family member, nurse or caregiver, can be in communication with patient P with a communication system, for example with a two way communication system, as indicated by arrow 109A, for example by cell phone, email, landline. Remote center 106 can be in communication with a health care professional, for example a physician 108B, with a communication system 107B, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Physician 108B can be in communication with patient P with a communication, for example with a two way communication system, as indicated by arrow 109B, for example by cell phone, email, landline. Remote center 106 can be in communication with an emergency responder 108C, for example a 911 operator and/or paramedic, with a communication system 107C, such as the Internet, an intranet, phone lines, wireless and/or satellite phone. Emergency responder 108C can travel to the patient as indicated by arrow 109C. Thus, in many embodiments, monitoring system 10 comprises a closed loop system in which patient care can be monitored and implemented from the remote center in response to signals from the adherent device.
In many embodiments, the adherent device may continuously monitor physiological parameters, communicate wirelessly with a remote center, and provide alerts when necessary. The system may comprise an adherent patch, which attaches to the patient's thorax and contains sensing electrodes, battery, memory, logic, and wireless communication capabilities. In some embodiments, the patch can communicate with the remote center, via the intermediate device in the patient's home. In some embodiments, remote center 106 receives the patient data and applies a patient evaluation algorithm, for example an algorithm to calculate the apnea hypopnea index. When a flag is raised, the center may communicate with the patient, hospital, nurse, and/or physician to allow for therapeutic intervention.
The adherent device may be affixed and/or adhered to the body in many ways. For example, with at least one of the following: an adhesive tape, a constant-force spring, suspenders around shoulders, a screw-in microneedle electrode, a pre-shaped electronics module to shape fabric to a thorax, a pinch onto roll of skin, or transcutaneous anchoring. Patch and/or device replacement may occur with a keyed patch (e.g. two-part patch), an outline or anatomical mark, a low-adhesive guide (place guide|remove old patch|place new patch|remove guide), or a keyed attachment for chatter reduction. The patch and/or device may comprise an adhesiveless embodiment (e.g. chest strap), and/or a low-irritation adhesive for sensitive skin. The adherent patch and/or device can comprise many shapes, for example at least one of a dogbone, an hourglass, an oblong, a circular or an oval shape.
In many embodiments, the adherent device may comprise a reusable electronics module with replaceable patches, and each of the replaceable patches may include a battery. The module may collect cumulative data for approximately 90 days and/or the entire adherent component (electronics+patch) may be disposable. In a completely disposable embodiment, a “baton” mechanism may be used for data transfer and retention, for example baton transfer may include baseline information. In some embodiments, the device may have a rechargeable module, and may use dual battery and/or electronics modules, wherein one module 101A can be recharged using a charging station 103 while the other module 101B is placed on the adherent patch with connectors. In some embodiments, the intermediate device 102 may comprise the charging module, data transfer, storage and/or transmission, such that one of the electronics modules can be placed in the intermediate device for charging and/or data transfer while the other electronics module is worn by the patient.
System 10 can perform the following functions: initiation, programming, measuring, storing, analyzing, communicating, predicting, and displaying. The adherent device may contain a subset of the following physiological sensors: bioimpedance, respiration, respiration rate variability, heart rate (ave, min, max), heart rhythm, heart rate variability (HRV), heart rate turbulence (HRT), heart sounds (e.g. S3), respiratory sounds, blood pressure, activity, posture, wake/sleep, orthopnea, temperature/heat flux, and weight. The activity sensor may comprise one or more of the following: ball switch, accelerometer, minute ventilation, HR, bioimpedance noise, skin temperature/heat flux, BP, muscle noise, posture.
The adherent device can wirelessly communicate with remote center 106. The communication may occur directly (via a cellular or Wi-Fi network), or indirectly through intermediate device 102. Intermediate device 102 may consist of multiple devices, which can communicate wired or wirelessly to relay data to remote center 106.
In many embodiments, instructions are transmitted from remote site 106 to a processor supported with the adherent patch on the patient, and the processor supported with the patient can receive updated instructions for the patient treatment and/or monitoring, for example while worn by the patient.
FIG. 1A1 shows monitoring a plurality of patients with monitoring system 10. The plurality of patients comprises at least two patients, for example a first patient PA, a second patient PB, a third patient PC and a fourth patient PD. Each of the plurality of patients has at least one device adhered or implanted into the patient to measure patient data. Intermediate device 102 comprises a plurality of at least two intermediate devices, for example a first intermediate device comprising a first gateway 102A, a second intermediate device comprising a second gateway 102B, a third intermediate device comprising a third gateway 102C; and a fourth intermediate device comprising a fourth gateway 104D. Each of the plurality of intermediate devices may comprise an approved patient device list that controls communication of the device with the gateway. For example first gateway 102A comprises a first approved device list 102AL. Second gateway 102B comprises a second approved device list 102BL. Third gateway 102C comprises a third approved device list 102CL. Fourth gateway 102D comprises a fourth approved device list 102DL. Each gateway allows the patient device to communicate with the back end server system at the remote center 106 when the device is on the approved device list, and each gateway may exclude communication with the backend server system at the remote center 106 when the patient device is not identified on the approved device list for the gateway. Remote center 106 comprises a master approved device 106L list that comprises each patient device approved for each gateway.
Each gateway may comprise a processor comprising a tangible medium configured to determine when the device is on the approved patch list. For example, first gateway 102A comprises a first processor 102AP. Second gateway 102B comprises a second processor 102BP. Third gateway 102C comprises a third processor 102CP. Fourth gateway 102D comprises a fourth processor 102DP.
Each of gateways 102A, 102B, 102C and 102D can send data to remote center 106 through each of connections 104A, 104B, 104C and 104D, respectively. Connections 104A, 104B, 104C and 104D may be, for example, a wireless connection, a cellular connection, a ZigBee connection, a BlueTooth connection, an Internet connection, an intranet connection, a wired connection, a cable connection or the like. The connection between the gateway and the backend server may comprise a dedicated connection when the gateway is paired to the adherent patient device, for example a dedicated cellular connection from a phone number dialed by the gateway.
More than one patient device can correspond to each patient. For example, each patient of the plurality can be sent home with a box of adherent patches, and each patch may comprise a unique identifier which is associated with the patient so as to correspond to the patient. The adherent patches can be adhered to the patient sequentially. For example, a first patch may be replaced after about one week with a second patch from the box. In some embodiments, a patient may have more than one patch simultaneously adhered to the patient, for example to measure data at two or more separate locations on the patient.
System 10 comprises a first plurality of patches for first patient PA, a second plurality of patches for second patient PB, a third plurality of patches for patient PC and a fourth plurality of patches provided for patient PD. The first plurality of adherent devices comprises adherent devices 100A1, 100A2, 100A3 and 100A4. Each of adherent devices 100A1, 100A2, 100A3 and 100A4 are configured to adhere to a patient, for example patient PA. The second plurality of adherent devices comprises adherent devices 100B1, 100B2, 100B3 and 100B4. Each of adherent devices 100B1, 100B2, 100B3 and 100B4 are configured to adhere to a patient, for example patient PB. The third plurality of adherent devices comprises adherent devices 100C1, 100C2, 100C3 and 100C4. Each of adherent devices 100C1, 100C2, 100C3 and 100C4 are configured to adhere to a patient, for example patient PC. The fourth plurality of adherent devices comprises adherent devices 100D1, 100D2, 100D3 and 100D4. Each of adherent devices 100D1, 100D2, 100D3 and 100D4 are configured to adhere to adhere to a patient, for example patient PD.
As noted above, each adherent device may have a device identifier, for example a unique device identifier such as a serial number. The device identifier can be transmitted with the patient data so as to allow the remote server system to identify the device. The device identifier may be encrypted. The adherent devices can be manufactured with a device identifier built into them, for example a device identifier stored in EPROM or non-volatile storage.
Each of gateways 102A, 102B, 102C, and 102D may each include an approved patient device list, such as a list of approved patient device serial numbers, and/or range of approved patient device identifiers. Each adherent patient device may transmit the device identifier to any gateway within range of the wireless communication signal transmitted by the adherent device.
When a specific adherent device is in the list and/or within the range of device identifiers of a specific gateway, the gateway can “pair” to the specific adherent device, such that data is transmitted from the adherent device to the backend server system at remote center 106. For example, patient data from one of the adherent devices can be transmitted to remote center 106, which may comprise the backend server or system. When the patient device is paired to the gateway, the gateway can provide a dedicated connection to from the gateway to the backend server system, such that the communication channel integrity is maintained.
Each device can pair with at least one of the gateways, in response to the approved list of the gateway. Each of adherent devices 100A1, 100A2, 100A3 and 100A4 may pair with the intermediate device comprising gateway 102A with pairing 100A1P, 100A2P, 100A3P and 100A4P, respectively, in response to approved patient device list 102AL. As noted above, the pairing can be sequential, for example when one of the adherent devices replaces a prior adherent device after an extended period of about one week. Each of adherent devices 100B1, 100B2, 100B3 and 100B4 may pair with the intermediate device comprising gateway 102B with pairing 100B1P, 100B2P, 100B3P and 100B4P, respectively, in response to approved patient device list 102BL. Each of adherent devices 100C1, 100C2, 100C3 and 100C4 may pair with the intermediate device comprising gateway 102C with pairing 100C1P, 100C2P, 100C3P and 100C4P, respectively, in response to approved patient device list 102CL. Each of adherent devices 100D1, 100D2, 100D3 and 100D4 may pair with the intermediate device comprising gateway 102D with pairing 100D1P, 100D2P, 100D3P and 100D4P, respectively, in response to approved device list 102DL.
Each of the adherent devices can communicate with the backend server when paired to the intermediate device comprising the gateway. Each of adherent devices 100A1, 100A2, 100A3 and 100A4 may be in paired electronic communication with the intermediate device comprising gateway 102A and transmit data to the backend server at remote center 106 when paired. Each of adherent devices 100B1, 100B2, 100B3 and 100B4 may be in sequential paired electronic communication with the intermediate device comprising gateway 102B and transmit data to the backend server at remote center 106 when paired. Each of adherent devices 100C1, 100C2, 100C3 and 100C4 may be in sequential paired electronic communication with the intermediate device comprising gateway 102C and transmit data to the backend server at remote center 106 when paired. Each of adherent devices 100D1, 100D2, 100D3 and 100D4 may be in electronic communication with the intermediate device comprising gateway 102D and transmit data to the backend server at remote center 106 when paired.
Although the pairing of the patient device to the gateways can occur in many ways, the protocol for pairing of each of the adherent devices with each of the gateways can be similar. For example, when patch 100A1 communicates with gateway 100A, adherent patient device 100A1 can be configured transmits its serial number SN to gateway 100A. The processor of gateway 102A may query approved device list 102AL and performs logic operations. If the serial number of device 100A is in the approved patient list 102AL, then device 100A will be allowed to pair with gateway 102A to send data to remote center 106. When the serial number of device 100A is not in the approved patient list 102AL, device 100A is excluded from pairing with gateway 102. In many embodiments, when device 100A pairs with gateway 102 to send data to remote center 106, gateway 102 adds the device identifier of device 100A to a packet of data from gateway 102 so that remote center 106 detect pairing between device 100A and gateway 102. Similar protocols can be used to transmit data for additional patient devices and gateways.
As the pairing of each device with the gateway is controlled with the approved patient device list, one intermediate device can be allowed to communicate with a plurality of patient devices for a plurality of patients. For example, the second intermediate device comprising second gateway 102B can be configured to communicate with device 100A1 when approved device list 102BL comprises the identifier for device 100A1 for first patient PA. The first intermediate device comprising first gateway 102A can be configured to communicate with device 100B1 when approved device list 102AL comprises the identifier for device 100B1 for second patient PB. With such a configuration, patient devices 100C1-100C4 for patient PC and patient devices 100D1-100D4 for patient PD can be excluded from paired communication the first intermediate device comprising gateway 102A and the second intermediate device comprising gateway 102B. Such configurations can be helpful when patients are mobile, for example in a ward of a hospital where many patient devices can be within range of a gateway device.
The gateways configured to pair with devices in response to the approved patch list allows for great flexibility in controlling the communication. For example, the adherent device can be paired to either zero or one gateway, in response to the approved patch list at each gateway, while a single gateway may be paired with many adherent patches. For example, a gateway using a Bluetooth connection may have at least 8 simultaneous connections for 8 adherent devices from 8 patients. The adherent patient device may actively search for a gateway to pair with, for example by searching and sorting gateway signals from strongest to weakest and stopping the search process when the adherent patient device has paired with the gateway with the strongest signal and in which the approved device list allows communication.
The gateways configured to pair with devices in response to the approved patch list allows for the communication to be controlled dynamically with dynamic updating of the approved device list. For example gateway 102A may comprise an approved device list 102AL which may be sent from remote center 106 or another server through two-way connection 104A. Approved device list 102AL may comprise, for example, a binary file, a hexadecimal file, an ASCII file or an encrypted file stored on tangible medium. Approved device list 102AL may comprise a list of serial numbers of approved adherent devices. Approved device list 102AL can be dynamic. For example, the list of serial numbers of approved adherent devices of list 102AL may change and/or be updated at any time, for example, with instructions from the backend server located at remote center 106. List 102AL may be sent from remote center 106 at any time to instruct a gateway 102A as to which adherent devices to pair with. For example, the list can be updated when a new patch is applied to a patient and/or when a patient is supplied with a box of adherent devices. In some instances, the gateway can be located in the patient's home and the list updated when the patient is sent home with a box of patches and gateway.
Each of gateways 102A, 102B, 102C, and 102D may have its own device identifier, for example a unique device identifier such as a serial number. The device identifier may be encrypted. Gateways 102A, 102B, 102C, and 102D can be manufactured with a device identifier built into them, for example a device identifier stored in EPROM or non-volatile storage. An adherent device and a gateway may be configured to exchange a link key so as to pair the gateway with the patient device.
Although FIG. 1A1 shows four patients PA, PB, PC and PD, each with a set of four adherent devices configured to attached to him or her, many patients, for example at least 100 patients, and many gateways, for example at least 25 gateways, may be provided.
FIG. 1A2 shows master approved patient device list 106L and first approved patient device list 102AL transmitted to first gateway 102A, second approved patient device list 102BL transmitted to second gateway 102B, third approved patient device list 102CL transmitted to third gateway 102C, and fourth approved patient device list 102DL transmitted to fourth gateway 102D. The master approved patient device list 106L may comprise a field for each of a unique patient identifier, unique patient device identifier and a unique gateway identifier. The master list may comprise an entry with the unique patient device identifier, the unique gateway identifier and the unique patient device identifier for each patient device, for example patient PTA with patient device 100A1 and gateway 102A.
Connections from the backend server at the remote site can update the list at each gateway to dynamically control communication with the patient devices at each gateway. The backend server at remote center 106 can use connection 104A from remote center 106 to gateway 102A to dynamically update list 102AL at gateway 102A. Connection 104B from remote center 106 to gateway 102B can similarly be used to dynamically update list 102BL at gateway 102B. Connection 104C from remote center 106 to gateway 102C can also be used to dynamically update list 102CL at gateway 102C. The backend server at remote center 106 can use connection can also use connection 104D from remote center 106 to gateway 102D to dynamically update list 102DL at gateway 102D.
As shown in FIG. 1A2, one entry may include: a unique patient identifier PTA associated with a unique device identifier 100A1 and a unique gateway identifier 102A. Other entries include: a unique patient identifier PTA associated with a unique device identifier 100A2 and a unique gateway identifier 102A; a unique patient identifier PTA associated with a unique device identifier 100A3 and a unique gateway identifier 102A; a unique patient identifier PTA associated with a unique device identifier 100A4 and a unique gateway identifier 102A; a unique patient identifier PTB associated with a unique device identifier 100B1 and a unique gateway identifier 102B; a unique patient identifier PTB associated with a unique device identifier 100B2 and a unique gateway identifier 102B; a unique patient identifier PTB associated with a unique device identifier 100B3 and a unique gateway identifier 102B; a unique patient identifier PTB associated with a unique device identifier 100B4 and a unique gateway identifier 102B; a unique patient identifier PTC associated with a unique device identifier 100C1 and a unique gateway identifier 102C; a unique patient identifier PTC associated with a unique device identifier 100C2 and a unique gateway identifier 102C; a unique patient identifier PTC associated with a unique device identifier 100C3 and a unique gateway identifier 102C; a unique patient identifier PTC associated with a unique device identifier 100C4 and a unique gateway identifier 102C; a unique patient identifier PTD associated with a unique device identifier 100D1 and a unique gateway identifier 102D; a unique patient identifier PTD associated with a unique device identifier 100D2 and a unique gateway identifier 102D; a unique patient identifier PTD associated with a unique device identifier 100D3 and a unique gateway identifier 102D; and a unique patient identifier PTD associated with a unique device identifier 100D4 and a unique gateway identifier 102D.
The approved patient device lists and the master list can be configured in many ways. For example, the approved patient device list at each gateway may comprise master approved device list 106L such that the list at each gateway is the same and the processor at each gateway compares the gateway identifier to the patients on the master list that correspond to the gateway identifier.
As shown in FIG. 1A2, the approved patient device list at each gateway may include the unique patient device identifiers and a unique patient identifier. Gateway 102A comprises list 102AL. List 102AL comprises unique device identifiers 100A1, 100A2, 100A3, and 100A4 for each device given to the patient corresponding to unique patient identifier PTA. Gateway 102B comprises list 102BL. List 102BL comprises unique patient device identifiers 100B1, 100B2, 100B3, and 100B4 for each device given to the patient corresponding to the unique patient identifier PTB. Gateway 102C comprises list 102CL. List 102CL comprises the unique patient device identifiers 100C1, 100C2, 100C3, and 100C4 for each device given to the patient corresponding to the unique patient identifier PTA. Gateway 102D comprises list 102DL. List 102DL comprises unique patient device identifiers 100D1, 100D2, 100D3, and 100D4 for each device given to the patient corresponding to the unique patient identifier PTD.
FIG. 1A3 shows master list 106L updated to a second configuration from a first configuration shown in FIG. 1A2, so as to accommodate additional devices and/or to remove devices from the list and to disable communication of the devices removed from the list. The list at each gateway can be updated in response to the updated master list. There may be more than one unique patient device identifier for a given unique patient identifier, and there may be only one unique patient device identifier for a given unique patient identifier.
Master list 106L can be updated to allow a plurality of patient devices to communicate with each gateway, for example four patient devices. For example, entries of the updated master approved patient device list 106L may include: a unique patient identifier PTA, a unique device identifier 100A1, and a unique gateway identifier 102A; a unique patient identifier PTE, a unique device identifier 100E1, and a unique gateway identifier 102A; a unique patient identifier PTI, a unique device identifier 100I1, and a unique gateway identifier 102A; a unique patient identifier PTM, a unique device identifier 100M1, and a unique gateway identifier 102A; a unique patient identifier PTB, a unique device identifier 100B1, and a unique gateway identifier 102B; a unique patient identifier PTF, a unique device identifier 100F1, and a unique gateway identifier 102B; a unique patient identifier PTJ, a unique device identifier 100J1, and a unique gateway identifier 102B; a unique patient identifier PTN, a unique device identifier 100N1, and a unique gateway identifier 102B; a unique patient identifier PTC, a unique device identifier 100C1, and a unique gateway identifier 102C; a unique patient identifier PTG, a unique device identifier 100G1, and a unique gateway identifier 102C; a unique patient identifier PTK, a unique device identifier 100K1, and a unique gateway identifier 102C; a unique patient identifier PTO, a unique device identifier 100O1, and a unique gateway identifier 102C; a unique patient identifier PTD, a unique device identifier 100D1, and a unique gateway identifier 102D; a unique patient identifier PTH, a unique device identifier 100H1, and a unique gateway identifier 102D; a unique patient identifier PTL, a unique device identifier 100L1, and a unique gateway identifier 102D; and a unique patient identifier PTP, a unique device identifier 100P1, and a unique gateway identifier 102D.
The list at each gateway can be updated in response to the master list to allow a plurality of patient devices to communicate with each gateway, for example two three, and four our more devices per gateway. For example, each gateway may include a plurality of entries for unique patient device identifiers and unique device identifiers in response to the updated master list 106L. For example, gateway 102A comprises updated list 102AL comprising unique device identifier 100A1, 100E1, 100I1, and 100M1 for unique patient identifier PTA, PTE, PTI, and PTM, respectively. Gateway 102B comprises updated list 102BL comprising unique device identifier 100B1, 100F1, 100J1, and 100N1 for unique patient identifier PTB, PTF, PTJ, and PTN, respectively. Gateway 102C comprises updated list 102CL comprising unique device identifier 100C1, 100G1, 100K1, and 100O1 for unique patient identifier PTC, PTG, PTK, and PTO. Gateway 102D comprises updated list 102DL comprising unique device identifier 100D1, 100H1, 100L1, and 100P1 for unique patient identifier PTD, PTH, PTL, and PTP, respectively.
Electronic components 130 comprise components to take physiologic measurements, transmit data to remote center 106 and receive commands from remote center 106. In many embodiments, electronics components 130 may comprise known low power circuitry, for example complementary metal oxide semiconductor (CMOS) circuitry components. Electronics components 130 comprise an activity sensor and activity circuitry 134, impedance circuitry 136 and electrocardiogram circuitry, for example ECG circuitry 136. In some embodiments, electronics circuitry 130 may comprise a microphone and microphone circuitry 142 to detect an audio signal from within the patient, and the audio signal may comprise a heart sound and/or a respiratory sound, for example an S3 heart sound and a respiratory sound with rales and/or crackles.
Electronics circuitry 130 may comprise a temperature sensor, for example a thermistor in contact with the skin of the patient, and temperature sensor circuitry 144 to measure a temperature of the patient, for example a temperature of the skin of the patient. A temperature sensor may be used to determine the sleep and wake state of the patient. The temperature of the patient can decrease as the patient goes to sleep and increase when the patient wakes up.
Work in relation to embodiments of the present invention suggests that skin temperature may effect impedance and/or hydration measurements, and that skin temperature measurements may be used to correct impedance and/or hydration measurements. In some embodiments, increase in skin temperature or heat flux can be associated with increased vaso-dilation near the skin surface, such that measured impedance measurement decreased, even through the hydration of the patient in deeper tissues under the skin remains substantially unchanged. Thus, use of the temperature sensor can allow for correction of the hydration signals to more accurately assess the hydration, for example extra cellular hydration, of deeper tissues of the patient, for example deeper tissues in the thorax.
Electronics circuitry 130 may comprise a processor 146. Processor 146 comprises a tangible medium, for example read only memory (ROM), electrically erasable programmable read only memory (EEPROM) and/or random access memory (RAM). Processor 146 may comprise many known processors with real time clock and frequency generator circuitry, for example the PIC series of processors available from Microchip, of Chandler, Ariz. In some embodiments, processor 136 may comprise the frequency generator and real time clock. The processor can be configured to control a collection and transmission of data from the impedance circuitry electrocardiogram circuitry and the accelerometer. In many embodiments, device 100 comprise a distributed processor system, for example with multiple processors on device 100.
Electronics circuitry 130 may comprise electromyogram (hereinafter “EMG”) circuitry 148 to measure muscle activity. EMG circuitry 148 can measure signals from muscles and may be connected to and/or comprise at least two of electrode 112A, electrode 112B, electrode 112C or electrode 112D. EMG circuitry 148 comprises an amplifier to amplify signals from contracting muscles so as to generate an EMG signal. EMG circuitry 148 can be connected to processor to send the EMG signal to the processor for storage and/or analysis.
In many embodiments, electronics components 130 comprise wireless communications circuitry 132 to communicate with remote center 106. The wireless communication circuitry can be coupled to the impedance circuitry, the electrocardiogram circuitry and the accelerometer to transmit to a remote center with a communication protocol at least one of the hydration signal, the electrocardiogram signal or the inclination signal. In specific embodiments, wireless communication circuitry is configured to transmit the hydration signal, the electrocardiogram signal and the inclination signal to the remote center with a single wireless hop, for example from wireless communication circuitry 132 to intermediate device 102. The communication protocol comprises at least one of Bluetooth, Zigbee, WiFi, WiMax, IR, amplitude modulation or frequency modulation. In many embodiments, the communications protocol comprises a two way protocol such that the remote center is capable of issuing commands to control data collection.
Intermediate device 102 may comprise a data collection system to collect and store data from the wireless transmitter. The data collection system can be configured to communicate periodically with the remote center. The data collection system can transmit data in response to commands from remote center 106 and/or in response to commands from the adherent device.
Activity sensor and activity circuitry 134 can comprise many known activity sensors and circuitry. In many embodiments, the accelerometer comprises at least one of a piezoelectric accelerometer, capacitive accelerometer or electromechanical accelerometer. The accelerometer may comprises a 3-axis accelerometer to measure at least one of an inclination, a position, an orientation or acceleration of the patient in three dimensions. Work in relation to embodiments of the present invention suggests that three dimensional orientation of the patient and associated positions, for example sitting, standing, lying down, can be very useful when combined with data from other sensors, for example ECG data and/or bioimpedance data, for example a respiration rate of the patient.
Impedance circuitry 136 can generate both hydration data and respiration data. In many embodiments, impedance circuitry 136 is electrically connected to electrodes 112A, 112B, 112C and 112D in a four pole configuration, such that electrodes 112A and 112D comprise outer electrodes that are driven with a current and comprise force electrodes that force the current through the tissue. The current delivered between electrodes 112A and 112D generates a measurable voltage between electrodes 112B and 112C, such that electrodes 112B and 112C comprise inner, sense, electrodes that sense and/or measure the voltage in response to the current from the force electrodes. In some embodiments, electrodes 112B and 112C may comprise force electrodes and electrodes 112A and 112B may comprise sense electrodes. The voltage measured by the sense electrodes can be used to measure the impedance of the patient and determine the respiration rate and/or hydration of the patient.
FIG. 1D1 shows an equivalent circuit 152 that can be used to determine optimal frequencies for measuring patient hydration. Work in relation to embodiments of the present invention indicates that the frequency of the current and/or voltage at the force electrodes can be selected so as to provide impedance signals related to the extracellular and/or intracellular hydration of the patient tissue. Equivalent circuit 152 comprises an intracellular resistance 156, or R(ICW) in series with a capacitor 154, and an extracellular resistance 158, or R(ECW). Extracellular resistance 158 is in parallel with intracellular resistance 156 and capacitor 154 related to capacitance of cell membranes. In many embodiments, impedances can be measured and provide useful information over a wide range of frequencies, for example from about 0.5 kHz to about 200 KHz. Work in relation to embodiments of the present invention suggests that extracellular resistance 158 can be significantly related extracellular fluid and to cardiac decompensation, and that extracellular resistance 158 and extracellular fluid can be effectively measured with frequencies in a range from about 0.5 kHz to about 20 kHz, for example from about 1 kHz to about 10 kHz. In some embodiments, a single frequency can be used to determine the extracellular resistance and/or fluid. As sample frequencies increase from about 10 kHz to about 20 kHz, capacitance related to cell membranes decrease the impedance, such that the intracellular fluid contributes to the impedance and/or hydration measurements. Thus, many embodiments of the present invention measure hydration with frequencies from about 0.5 kHz to about 20 kHz to determine patient hydration.
In many embodiments, impedance circuitry 136 can be configured to determine respiration of the patient. In specific embodiments, the impedance circuitry can measure the hydration at 25 Hz intervals, for example at 25 Hz intervals using impedance measurements with a frequency from about 0.5 kHz to about 20 kHz.
ECG circuitry 138 can generate electrocardiogram signals and data from two or more of electrodes 112A, 112B, 112C and 112D in many ways. In some embodiments, ECG circuitry 138 is connected to inner electrodes 112B and 122C, which may comprise sense electrodes of the impedance circuitry as described above. In some embodiments, ECG circuitry 138 can be connected to electrodes 112A and 112D so as to increase spacing of the electrodes. The inner electrodes may be positioned near the outer electrodes to increase the voltage of the ECG signal measured by ECG circuitry 138. In many embodiments, the ECG circuitry may measure the ECG signal from electrodes 112A and 112D when current is not passed through electrodes 112A and 112D, for example with switches as described in U.S. App. No. 60/972,527, the full disclosure of which has been previously incorporated herein by reference.
Cover 162 may comprise many known biocompatible cover, casing and/or housing materials, such as elastomers, for example silicone. The elastomer may be fenestrated to improve breathability. In some embodiments, cover 162 may comprise many known breathable materials, for example polyester, polyamide, and/or elastane (Spandex). The breathable fabric may be coated to make it water resistant, waterproof, and/or to aid in wicking moisture away from the patch.
A gel cover 180, or gel cover layer, for example a polyurethane non-woven tape, can be positioned over patch 110 comprising the breathable tape. A PCB layer, for example flex printed circuit board 120, or flex PCB layer, can be positioned over gel cover 180 with electronic components 130 connected and/or mounted to flex printed circuit board 120, for example mounted on flex PCB so as to comprise an electronics layer disposed on the flex PCB layer. In many embodiments, the adherent device may comprise a segmented inner component, for example the PCB may be segmented to provide at least some flexibility. In many embodiments, the electronics layer may be encapsulated in electronics housing 160 which may comprise a waterproof material, for example silicone or epoxy. In many embodiments, the electrodes are connected to the PCB with a flex connection, for example trace 123A of flex printed circuit board 120, so as to provide strain relive between the electrodes 112A, 112B, 112C and 112D and the PCB.
Gel cover 180 can inhibit flow of gel 114A and liquid. In many embodiments, gel cover 180 can inhibit gel 114A from seeping through breathable tape 110T to maintain gel integrity over time. Gel cover 180 can also keep external moisture, for example liquid water, from penetrating though the gel cover into gel 114A while allowing moisture vapor from the gel, for example moisture vapor from the skin, to transmit through the gel cover.
In many embodiments, cover 162 can encase the flex PCB and/or electronics and can be adhered to at least one of the electronics, the flex PCB or adherent patch 110, so as to protect at least the electronics components and the PCB. Cover 162 can attach to adherent patch 110 with adhesive 116B. Cover 162 can comprise many known biocompatible cover materials, for example silicone. Cover 162 can comprise an outer polymer cover to provide smooth contour without limiting flexibility. In many embodiments, cover 162 may comprise a breathable fabric. Cover 162 may comprise many known breathable fabrics, for example breathable fabrics as described above. In some embodiments, the breathable cover may comprise a breathable water resistant cover. In some embodiments, the breathable fabric may comprise polyester, nylon, polyamide, and/or elastane (Spandex) to allow the breathable fabric to stretch with body movement. In some embodiments, the breathable tape may contain and elute a pharmaceutical agent, such as an antibiotic, anti-inflammatory or antifungal agent, when the adherent device is placed on the patient.
The breathable cover 162 and adherent patch 110 comprise breathable tape can be configured to couple continuously for at least one week the at least one electrode to the skin so as to measure breathing of the patient. The breathable tape may comprise the stretchable breathable material with the adhesive and the breathable cover may comprises a stretchable water resistant material connected to the breathable tape, as described above, such that both the adherent patch and cover can stretch with the skin of the patient. Arrows 182 show stretching of adherent patch 110, and the stretching of adherent patch can be at least two dimensional along the surface of the skin of the patient. As noted above, connectors 122A, 122B, 122C and 122D between PCB 130 and electrodes 112A, 112B, 112C and 112D may comprise insulated wires that provide strain relief between the PCB and the electrodes, such that the electrodes can move with the adherent patch as the adherent patch comprising breathable tape stretches. Arrows 184 show stretching of cover 162, and the stretching of the cover can be at least two dimensional along the surface of the skin of the patient. Cover 162 can be attached to adherent patch 110 with adhesive 116B such that cover 162 stretches and/or retracts when adherent patch 110 stretches and/or retracts with the skin of the patient. For example, cover 162 and adherent patch 110 can stretch in two dimensions along length 170 and width 174 with the skin of the patient, and stretching along length 170 can increase spacing between electrodes. Stretching of the cover and adherent patch 110, for example in two dimensions, can extend the time the patch is adhered to the skin as the patch can move with the skin such that the patch remains adhered to the skin. Electronics housing 160 can be smooth and allow breathable cover 162 to slide over electronics housing 160, such that motion and/or stretching of cover 162 is slidably coupled with housing 160. The printed circuit board can be slidably coupled with adherent patch 110 that comprises breathable tape 110T, such that the breathable tape can stretch with the skin of the patient when the breathable tape is adhered to the skin of the patient, for example along two dimensions comprising length 170 and width 174. Electronics components 130 can be affixed to printed circuit board 120, for example with solder, and the electronics housing can be affixed over the PCB and electronics components, for example with dip coating, such that electronics components 130, printed circuit board 120 and electronics housing 160 are coupled together. Electronics components 130, printed circuit board 120, and electronics housing 160 are disposed between the stretchable breathable material of adherent patch 110 and the stretchable water resistant material of cover 160 so as to allow the adherent patch 110 and cover 160 to stretch together while electronics components 130, printed circuit board 120, and electronics housing 160 do not stretch substantially, if at all. This decoupling of electronics housing 160, printed circuit board 120 and electronic components 130 can allow the adherent patch 110 comprising breathable tape to move with the skin of the patient, such that the adherent patch can remain adhered to the skin for an extended time of at least one week, for example two or more weeks.
An air gap 169 may extend from adherent patch 110 to the electronics module and/or PCB, so as to provide patient comfort. Air gap 169 allows adherent patch 110 and breathable tape 110T to remain supple and move, for example bend, with the skin of the patient with minimal flexing and/or bending of printed circuit board 120 and electronic components 130, as indicated by arrows 186. Printed circuit board 120 and electronics components 130 that are separated from the breathable tape 110T with air gap 169 can allow the skin to release moisture as water vapor through the breathable tape, gel cover, and breathable cover. This release of moisture from the skin through the air gap can minimize, and even avoid, excess moisture, for example when the patient sweats and/or showers.
The breathable tape of adherent patch 110 may comprise a first mesh with a first porosity and gel cover 180 may comprise a breathable tape with a second porosity, in which the second porosity is less than the first porosity to minimize, and even inhibit, flow of the gel through the breathable tape. The gel cover may comprise a polyurethane film with the second porosity.
In many embodiments, the adherent device comprises a patch component and at least one electronics module. The patch component may comprise adherent patch 110 comprising the breathable tape with adhesive coating 116A, at least one electrode, for example electrode 114A and gel 114. The at least one electronics module can be separable from the patch component. In many embodiments, the at least one electronics module comprises the flex printed circuit board 120, electronic components 130, electronics housing 160 and cover 162, such that the flex printed circuit board, electronic components, electronics housing and cover are reusable and/or removable for recharging and data transfer, for example as described above. In many embodiments, adhesive 116B is coated on upper side 110A of adherent patch 110B, such that the electronics module can be adhered to and/or separated from the adhesive component. In specific embodiments, the electronic module can be adhered to the patch component with a releasable connection, for example with Velcro™, a known hook and loop connection, and/or snap directly to the electrodes. Two electronics modules can be provided, such that one electronics module can be worn by the patient while the other is charged, as described above. Monitoring with multiple adherent patches for an extended period is described in U.S. Pat. App. No. 60/972,537, the full disclosure of which has been previously incorporated herein by reference. Many patch components can be provided for monitoring over the extended period. For example, about 12 patches can be used to monitor the patient for at least 90 days with at least one electronics module, for example with two reusable electronics modules.
At least one electrode 112A can extend through at least one aperture 180A in the breathable tape 110 and gel cover 180.
In some embodiments, the adhesive patch may comprise a medicated patch that releases a medicament, such as antibiotic, beta-blocker, ACE inhibitor, diuretic, or steroid to reduce skin irritation. The adhesive patch may comprise a thin, flexible, breathable patch with a polymer grid for stiffening. This grid may be anisotropic, may use electronic components to act as a stiffener, may use electronics-enhanced adhesive elution, and may use an alternating elution of adhesive and steroid.
Second adherent patient device 100J and third adherent patient device 100A may comprise components similar to adherent patient device 100, described above. The processor of adherent patient device 100, described above may comprise a system controller to control communication and/or actions of first adherent patient device 100J and second device 100A, for example data collection and transmission. In many embodiments, data collected from second adherent patient device 100J and third adherent patient device 100A is sent wirelessly to device 100, which device 100 transmits the data to the intermediate device. In some embodiments, adherent patient device 100, second adherent patient device 100J and third adherent patient device 100A can each communicate data wirelessly with the intermediate device and may each receive instructions from the intermediate device.
It should be appreciated that the specific steps illustrated in
While the exemplary embodiments have been described in some detail, by way of example and for clarity of understanding, those of skill in the art will recognize that a variety of modifications, adaptations, and changes may be employed. Hence, the scope of the present invention should be limited solely by the appended claims.
The present application claims the benefit under 35 USC 119(e) of U.S. Provisional Application Nos. 60/972,537, 60/972,340, 60/972,336 all filed Sep. 14, 2007, 61/055,666 filed May 23, 2008, and 61/079,746 filed Jul. 10, 2007; the full disclosures of which are incorporated herein by reference in their entirety. The subject matter of the present application is related to the following applications: 60/972,512; 60/972,329; 60/972,354; 60/972,616; 60/972,363; 60/972,343; 60/972,581; 60/972,629; 60/972,316; 60/972,333; 60/972,359 all of which were filed on Sep. 14, 2007; 61/046,196 filed Apr. 18, 2008; 61/047,875 filed Apr. 25, 2008; and 61/055,645, 61/055,656, 61/055,662, 61/055,666 all filed May 23, 2008. The following applications are being filed concurrently with the present application, on Sep. 12, 2008: U.S. application Ser. No. 12/209,279 entitled “Multi-Sensor Patient Monitor to Detect Impending Cardiac Decompensation Prediction”; U.S. application Ser. No. 12/209,288 entitled “Adherent Device with Multiple Physiological Sensors”; U.S. application Ser. No. 12/209,430 entitled “Injectable Device for Physiological Monitoring”; U.S. application Ser. No. 12/209,479 entitled “Delivery System for Injectable Physiological Monitoring System”; U.S. application Ser. No. 12/209,262 entitled “Adherent Device for Cardiac Rhythm Management”; U.S. application Ser. No. 12/209,268 entitled “Adherent Device for Respiratory Monitoring”; U.S. application Ser. No. 12/209,269 entitled “Adherent Athletic Monitor”; U.S. application Ser. No. 12/209,259 entitled “Adherent Emergency Monitor”; U.S. application Ser. No. 12/209,273 entitled “Adherent Device with Physiological Sensors”; U.S. application Ser. No. 12/209,276 entitled “Medical Device Automatic Start-up upon Contact to Patient Tissue”; U.S. application Ser. No. 12/210,078 entitled “System and Methods for Wireless Body Fluid Monitoring”; U.S. application Ser. No. 12/209,265 entitled “Adherent Cardiac Monitor with Advanced Sensing Capabilities”; U.S. application Ser. No. 12/209,292 entitled “Adherent Device for Sleep Disordered Breathing”; U.S. application Ser. No. 12/209,508 entitled “Adherent Multi-Sensor Device with Implantable Device Communications Capabilities”; U.S. application Ser. No. 12/209,528 entitled “Data Collection in a Multi-Sensor Patient Monitor”; U.S. application Ser. No. 12/209,271 entitled “Adherent Multi-Sensor Device with Empathic Monitoring”; U.S. application Ser. No. 12/209,274 entitled “Energy Management for Adherent Patient Monitor”; and U.S. application Ser. No. 12/209,294 entitled “Tracking and Security for Adherent Patient Monitor.”
Number | Name | Date | Kind |
---|---|---|---|
834261 | Chambers | Oct 1906 | A |
2087124 | Smith et al. | Jul 1937 | A |
2184511 | Bagno et al. | Dec 1939 | A |
3170459 | Phipps et al. | Feb 1965 | A |
3232291 | Parker | Feb 1966 | A |
3370459 | Cescati | Feb 1968 | A |
3517999 | Weaver | Jun 1970 | A |
3620216 | Szymanski | Nov 1971 | A |
3677260 | Funfstuck et al. | Jul 1972 | A |
3805769 | Sessions | Apr 1974 | A |
3845757 | Weyer | Nov 1974 | A |
3874368 | Asrican | Apr 1975 | A |
3882853 | Gofman et al. | May 1975 | A |
3942517 | Bowles et al. | Mar 1976 | A |
3972329 | Kaufman | Aug 1976 | A |
4008712 | Nyboer | Feb 1977 | A |
4024312 | Korpman | May 1977 | A |
4077406 | Sandhage et al. | Mar 1978 | A |
4121573 | Crovella et al. | Oct 1978 | A |
4141366 | Cross, Jr. et al. | Feb 1979 | A |
RE30101 | Kubicek et al. | Sep 1979 | E |
4185621 | Morrow | Jan 1980 | A |
4216462 | McGrath et al. | Aug 1980 | A |
4300575 | Wilson | Nov 1981 | A |
4308872 | Watson et al. | Jan 1982 | A |
4358678 | Lawrence | Nov 1982 | A |
4409983 | Albert | Oct 1983 | A |
4450527 | Sramek | May 1984 | A |
4451254 | Dinius et al. | May 1984 | A |
4478223 | Allor | Oct 1984 | A |
4498479 | Martio et al. | Feb 1985 | A |
4522211 | Bare et al. | Jun 1985 | A |
4661103 | Harman | Apr 1987 | A |
4664129 | Helzel et al. | May 1987 | A |
4669480 | Hoffman | Jun 1987 | A |
4673387 | Phillips et al. | Jun 1987 | A |
4681118 | Asai et al. | Jul 1987 | A |
4692685 | Blaze | Sep 1987 | A |
4699146 | Sieverding | Oct 1987 | A |
4721110 | Lampadius | Jan 1988 | A |
4730611 | Lamb | Mar 1988 | A |
4733107 | O'Shaughnessy et al. | Mar 1988 | A |
4781200 | Baker | Nov 1988 | A |
4793362 | Tedner | Dec 1988 | A |
4838273 | Cartmell | Jun 1989 | A |
4838279 | Fore | Jun 1989 | A |
4850370 | Dower | Jul 1989 | A |
4880004 | Baker, Jr. et al. | Nov 1989 | A |
4895163 | Libke et al. | Jan 1990 | A |
4911175 | Shizgal | Mar 1990 | A |
4945916 | Kretschmer et al. | Aug 1990 | A |
4955381 | Way et al. | Sep 1990 | A |
4966158 | Honma et al. | Oct 1990 | A |
4981139 | Pfohl | Jan 1991 | A |
4988335 | Prindle et al. | Jan 1991 | A |
4989612 | Fore | Feb 1991 | A |
5001632 | Hall-Tipping | Mar 1991 | A |
5012810 | Strand et al. | May 1991 | A |
5025791 | Niwa | Jun 1991 | A |
5027824 | Dougherty et al. | Jul 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5063937 | Ezenwa et al. | Nov 1991 | A |
5080099 | Way et al. | Jan 1992 | A |
5083563 | Collins | Jan 1992 | A |
5086781 | Bookspan | Feb 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5125412 | Thornton | Jun 1992 | A |
5133355 | Strand et al. | Jul 1992 | A |
5140985 | Schroeder et al. | Aug 1992 | A |
5150708 | Brooks | Sep 1992 | A |
5168874 | Segalowitz | Dec 1992 | A |
5226417 | Swedlow et al. | Jul 1993 | A |
5241300 | Buschmann | Aug 1993 | A |
5257627 | Rapoport | Nov 1993 | A |
5271411 | Ripley et al. | Dec 1993 | A |
5273532 | Niezink et al. | Dec 1993 | A |
5282840 | Hudrlik | Feb 1994 | A |
5291013 | Nafarrate et al. | Mar 1994 | A |
5297556 | Shankar | Mar 1994 | A |
5301677 | Hsung | Apr 1994 | A |
5319363 | Welch et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5335664 | Nagashima | Aug 1994 | A |
5343869 | Pross et al. | Sep 1994 | A |
5353793 | Bornn | Oct 1994 | A |
5362069 | Hall-Tipping | Nov 1994 | A |
5375604 | Kelly et al. | Dec 1994 | A |
5411530 | Akhtar | May 1995 | A |
5437285 | Verrier et al. | Aug 1995 | A |
5443073 | Wang et al. | Aug 1995 | A |
5449000 | Libke et al. | Sep 1995 | A |
5450845 | Axelgaard | Sep 1995 | A |
5454377 | Dzwonczyk et al. | Oct 1995 | A |
5464012 | Falcone | Nov 1995 | A |
5469859 | Tsoglin et al. | Nov 1995 | A |
5482036 | Diab et al. | Jan 1996 | A |
5503157 | Sramek | Apr 1996 | A |
5511548 | Riazzi et al. | Apr 1996 | A |
5511553 | Segalowitz | Apr 1996 | A |
5518001 | Snell | May 1996 | A |
5523742 | Simkins et al. | Jun 1996 | A |
5529072 | Sramek | Jun 1996 | A |
5544661 | Davis et al. | Aug 1996 | A |
5558638 | Evers et al. | Sep 1996 | A |
5560368 | Berger | Oct 1996 | A |
5564429 | Bornn et al. | Oct 1996 | A |
5564434 | Halperin et al. | Oct 1996 | A |
5566671 | Lyons | Oct 1996 | A |
5575284 | Athan et al. | Nov 1996 | A |
5607454 | Cameron et al. | Mar 1997 | A |
5632272 | Diab et al. | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5642734 | Ruben et al. | Jul 1997 | A |
5673704 | Marchlinski et al. | Oct 1997 | A |
5678562 | Sellers | Oct 1997 | A |
5687717 | Halpern et al. | Nov 1997 | A |
5718234 | Warden et al. | Feb 1998 | A |
5724025 | Tavori | Mar 1998 | A |
5738107 | Martinsen et al. | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5767791 | Stoop et al. | Jun 1998 | A |
5769793 | Pincus et al. | Jun 1998 | A |
5772508 | Sugita et al. | Jun 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5778882 | Raymond et al. | Jul 1998 | A |
5788643 | Feldman | Aug 1998 | A |
5788682 | Maget | Aug 1998 | A |
5803915 | Kremenchugsky et al. | Sep 1998 | A |
5807272 | Kun | Sep 1998 | A |
5814079 | Kieval | Sep 1998 | A |
5817035 | Sullivan | Oct 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5860860 | Clayman | Jan 1999 | A |
5862802 | Bird | Jan 1999 | A |
5862803 | Besson et al. | Jan 1999 | A |
5865733 | Malinouskas et al. | Feb 1999 | A |
5876353 | Riff | Mar 1999 | A |
5904708 | Goedeke | May 1999 | A |
5935079 | Swanson et al. | Aug 1999 | A |
5941831 | Turcott | Aug 1999 | A |
5944659 | Flach et al. | Aug 1999 | A |
5949636 | Johnson et al. | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5957861 | Combs et al. | Sep 1999 | A |
5964703 | Goodman et al. | Oct 1999 | A |
5970986 | Bolz et al. | Oct 1999 | A |
5984102 | Tay | Nov 1999 | A |
5987352 | Klein et al. | Nov 1999 | A |
6007532 | Netherly | Dec 1999 | A |
6027523 | Schmieding | Feb 2000 | A |
6045513 | Stone et al. | Apr 2000 | A |
6047203 | Sackner et al. | Apr 2000 | A |
6047259 | Campbell et al. | Apr 2000 | A |
6049730 | Kristbjarnarson | Apr 2000 | A |
6050267 | Nardella et al. | Apr 2000 | A |
6050951 | Friedman et al. | Apr 2000 | A |
6052615 | Feild et al. | Apr 2000 | A |
6067467 | John | May 2000 | A |
6080106 | Lloyd et al. | Jun 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6095991 | Krausman et al. | Aug 2000 | A |
6102856 | Groff et al. | Aug 2000 | A |
6104949 | Pitts Crick et al. | Aug 2000 | A |
6112224 | Peifer et al. | Aug 2000 | A |
6117077 | Del Mar et al. | Sep 2000 | A |
6125297 | Siconolfi | Sep 2000 | A |
6129744 | Boute | Oct 2000 | A |
6141575 | Price | Oct 2000 | A |
6144878 | Schroeppel et al. | Nov 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6181963 | Chin et al. | Jan 2001 | B1 |
6185452 | Schulman et al. | Feb 2001 | B1 |
6190313 | Hinkle | Feb 2001 | B1 |
6190324 | Kieval et al. | Feb 2001 | B1 |
6198394 | Jacobsen et al. | Mar 2001 | B1 |
6198955 | Axelgaard et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6212427 | Hoover | Apr 2001 | B1 |
6213942 | Flach et al. | Apr 2001 | B1 |
6225901 | Kail, IV | May 2001 | B1 |
6245021 | Stampfer | Jun 2001 | B1 |
6259939 | Rogel | Jul 2001 | B1 |
6267730 | Pacunas | Jul 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6277078 | Porat et al. | Aug 2001 | B1 |
6287252 | Lugo | Sep 2001 | B1 |
6289238 | Besson et al. | Sep 2001 | B1 |
6290646 | Cosentino et al. | Sep 2001 | B1 |
6295466 | Ishikawa et al. | Sep 2001 | B1 |
6305943 | Pougatchev et al. | Oct 2001 | B1 |
6306088 | Krausman et al. | Oct 2001 | B1 |
6308094 | Shusterman et al. | Oct 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6327487 | Stratbucker | Dec 2001 | B1 |
6330464 | Colvin et al. | Dec 2001 | B1 |
6336903 | Bardy | Jan 2002 | B1 |
6339722 | Heethaar et al. | Jan 2002 | B1 |
6343140 | Brooks | Jan 2002 | B1 |
6347245 | Lee et al. | Feb 2002 | B1 |
6358208 | Lang et al. | Mar 2002 | B1 |
6385473 | Haines et al. | May 2002 | B1 |
6398727 | Bui et al. | Jun 2002 | B1 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6411853 | Millot et al. | Jun 2002 | B1 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6440069 | Raymond et al. | Aug 2002 | B1 |
6442422 | Duckert | Aug 2002 | B1 |
6450820 | Palsson et al. | Sep 2002 | B1 |
6450953 | Place et al. | Sep 2002 | B1 |
6454707 | Casscells, III et al. | Sep 2002 | B1 |
6454708 | Ferguson et al. | Sep 2002 | B1 |
6459930 | Takehara et al. | Oct 2002 | B1 |
6463328 | John | Oct 2002 | B1 |
6473640 | Erlebacher | Oct 2002 | B1 |
6480733 | Turcott | Nov 2002 | B1 |
6480734 | Zhang et al. | Nov 2002 | B1 |
6490478 | Zhang et al. | Dec 2002 | B1 |
6491647 | Bridger et al. | Dec 2002 | B1 |
6494829 | New, Jr. et al. | Dec 2002 | B1 |
6496715 | Lee et al. | Dec 2002 | B1 |
6512949 | Combs et al. | Jan 2003 | B1 |
6520967 | Cauthen | Feb 2003 | B1 |
6527711 | Stivoric et al. | Mar 2003 | B1 |
6527729 | Turcott | Mar 2003 | B1 |
6544173 | West et al. | Apr 2003 | B2 |
6544174 | West et al. | Apr 2003 | B2 |
6551251 | Zuckerwar et al. | Apr 2003 | B2 |
6551252 | Sackner et al. | Apr 2003 | B2 |
6569160 | Goldin et al. | May 2003 | B1 |
6572557 | Tchou et al. | Jun 2003 | B2 |
6572636 | Hagen et al. | Jun 2003 | B1 |
6577139 | Cooper | Jun 2003 | B2 |
6577893 | Besson et al. | Jun 2003 | B1 |
6577897 | Shurubura et al. | Jun 2003 | B1 |
6579231 | Phipps | Jun 2003 | B1 |
6580942 | Willshire | Jun 2003 | B1 |
6584343 | Ransbury et al. | Jun 2003 | B1 |
6587715 | Singer | Jul 2003 | B2 |
6589170 | Flach et al. | Jul 2003 | B1 |
6595927 | Pitts-Crick et al. | Jul 2003 | B2 |
6595929 | Stivoric et al. | Jul 2003 | B2 |
6600949 | Turcott | Jul 2003 | B1 |
6602201 | Hepp et al. | Aug 2003 | B1 |
6605038 | Teller et al. | Aug 2003 | B1 |
6611705 | Hopman et al. | Aug 2003 | B2 |
6616606 | Petersen et al. | Sep 2003 | B1 |
6622042 | Thacker | Sep 2003 | B1 |
6636754 | Baura et al. | Oct 2003 | B1 |
6641542 | Cho et al. | Nov 2003 | B2 |
6645153 | Kroll et al. | Nov 2003 | B2 |
6649829 | Garber et al. | Nov 2003 | B2 |
6650917 | Diab et al. | Nov 2003 | B2 |
6658300 | Govari et al. | Dec 2003 | B2 |
6659947 | Carter et al. | Dec 2003 | B1 |
6659949 | Lang et al. | Dec 2003 | B1 |
6687540 | Marcovecchio | Feb 2004 | B2 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
6699200 | Cao et al. | Mar 2004 | B2 |
6701271 | Willner et al. | Mar 2004 | B2 |
6714813 | Ishigooka et al. | Mar 2004 | B2 |
RE38492 | Diab et al. | Apr 2004 | E |
6721594 | Conley et al. | Apr 2004 | B2 |
6728572 | Hsu et al. | Apr 2004 | B2 |
6748269 | Thompson et al. | Jun 2004 | B2 |
6749566 | Russ | Jun 2004 | B2 |
6751498 | Greenberg et al. | Jun 2004 | B1 |
6760617 | Ward et al. | Jul 2004 | B2 |
6773396 | Flach et al. | Aug 2004 | B2 |
6775566 | Nissila | Aug 2004 | B2 |
6790178 | Mault et al. | Sep 2004 | B1 |
6795722 | Sheraton et al. | Sep 2004 | B2 |
6814706 | Barton et al. | Nov 2004 | B2 |
6816744 | Garfield et al. | Nov 2004 | B2 |
6821249 | Casscells, III et al. | Nov 2004 | B2 |
6824515 | Suorsa et al. | Nov 2004 | B2 |
6827690 | Bardy | Dec 2004 | B2 |
6829503 | Alt | Dec 2004 | B2 |
6858006 | MacCarter et al. | Feb 2005 | B2 |
6871211 | Labounty et al. | Mar 2005 | B2 |
6878121 | Krausman et al. | Apr 2005 | B2 |
6879850 | Kimball | Apr 2005 | B2 |
6881191 | Oakley et al. | Apr 2005 | B2 |
6887201 | Bardy | May 2005 | B2 |
6890096 | Tokita et al. | May 2005 | B2 |
6893396 | Schulze et al. | May 2005 | B2 |
6894204 | Dunshee | May 2005 | B2 |
6906530 | Geisel | Jun 2005 | B2 |
6912414 | Tong | Jun 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6940403 | Kail, IV | Sep 2005 | B2 |
6942622 | Turcott | Sep 2005 | B1 |
6952695 | Trinks et al. | Oct 2005 | B1 |
6970742 | Mann et al. | Nov 2005 | B2 |
6972683 | Lestienne et al. | Dec 2005 | B2 |
6978177 | Chen et al. | Dec 2005 | B1 |
6980851 | Zhu et al. | Dec 2005 | B2 |
6980852 | Jersey-Willuhn et al. | Dec 2005 | B2 |
6985078 | Suzuki et al. | Jan 2006 | B2 |
6987965 | Ng et al. | Jan 2006 | B2 |
6988989 | Weiner et al. | Jan 2006 | B2 |
6993378 | Wiederhold et al. | Jan 2006 | B2 |
6997879 | Turcott | Feb 2006 | B1 |
7003346 | Singer | Feb 2006 | B2 |
7009362 | Tsukamoto et al. | Mar 2006 | B2 |
7010340 | Scarantino et al. | Mar 2006 | B2 |
7018338 | Vetter et al. | Mar 2006 | B2 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7027862 | Dahl et al. | Apr 2006 | B2 |
7041062 | Friedrichs et al. | May 2006 | B2 |
7044911 | Drinan et al. | May 2006 | B2 |
7047067 | Gray et al. | May 2006 | B2 |
7050846 | Sweeney et al. | May 2006 | B2 |
7054679 | Hirsh | May 2006 | B2 |
7059767 | Tokita et al. | Jun 2006 | B2 |
7088242 | Aupperle et al. | Aug 2006 | B2 |
7113826 | Henry et al. | Sep 2006 | B2 |
7118531 | Krill | Oct 2006 | B2 |
7127370 | Kelly, Jr. et al. | Oct 2006 | B2 |
7129836 | Lawson et al. | Oct 2006 | B2 |
7130396 | Rogers et al. | Oct 2006 | B2 |
7130679 | Parsonnet et al. | Oct 2006 | B2 |
7133716 | Kraemer et al. | Nov 2006 | B2 |
7136697 | Singer | Nov 2006 | B2 |
7136703 | Cappa et al. | Nov 2006 | B1 |
7142907 | Xue et al. | Nov 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7149773 | Haller et al. | Dec 2006 | B2 |
7153262 | Stivoric et al. | Dec 2006 | B2 |
7156807 | Carter et al. | Jan 2007 | B2 |
7156808 | Quy | Jan 2007 | B2 |
7160252 | Cho et al. | Jan 2007 | B2 |
7160253 | Nissila | Jan 2007 | B2 |
7166063 | Rahman et al. | Jan 2007 | B2 |
7167743 | Heruth et al. | Jan 2007 | B2 |
7184821 | Belalcazar et al. | Feb 2007 | B2 |
7191000 | Zhu et al. | Mar 2007 | B2 |
7194306 | Turcott | Mar 2007 | B1 |
7206630 | Tarler | Apr 2007 | B1 |
7212849 | Zhang et al. | May 2007 | B2 |
7215984 | Diab et al. | May 2007 | B2 |
7215991 | Besson et al. | May 2007 | B2 |
7238159 | Banet et al. | Jul 2007 | B2 |
7248916 | Bardy | Jul 2007 | B2 |
7251524 | Hepp et al. | Jul 2007 | B1 |
7257438 | Kinast | Aug 2007 | B2 |
7261690 | Teller et al. | Aug 2007 | B2 |
7277741 | Debreczeny et al. | Oct 2007 | B2 |
7284904 | Tokita et al. | Oct 2007 | B2 |
7285090 | Stivoric et al. | Oct 2007 | B2 |
7294105 | Islam | Nov 2007 | B1 |
7295879 | Denker et al. | Nov 2007 | B2 |
7297119 | Westbrook et al. | Nov 2007 | B2 |
7318808 | Tarassenko et al. | Jan 2008 | B2 |
7319386 | Collins, Jr. et al. | Jan 2008 | B2 |
7336187 | Hubbard, Jr. et al. | Feb 2008 | B2 |
7346380 | Axelgaard et al. | Mar 2008 | B2 |
7382247 | Welch et al. | Jun 2008 | B2 |
7384398 | Gagnadre et al. | Jun 2008 | B2 |
7390299 | Weiner et al. | Jun 2008 | B2 |
7395106 | Ryu et al. | Jul 2008 | B2 |
7423526 | Despotis | Sep 2008 | B2 |
7423537 | Bonnet et al. | Sep 2008 | B2 |
7443302 | Reeder et al. | Oct 2008 | B2 |
7450024 | Wildman et al. | Nov 2008 | B2 |
7468032 | Stahmann et al. | Dec 2008 | B2 |
7510699 | Black et al. | Mar 2009 | B2 |
7701227 | Saulnier et al. | Apr 2010 | B2 |
7813778 | Benaron et al. | Oct 2010 | B2 |
7881763 | Brauker et al. | Feb 2011 | B2 |
7942824 | Kayyali et al. | May 2011 | B1 |
20010047127 | New, Jr. et al. | Nov 2001 | A1 |
20020004640 | Conn et al. | Jan 2002 | A1 |
20020019586 | Teller et al. | Feb 2002 | A1 |
20020019588 | Marro et al. | Feb 2002 | A1 |
20020028989 | Pelletier et al. | Mar 2002 | A1 |
20020032581 | Reitberg | Mar 2002 | A1 |
20020045836 | Alkawwas | Apr 2002 | A1 |
20020088465 | Hill | Jul 2002 | A1 |
20020099277 | Harry et al. | Jul 2002 | A1 |
20020116009 | Fraser et al. | Aug 2002 | A1 |
20020123672 | Christophersom et al. | Sep 2002 | A1 |
20020123674 | Plicchi et al. | Sep 2002 | A1 |
20020138017 | Bui et al. | Sep 2002 | A1 |
20020167389 | Uchikoba et al. | Nov 2002 | A1 |
20020182485 | Anderson et al. | Dec 2002 | A1 |
20030009092 | Parker | Jan 2003 | A1 |
20030023184 | Pitts-Crick et al. | Jan 2003 | A1 |
20030028221 | Zhu et al. | Feb 2003 | A1 |
20030028321 | Upadhyaya et al. | Feb 2003 | A1 |
20030051144 | Williams | Mar 2003 | A1 |
20030055460 | Owen et al. | Mar 2003 | A1 |
20030083581 | Taha et al. | May 2003 | A1 |
20030085717 | Cooper | May 2003 | A1 |
20030087244 | McCarthy | May 2003 | A1 |
20030092975 | Casscells, III et al. | May 2003 | A1 |
20030093125 | Zhu et al. | May 2003 | A1 |
20030093298 | Hernandez et al. | May 2003 | A1 |
20030100367 | Cooke | May 2003 | A1 |
20030105411 | Smallwood et al. | Jun 2003 | A1 |
20030135127 | Sackner et al. | Jul 2003 | A1 |
20030143544 | McCarthy | Jul 2003 | A1 |
20030149349 | Jensen | Aug 2003 | A1 |
20030187370 | Kodama | Oct 2003 | A1 |
20030191503 | Zhu et al. | Oct 2003 | A1 |
20030212319 | Magill | Nov 2003 | A1 |
20030221687 | Kaigler | Dec 2003 | A1 |
20030233129 | Matos | Dec 2003 | A1 |
20040006279 | Arad (Abboud) | Jan 2004 | A1 |
20040010303 | Bolea et al. | Jan 2004 | A1 |
20040014422 | Kallio | Jan 2004 | A1 |
20040015058 | Besson et al. | Jan 2004 | A1 |
20040019292 | Drinan et al. | Jan 2004 | A1 |
20040044293 | Burton | Mar 2004 | A1 |
20040049132 | Barron et al. | Mar 2004 | A1 |
20040073094 | Baker | Apr 2004 | A1 |
20040073126 | Rowlandson | Apr 2004 | A1 |
20040077954 | Oakley et al. | Apr 2004 | A1 |
20040100376 | Lye et al. | May 2004 | A1 |
20040102683 | Khanuja et al. | May 2004 | A1 |
20040106951 | Edman et al. | Jun 2004 | A1 |
20040122489 | Mazar et al. | Jun 2004 | A1 |
20040127790 | Lang et al. | Jul 2004 | A1 |
20040133079 | Mazar et al. | Jul 2004 | A1 |
20040133081 | Teller et al. | Jul 2004 | A1 |
20040134496 | Cho et al. | Jul 2004 | A1 |
20040143170 | DuRousseau | Jul 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040152956 | Korman | Aug 2004 | A1 |
20040158132 | Zaleski | Aug 2004 | A1 |
20040167389 | Brabrand | Aug 2004 | A1 |
20040172080 | Stadler et al. | Sep 2004 | A1 |
20040199056 | Husemann et al. | Oct 2004 | A1 |
20040215240 | Lovett et al. | Oct 2004 | A1 |
20040215247 | Bolz | Oct 2004 | A1 |
20040220639 | Mulligan et al. | Nov 2004 | A1 |
20040225199 | Evanyk et al. | Nov 2004 | A1 |
20040225203 | Jemison et al. | Nov 2004 | A1 |
20040243018 | Organ et al. | Dec 2004 | A1 |
20040267142 | Paul | Dec 2004 | A1 |
20050004506 | Gyory | Jan 2005 | A1 |
20050015094 | Keller | Jan 2005 | A1 |
20050015095 | Keller | Jan 2005 | A1 |
20050020935 | Helzel et al. | Jan 2005 | A1 |
20050027175 | Yang | Feb 2005 | A1 |
20050027204 | Kligfield et al. | Feb 2005 | A1 |
20050027207 | Westbrook et al. | Feb 2005 | A1 |
20050027918 | Govindarajulu et al. | Feb 2005 | A1 |
20050043675 | Pastore et al. | Feb 2005 | A1 |
20050054944 | Nakada et al. | Mar 2005 | A1 |
20050059867 | Chung | Mar 2005 | A1 |
20050065445 | Arzbaecher et al. | Mar 2005 | A1 |
20050065571 | Imran | Mar 2005 | A1 |
20050070768 | Zhu et al. | Mar 2005 | A1 |
20050070778 | Lackey et al. | Mar 2005 | A1 |
20050080346 | Gianchandani et al. | Apr 2005 | A1 |
20050080460 | Wang et al. | Apr 2005 | A1 |
20050080463 | Stahmann et al. | Apr 2005 | A1 |
20050085734 | Tehrani | Apr 2005 | A1 |
20050091338 | de la Huerga | Apr 2005 | A1 |
20050096513 | Ozguz et al. | May 2005 | A1 |
20050113703 | Farringdon et al. | May 2005 | A1 |
20050124878 | Sharony | Jun 2005 | A1 |
20050124901 | Misczynski et al. | Jun 2005 | A1 |
20050124908 | Belalcazar et al. | Jun 2005 | A1 |
20050131288 | Turner et al. | Jun 2005 | A1 |
20050137464 | Bomba | Jun 2005 | A1 |
20050137626 | Pastore et al. | Jun 2005 | A1 |
20050148895 | Misczynski et al. | Jul 2005 | A1 |
20050158539 | Murphy et al. | Jul 2005 | A1 |
20050177038 | Kolpin et al. | Aug 2005 | A1 |
20050187482 | O'Brien et al. | Aug 2005 | A1 |
20050187796 | Rosenfeld et al. | Aug 2005 | A1 |
20050192488 | Bryenton et al. | Sep 2005 | A1 |
20050197654 | Edman et al. | Sep 2005 | A1 |
20050203433 | Singer | Sep 2005 | A1 |
20050203435 | Nakada | Sep 2005 | A1 |
20050203436 | Davies | Sep 2005 | A1 |
20050203637 | Edman et al. | Sep 2005 | A1 |
20050206518 | Welch et al. | Sep 2005 | A1 |
20050215914 | Bornzin et al. | Sep 2005 | A1 |
20050215918 | Frantz et al. | Sep 2005 | A1 |
20050228234 | Yang | Oct 2005 | A1 |
20050228238 | Monitzer | Oct 2005 | A1 |
20050228244 | Banet | Oct 2005 | A1 |
20050239493 | Batkin et al. | Oct 2005 | A1 |
20050240087 | Keenan et al. | Oct 2005 | A1 |
20050251044 | Hoctor et al. | Nov 2005 | A1 |
20050256418 | Mietus et al. | Nov 2005 | A1 |
20050261598 | Banet et al. | Nov 2005 | A1 |
20050261743 | Kroll | Nov 2005 | A1 |
20050267376 | Marossero et al. | Dec 2005 | A1 |
20050267377 | Marossero et al. | Dec 2005 | A1 |
20050267381 | Benditt et al. | Dec 2005 | A1 |
20050273023 | Bystrom et al. | Dec 2005 | A1 |
20050277841 | Shennib | Dec 2005 | A1 |
20050277842 | Silva | Dec 2005 | A1 |
20050277992 | Koh et al. | Dec 2005 | A1 |
20050280531 | Fadem et al. | Dec 2005 | A1 |
20050283197 | Daum et al. | Dec 2005 | A1 |
20050288601 | Wood et al. | Dec 2005 | A1 |
20060004300 | Kennedy | Jan 2006 | A1 |
20060004377 | Keller | Jan 2006 | A1 |
20060009697 | Banet et al. | Jan 2006 | A1 |
20060009701 | Nissila et al. | Jan 2006 | A1 |
20060010090 | Brockway et al. | Jan 2006 | A1 |
20060020218 | Freeman et al. | Jan 2006 | A1 |
20060025661 | Sweeney et al. | Feb 2006 | A1 |
20060030781 | Shennib | Feb 2006 | A1 |
20060030782 | Shennib | Feb 2006 | A1 |
20060031102 | Teller et al. | Feb 2006 | A1 |
20060041280 | Stahmann et al. | Feb 2006 | A1 |
20060047215 | Newman et al. | Mar 2006 | A1 |
20060052678 | Drinan et al. | Mar 2006 | A1 |
20060058543 | Walter et al. | Mar 2006 | A1 |
20060058593 | Drinan et al. | Mar 2006 | A1 |
20060064030 | Cosentino et al. | Mar 2006 | A1 |
20060064040 | Berger et al. | Mar 2006 | A1 |
20060064142 | Chavan et al. | Mar 2006 | A1 |
20060066449 | Johnson | Mar 2006 | A1 |
20060074283 | Henderson et al. | Apr 2006 | A1 |
20060074462 | Verhoef | Apr 2006 | A1 |
20060075257 | Martis et al. | Apr 2006 | A1 |
20060084881 | Korzinov et al. | Apr 2006 | A1 |
20060085049 | Cory et al. | Apr 2006 | A1 |
20060089679 | Zhu et al. | Apr 2006 | A1 |
20060094948 | Gough et al. | May 2006 | A1 |
20060102476 | Niwa et al. | May 2006 | A1 |
20060116592 | Zhou et al. | Jun 2006 | A1 |
20060122474 | Teller et al. | Jun 2006 | A1 |
20060135858 | Nidd et al. | Jun 2006 | A1 |
20060142654 | Rytky | Jun 2006 | A1 |
20060142820 | Von Arx et al. | Jun 2006 | A1 |
20060149168 | Czarnek | Jul 2006 | A1 |
20060155174 | Glukhovsky et al. | Jul 2006 | A1 |
20060155183 | Kroecker et al. | Jul 2006 | A1 |
20060155200 | Ng | Jul 2006 | A1 |
20060161073 | Singer | Jul 2006 | A1 |
20060161205 | Mitrani et al. | Jul 2006 | A1 |
20060161459 | Rosenfeld et al. | Jul 2006 | A9 |
20060167374 | Takehara et al. | Jul 2006 | A1 |
20060173257 | Nagai et al. | Aug 2006 | A1 |
20060173269 | Glossop | Aug 2006 | A1 |
20060195020 | Martin et al. | Aug 2006 | A1 |
20060195039 | Drew et al. | Aug 2006 | A1 |
20060195097 | Evans et al. | Aug 2006 | A1 |
20060195144 | Giftakis et al. | Aug 2006 | A1 |
20060202816 | Crump et al. | Sep 2006 | A1 |
20060212097 | Varadan et al. | Sep 2006 | A1 |
20060224051 | Teller et al. | Oct 2006 | A1 |
20060224072 | Shennib | Oct 2006 | A1 |
20060224079 | Washchuk | Oct 2006 | A1 |
20060235281 | Tuccillo | Oct 2006 | A1 |
20060235316 | Ungless et al. | Oct 2006 | A1 |
20060235489 | Drew et al. | Oct 2006 | A1 |
20060241641 | Albans et al. | Oct 2006 | A1 |
20060241701 | Markowitz et al. | Oct 2006 | A1 |
20060241722 | Thacker et al. | Oct 2006 | A1 |
20060247545 | St. Martin | Nov 2006 | A1 |
20060252999 | Devaul et al. | Nov 2006 | A1 |
20060253005 | Drinan et al. | Nov 2006 | A1 |
20060253044 | Zhang et al. | Nov 2006 | A1 |
20060258952 | Stahmann et al. | Nov 2006 | A1 |
20060264730 | Stivoric et al. | Nov 2006 | A1 |
20060264767 | Shennib | Nov 2006 | A1 |
20060264776 | Stahmann et al. | Nov 2006 | A1 |
20060271116 | Stahmann et al. | Nov 2006 | A1 |
20060276714 | Holt et al. | Dec 2006 | A1 |
20060281981 | Jang et al. | Dec 2006 | A1 |
20060281996 | Kuo et al. | Dec 2006 | A1 |
20060293571 | Bao et al. | Dec 2006 | A1 |
20060293609 | Stahmann et al. | Dec 2006 | A1 |
20070010721 | Chen et al. | Jan 2007 | A1 |
20070010750 | Ueno et al. | Jan 2007 | A1 |
20070015973 | Nanikashvili | Jan 2007 | A1 |
20070015976 | Miesel et al. | Jan 2007 | A1 |
20070016089 | Fischell et al. | Jan 2007 | A1 |
20070021678 | Beck et al. | Jan 2007 | A1 |
20070021790 | Kieval et al. | Jan 2007 | A1 |
20070021792 | Kieval et al. | Jan 2007 | A1 |
20070021794 | Kieval et al. | Jan 2007 | A1 |
20070021796 | Kieval et al. | Jan 2007 | A1 |
20070021797 | Kieval et al. | Jan 2007 | A1 |
20070021798 | Kieval et al. | Jan 2007 | A1 |
20070021799 | Kieval et al. | Jan 2007 | A1 |
20070027388 | Chou | Feb 2007 | A1 |
20070027497 | Parnis | Feb 2007 | A1 |
20070032749 | Overall et al. | Feb 2007 | A1 |
20070038038 | Stivoric et al. | Feb 2007 | A1 |
20070038078 | Osadchy | Feb 2007 | A1 |
20070038255 | Kieval et al. | Feb 2007 | A1 |
20070038262 | Kieval et al. | Feb 2007 | A1 |
20070043301 | Martinsen et al. | Feb 2007 | A1 |
20070043303 | Osypka et al. | Feb 2007 | A1 |
20070048224 | Howell et al. | Mar 2007 | A1 |
20070060800 | Drinan et al. | Mar 2007 | A1 |
20070060802 | Ghevondian et al. | Mar 2007 | A1 |
20070073132 | Vosch | Mar 2007 | A1 |
20070073168 | Zhang et al. | Mar 2007 | A1 |
20070073181 | Pu et al. | Mar 2007 | A1 |
20070073361 | Goren et al. | Mar 2007 | A1 |
20070082189 | Gillette | Apr 2007 | A1 |
20070083092 | Rippo et al. | Apr 2007 | A1 |
20070092862 | Gerber | Apr 2007 | A1 |
20070104840 | Singer | May 2007 | A1 |
20070106132 | Elhag et al. | May 2007 | A1 |
20070106137 | Baker, Jr. et al. | May 2007 | A1 |
20070106167 | Kinast | May 2007 | A1 |
20070118039 | Bodecker et al. | May 2007 | A1 |
20070123756 | Kitajima et al. | May 2007 | A1 |
20070123903 | Raymond et al. | May 2007 | A1 |
20070123904 | Stad et al. | May 2007 | A1 |
20070129622 | Bourget et al. | Jun 2007 | A1 |
20070129643 | Kwok et al. | Jun 2007 | A1 |
20070129769 | Bourget et al. | Jun 2007 | A1 |
20070142715 | Banet et al. | Jun 2007 | A1 |
20070142732 | Brockway et al. | Jun 2007 | A1 |
20070149282 | Lu et al. | Jun 2007 | A1 |
20070150008 | Jones et al. | Jun 2007 | A1 |
20070150009 | Kveen et al. | Jun 2007 | A1 |
20070150029 | Bourget et al. | Jun 2007 | A1 |
20070162089 | Mosesov | Jul 2007 | A1 |
20070167753 | Van Wyk et al. | Jul 2007 | A1 |
20070167848 | Kuo et al. | Jul 2007 | A1 |
20070167849 | Zhang et al. | Jul 2007 | A1 |
20070167850 | Russell et al. | Jul 2007 | A1 |
20070172424 | Roser | Jul 2007 | A1 |
20070173705 | Teller et al. | Jul 2007 | A1 |
20070180047 | Dong et al. | Aug 2007 | A1 |
20070180140 | Welch et al. | Aug 2007 | A1 |
20070191723 | Prystowsky et al. | Aug 2007 | A1 |
20070207858 | Breving | Sep 2007 | A1 |
20070208233 | Kovacs | Sep 2007 | A1 |
20070208235 | Besson et al. | Sep 2007 | A1 |
20070208262 | Kovacs | Sep 2007 | A1 |
20070232867 | Hansmann | Oct 2007 | A1 |
20070244403 | Natarajan et al. | Oct 2007 | A1 |
20070249946 | Kumar et al. | Oct 2007 | A1 |
20070250121 | Miesel et al. | Oct 2007 | A1 |
20070255120 | Rosnov | Nov 2007 | A1 |
20070255153 | Kumar et al. | Nov 2007 | A1 |
20070255184 | Shennib | Nov 2007 | A1 |
20070255531 | Drew | Nov 2007 | A1 |
20070260133 | Meyer | Nov 2007 | A1 |
20070260155 | Rapoport et al. | Nov 2007 | A1 |
20070260289 | Giftakis et al. | Nov 2007 | A1 |
20070273504 | Tran | Nov 2007 | A1 |
20070276273 | Watson, Jr | Nov 2007 | A1 |
20070282173 | Wang et al. | Dec 2007 | A1 |
20070299325 | Farrell et al. | Dec 2007 | A1 |
20080004499 | Davis | Jan 2008 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080021336 | Dobak | Jan 2008 | A1 |
20080024293 | Stylos | Jan 2008 | A1 |
20080024294 | Mazar | Jan 2008 | A1 |
20080033260 | Sheppard et al. | Feb 2008 | A1 |
20080039700 | Drinan et al. | Feb 2008 | A1 |
20080058614 | Banet et al. | Mar 2008 | A1 |
20080058656 | Costello et al. | Mar 2008 | A1 |
20080059239 | Gerst et al. | Mar 2008 | A1 |
20080091089 | Guillory et al. | Apr 2008 | A1 |
20080114220 | Banet et al. | May 2008 | A1 |
20080120784 | Warner et al. | May 2008 | A1 |
20080139934 | McMorrow et al. | Jun 2008 | A1 |
20080146892 | LeBoeuf et al. | Jun 2008 | A1 |
20080167538 | Teller et al. | Jul 2008 | A1 |
20080171918 | Teller et al. | Jul 2008 | A1 |
20080171922 | Teller et al. | Jul 2008 | A1 |
20080171929 | Katims | Jul 2008 | A1 |
20080183052 | Teller et al. | Jul 2008 | A1 |
20080200774 | Luo | Aug 2008 | A1 |
20080214903 | Orbach | Sep 2008 | A1 |
20080220865 | Hsu | Sep 2008 | A1 |
20080221399 | Zhou et al. | Sep 2008 | A1 |
20080221402 | Despotis | Sep 2008 | A1 |
20080224852 | Dicks et al. | Sep 2008 | A1 |
20080228084 | Bedard et al. | Sep 2008 | A1 |
20080275465 | Paul et al. | Nov 2008 | A1 |
20080287751 | Stivoric et al. | Nov 2008 | A1 |
20080287752 | Stroetz et al. | Nov 2008 | A1 |
20080293491 | Wu et al. | Nov 2008 | A1 |
20080294019 | Tran | Nov 2008 | A1 |
20080294020 | Sapounas | Nov 2008 | A1 |
20080318681 | Rofougaran et al. | Dec 2008 | A1 |
20080319279 | Ramsay et al. | Dec 2008 | A1 |
20080319282 | Tran | Dec 2008 | A1 |
20080319290 | Mao et al. | Dec 2008 | A1 |
20090005016 | Eng et al. | Jan 2009 | A1 |
20090018410 | Coene et al. | Jan 2009 | A1 |
20090018456 | Hung | Jan 2009 | A1 |
20090048526 | Aarts | Feb 2009 | A1 |
20090054737 | Magar et al. | Feb 2009 | A1 |
20090062670 | Sterling et al. | Mar 2009 | A1 |
20090076336 | Mazar et al. | Mar 2009 | A1 |
20090076340 | Libbus et al. | Mar 2009 | A1 |
20090076341 | James et al. | Mar 2009 | A1 |
20090076342 | Amurthur et al. | Mar 2009 | A1 |
20090076343 | James et al. | Mar 2009 | A1 |
20090076344 | Libbus et al. | Mar 2009 | A1 |
20090076345 | Manicka et al. | Mar 2009 | A1 |
20090076346 | James et al. | Mar 2009 | A1 |
20090076348 | Manicka et al. | Mar 2009 | A1 |
20090076349 | Libbus et al. | Mar 2009 | A1 |
20090076350 | Bly et al. | Mar 2009 | A1 |
20090076363 | Bly et al. | Mar 2009 | A1 |
20090076364 | Libbus et al. | Mar 2009 | A1 |
20090076397 | Libbus et al. | Mar 2009 | A1 |
20090076401 | Mazar et al. | Mar 2009 | A1 |
20090076405 | Amurthur et al. | Mar 2009 | A1 |
20090076410 | Libbus et al. | Mar 2009 | A1 |
20090076559 | Libbus et al. | Mar 2009 | A1 |
20090177145 | Ohlander et al. | Jul 2009 | A1 |
20090182204 | Semler et al. | Jul 2009 | A1 |
20090234410 | Libbus et al. | Sep 2009 | A1 |
20090292194 | Libbus et al. | Nov 2009 | A1 |
20100056881 | Libbus et al. | Mar 2010 | A1 |
20100191310 | Bly et al. | Jul 2010 | A1 |
20110144470 | Mazar et al. | Jun 2011 | A1 |
20110245711 | Katra et al. | Oct 2011 | A1 |
20110270049 | Katra et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
2003-220574 | Oct 2003 | AU |
1487535 | Dec 2004 | EP |
1579801 | Sep 2005 | EP |
2005-521448 | Jul 2005 | JP |
WO 0079255 | Dec 2000 | WO |
WO 0189362 | Nov 2001 | WO |
WO 02092101 | Nov 2002 | WO |
WO 03082080 | Oct 2003 | WO |
WO 2005051164 | Jun 2005 | WO |
WO 2005104930 | Nov 2005 | WO |
WO 2006008745 | Jan 2006 | WO |
WO 2006102476 | Sep 2006 | WO |
WO 2006111878 | Nov 2006 | WO |
WO 2007041783 | Apr 2007 | WO |
WO 2007106455 | Sep 2007 | WO |
WO 2009116906 | Sep 2009 | WO |
Entry |
---|
International Search Report and Written Opinion of PCT Application No. PCT/US08/76247, dated Nov. 28, 2008, 11 pages total. |
AD5934: 250 kSPS 12-Bit Impedance Converter Network Analyzer, Analog Devices, retrieved from the Internet: <<http://www.analog.com/static/imported-files/data—sheets/AD5934.pdf>>, 40 pages. |
Something in the way he moves, The Economist, 2007, retrieved from the Internet: <<http://www.economist.com/science/printerFriendly.cfm?story id=9861412>>. |
Abraham, “New approaches to monitoring heart failure before symptoms appear,” Rev Cardiovasc Med. 2006 ;7 Suppl 1 :33-41. |
Adams, Jr. “Guiding heart failure care by invasive hemodynamic measurements: possible or useful?”, Journal of Cardiac Failure 2002; 8(2):71-73. |
Adamson et al., “Continuous autonomic assessment in patients with symptomatic heart failure: prognostic value of heart rate variability measured by an implanted cardiac resynchronization device ,” Circulation. 2004;110:2389-2394. |
Adamson et al., “Ongoing right ventricular hemodynamics in heart failure,” J Am Coll Cardiol, 2003; 41:565-57. |
Adamson, “Integrating device monitoring into the infrastructure and workflow of routine practice,” Rev Cardiovasc Med. 2006 ;7 Suppl 1:42-6. |
Adhere [presentation], “Insights from the Adhere Registry: Data from over 100,000 patient cases,” 70 pages total. |
Advamed White Sheet, “Health Information Technology: Improving Patient Safety and Quality of Care,” Jun. 2005, 23 pages. |
Aghababian, “Acutely decompensated heart failure: opportunities to improve care and outcomes in the emergency department,” Rev Cardiovasc Med. 2002;3 Suppl 4:S3-9. |
Albert, “Bioimpedance to prevent heart failure hospitalization,” Curr Heart Fail Rep. Sep. 2006;3(3):136-42. |
American Heart Association, “Heart Disease and Stroke Statistics—2006 Update,” 2006, 43 pages. |
American Heart Association, “Heart Disease and Stroke Statistics—2007 Update. A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation 2007; 115;e69-e171. |
Belalcazar et al., “Monitoring lung edema using the pacemaker pulse and skin electrodes,” Physiol. Meas. 2005; 26:S153-S163. |
Bennet, “Development of implantable devices for continuous ambulatory monitoring of central hemodynamic values in heart failure patients,” PACE Jun. 2005; 28:573-584. |
Bourge, “Case studies in advanced monitoring with the chronicle device,” Rev Cardiovasc Med. 2006 ;7 Suppl 1:S56-61. |
Braunschweig, “Continous haemodynamic monitoring during withdrawal of diuretics in patients with congestive heart failure,” European Heart Journal 2002 23(1):59-69. |
Braunschweig, “Dynamic changes in right ventricular pressures during haemodialysis recorded with an implantable haemodynamic monitor ,” Nephrol Dial Transplant 2006; 21:176-183. |
Brennan, “Measuring a Grounded Impedance Profile Using the AD5933,” Analog Devices, retrieved from the internet <<http://http://www.analog.com/static/imported-files/application—notes/427095282381510189AN847—0.pdf>>, 12 pages total. |
Buono et al., “The effect of ambient air temperature on whole-body bioelectrical impedance,” Physiol. Meas. 2004;25:119-123. |
Burkhoff et al., “Heart failure with a normal ejection fraction: Is it really a disorder of diastolic function?” Circulation 2003; 107:656-658. |
Burr et al., “Heart rate variability and 24-hour minimum heart rate,” Biological Research for Nursing, 2006; 7(4):256-267. |
CardioNet, “CardioNet Mobile Cardiac Outpatient Telemetry: Addendum to Patient Education Guide”, CardioNet, Inc., 2007, 2 pages. |
Cardionet, “Patient Education Guide”, CardioNet, Inc., 2007, 7 pages. Undated. |
Charach et al., “Transthoracic monitoring of the impedance of the right lung in patients with cardiogenic pulmonary edema,” Crit Care Med Jun. 2001;29(6):1137-1144. |
Charlson et al., “Can disease management target patients most likely to generate high costs? The Impact of Comorbidity,” Journal of General Internal Medicine, Apr. 2007, 22(4):464-469. |
Chaudhry et al., “Telemonitoring for patients with chronic heart failure: a systematic review,” J Card Fail. FEb. 2007; 13(1): 56-62. |
Chung et al., “White coat hypertension: Not so benign after all?,” Journal of Human Hypertension (2003) 17, 807-809. |
Cleland et al., “The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe—Part 1: patient characteristics and diagnosis,” European Heart Journal 2003 24(5):442-463. |
Cowie et al., “Hospitalization of patients with heart failure. A population-based study,” European Heart Journal 2002 23(11):877-885. |
Dimri, Chapter 1: Fractals in geophysics and seimology: an introduction, Fractal Behaviour of the Earth System, Springer Berlin Heidelberg 2005, pp. 1-22. [Summary and 1st page Only]. |
El-Dawlatly et al., “Impedance cardiography: noninvasive assessment of hemodynamics and thoracic fluid content during bariatric surgery,” Obesity Surgery, May 2005, 15(5):655-658. |
Erdmann, “Editorials: The value of diuretics in chronic heart failure demonstrated by an implanted haemodynamic monitor,” European Heart Journal 2002 23(1):7-9. |
FDA—Medtronic Inc., Chronicle 9520B Implantable Hemodynamic Monitor Reference Manual, 2007, 112 pages. |
FDA Executive Summary Memorandum, prepared for Mar. 1, 2007, meeting of the Circulatory Systems Devices Advisory Panel, P050032 Medtronic, Inc. Chronicle Implantable Hemodynamic Monitor (IHM) System, 23 pages. Retrieved from the Internet: <<http://www.fda.gov/ohrms/dockets/ac/07/briefing/2007-4284b1—02.pdf>>. |
FDA Executive Summary, Medtronic Chronicle Implantable Hemodynamic Monitoring System P050032: Panel Package Sponsor Executive Summary; vol. 1, section 4: Executive Summary. 12 pages total. Retrieved from the Internet: <<http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284b1—03.pdf>>. |
FDA—Medtronic Chronicle Implantable Hemodynamic Monitoring System P050032: Panel Package Section 11: Chronicle IHM Summary of Safety and Effectiveness, 2007; retrieved from the Internet: <http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284b1—04.pdf>, 77 pages total. |
FDA, Draft questions for Chronicle Advisory Panel Meeting, 3 pages. Retrieved from the Internet: <<http://www.fda.gov/ohrms/dockets/ac/07/questions/2007-4284q1—draft.pdf>>. |
FDA, References for Mar. 1 Circulatory System Devices Panel, 1 page total. 2007. Retrieved from the Internet: <<http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284bib1—01.pdf>>. |
FDA Panel Recommendation, “Chronicle Analysis,” Mar. 1, 2007, 14 pages total. |
Fonarow et al., “Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis,” JAMA. Feb. 2, 2005;293(5):572-580. |
Fonarow, “How well are chronic heart failure patients being managed?”, Rev Cardiovasc Med. 2006;7 Suppl 1:S3-11. |
Fonarow, “Maximizing Heart Failure Care” [Powerpoint Presentation], downloaded from the Internet <<http://www.medreviews.com/media/MaxHFCore.ppt>>, 130 pages total. |
Fonarow, “Proactive monitoring and management of the chronic heart failure patient,” Rev Cardiovasc Med. 2006; 7 Suppl 1:S1-2. |
Fonarow, “The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure,” Rev Cardiovasc Med. 2003;4 Suppl 7:S21-S30. |
Ganion et al., “Intrathoracic impedance to monitor heart failure status: a comparison of two methods in a chronic heart failure dog model,” Congest Heart Fail. Jul.-Aug. 2005;11(4):177-81, 211. |
Gass et al., “Critical pathways in the management of acute decompensated heart failure: A CME-Accredited monograph,” Mount Sinai School of Medicine, 2004, 32 pages total. |
Gheorghiade et al., “Congestion is an important diagnostic and therapeutic target in heart failure,” Rev Cardiovasc Med. 2006 ;7 Suppl 1 :12-24. |
Gilliam, III et al., “Changes in heart rate variability, quality of life, and activity in cardiac resynchronization therapy patients: results of the HF-HRV registry,” Pacing and Clinical Electrophysiology, Jan. 18, 2007; 30(1): 56-64. |
Gilliam, III et al., “Prognostic value of heart rate variability footprint and standard deviation of average 5-minute intrinsic R-R intervals for mortality in cardiac resynchronization therapy patients.,” J Electrocardiol. Oct. 2007;40(4):336-42. |
Gniadecka, “Localization of dermal edema in lipodermatosclerosis, lymphedema, and cardiac insufficiency high-frequency ultrasound examination of intradermal echogenicity,” J Am Aced oDermatol, Jul. 1996; 35(1):37-41. |
Goldberg et al., “Randomized trial of a daily electronic home monitoring system in patients with advanced heart failure: The Weight Monitoring in Heart Failure (WHARF) Trial,” American Heart Journal, Oct. 2003; 416(4):705-712. |
Grap et al., “Actigraphy in the Critically Ill: Correlation With Activity, Agitation, and Sedation,” American Journal of Critical Care. 2005;14: 52-60. |
Gudivaka et al., “Single- and multifrequency models for bioelectrical impedance analysis of body water compartments,” J Appl Physiol, 1999;87(3):1087-1096. |
Guyton et al., Unit V: The Body Fluids and Kidneys, Chapter 25: The Body Fluid Compartments: Extracellular and Intracellular Fluids; Interstitial Fluid and Edema, Guyton & Hall Textbook of Medical Physiology 11th Edition, Saunders 2005; pp. 291-306. |
Hadase et al., “Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart Failure,” Circ J 2004; 68(4):343-347. |
Hallstrom et al., “Structural relationships between measures based on heart beat intervals: potential for improved risk assessment,” IEEE Biomedical Engineering 2004, 51(8):1414-1420. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Executive Summary: HFSA 2006 Comprehensive Heart Failure Practice Guideline, Journal of Cardiac Failure 2006;12(1):10-e38. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 12: Evaluation and Management of Patients With Acute Decompensated Heart Failure, Journal of Cardiac Failure 2006;12(1):e86-e103. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 2: Conceptualization and Working Definition of Heart Failure, Journal of Cardiac Failure 2006;12(1):e10-e11. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 3: Prevention of Ventricular Remodeling Cardiac Dysfunction, and Heart Failure Overview, Journal of Cardiac Failure 2006;12(1):e12-e15. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 4: Evaluation of Patients for Ventricular Dysfunction and Heart Failure, Journal of Cardiac Failure 2006;12(1):e16-e25. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 8: Disease Management in Heart Failure Education and Counseling, Journal of Cardiac Failure 2006;12(1):e58-e68. |
Hunt et al., “ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): Developed in Collaboration With the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart Rhythm Society,” Circulation. 2005;112:e154-e235. |
Hunt et al., ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure), Circulation. 2001;104:2996-3007. |
Imhoff et al., “Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients,” Critical Care Medicine 2000; 28(8):2812-2818. |
Jaeger et al., “Evidence for Increased Intrathoracic Fluid Volume in Man at High Altitude,” J Appl Physiol 1979; 47(6): 670-676. |
Jerant et al., “Reducing the cost of frequent hospital admissions for congestive heart failure: a randomized trial of a home telecare intervention,” Medical Care 2001, 39(11):1234-1245. |
Jaio et al., “Variance fractal dimension analysis of seismic refraction signals,” WESCANEX 97: Communications, Power and Computing. IEEE Conference Proceedings., May 22-23, 1997, pp. 163-167 [Abstract Only]. |
Kasper et al., “A randomized trial of the efficacy of multidisciplinary care in heart failure outpatients at high risk of hospital readmission,” J Am Coll Cardiol, 2002; 39:471-480. |
Kaukinen, “Cardiac output measurement after coronary artery bypass grafting using bolus thermodilution, continuous thermodilution, and whole-body impedance cardiography,” Journal of Cardiothoracic and Vascular Anesthesia 2003; 17(2):199-203. |
Kawaguchi et al., “Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations,” Circulation. 2003;107:714-720. |
Kawasaki et al., “Heart rate turbulence and clinical prognosis in hypertrophic cardiomyopathy and myocardial infarction,” Circ J. Jul. 2003;67(7):601-604. |
Kearney et al., “Predicting death due to progressive heart failure in patients with mild-to-moderate chronic heart failure,” J Am Coll Cardiol, 2002; 40(10):1801-1808. |
Kitzman et al., “Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure,” JAMA Nov. 2002; 288(17):2144-2150. |
Kööbi et al., “Non-invasive measurement of cardiac output : whole-body impedance cardiography in simultaneous comparison with thermodilution and direct oxygen Fick methods,” Intensive Care Medicine 1997; 23(11):1132-1137. |
Koyama et al., “Evaluation of heart-rate turbulence as a new prognostic marker in patients with chronic heart failure,” Circ J 2002; 66(10):902-907. |
Krumholz et al., “Predictors of readmission among elderly survivors of admission with heart failure,” American Heart Journal 2000; 139 (1):72-77. |
Kyle et al., “Bioelectrical Impedance Analysis—part I: review of principles and methods,” Clin Nutr. Oct. 2004;23(5):1226-1243. |
Kyle et al., “Bioelectrical Impedance Analysis—part II: utilization in clinical practice,” Clin Nutr. Oct. 2004;23(5):1430-1453. |
Lee et al., “Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model,” JAMA 2003;290(19):2581-2587. |
Leier “The Physical Examination in Heart Failure—Part I,” Congest Heart Fail. Jan.-Feb. 2007;13(1):41-47. |
LifeShirt® Model 200 Directions for Use, “Introduction”, VivoMetrics, Inc. 9 page total. |
Liu et al., “Fractal analysis with applications to seismological pattern recognition of underground nuclear explosions,” Singal Processing, Sep. 2000, 80(9):1849-1861. [Abstract Only]. |
Lozano-Nieto, “Impedance ratio in bioelectrical impedance measurements for body fluid shift determination,” Proceedings of the IEEE 24th Annual Northeast Bioengineering Conference, Apr. 9-10, 1998, pp. 24-25. |
Lucreziotti et al., “Five-minute recording of heart rate variability in severe chronic heart failure : Correlates with right ventricular function and prognostic implications,” American Heart Journal 2000; 139(6):1088-1095. |
Lüthje et al., “Detection of heart failure decompensation using intrathoracic impedance monitoring by a triple-chamber implantable defibrillator,” Heart Rhythm Sep. 2005;2(9):997-999. |
Magalski et al., “Continuous ambulatory right heart pressure measurements with an implantable hemodynamic monitor: a multicenter, 12-Month Follow-up Study of Patients With Chronic Heart Failure,” J Card Fail 2002, 8(2):63-70. |
Mahlberg et al., “Actigraphy in agitated patients with dementia: Monitoring treatment outcomes,” Zeitschrift für Gerontologie and Geriatrie, Jun. 2007; 40(3)178-184. [Abstract Only]. |
Matthie et al., “Analytic assessment of the various bioimpedance methods used to estimate body water,” Appl Physiol 1998; 84(5):1801-1816. |
Matthie, “Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy,” J Appl Physiol 2005; 99:780-781. |
McMurray et al., “Heart Failure: Epidemiology, Aetiology, and Prognosis of Heart Failure,” Heart 2000;83:596-602. |
Miller, “Home monitoring for congestive heart failure patients,” Caring Magazine, Aug. 1995: 53-54. |
Moser et al., “Improving outcomes in heart failure: it's not unusual beyond usual Care,” Circulation. 2002;105:2810-2812. |
Nagels et al., “Actigraphic measurement of agitated behaviour in dementia,” International journal of geriatric psychiatry , 2009; 21(4):388-393. [Abstract Only]. |
Nakamura et al., “Universal scaling law in human behavioral organization,” Physical Review Letters, Sep. 28, 2007; 99(13):138103 (4 pages). |
Nakaya, “Fractal properties of seismicity in regions affected by large, shallow earthquakes in western Japan: Implications for fault formation processes based on a binary fractal fracture network model,” Journal of geophysical research, Jan. 2005; 11(B1):B01310.1-B01310.15. [Abstract Only]. |
Naylor et al., “Comprehensive discharge planning for the hospitalized elderly: a randomized clinical trial ,” Amer. College Physicians 1994; 120(12):999-1006. |
Nesiritide (Natrecor),, [Presentation] Acutely Decompensated Congestive Heart Failure: Burden of Disease, downloaded from the Internet: <<http://www.huntsvillehospital.org/foundation/events/cardiologyupdate/CHF.ppt.>>, 39 pages. |
Nieminen et al., “EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population,” European Heart Journal 2006; 27(22):2725-2736. |
Nijsen et al., “The potential value of three-dimensional accelerometry for detection of motor seizures in severe epilepsy,” Epilepsy Behav. Aug. 2005;7(1):74-84. |
Noble et al., “Diuretic induced change in lung water assessed by electrical impedance tomography,” Physiol. Meas. 2000; 21(1):155-163. |
Noble et al., “Monitoring patients with left ventricular failure by electrical impedance tomography,” Eur J Heart Fail. Dec. 1999;1(4):379-84. |
O'Connell et al., “Economic impact of heart failure in the United States: time for a different approach,” J Heart Lung Transplant., Jul.-Aug. 1994 ; 13(4):S107-S112. |
Ohlsson et al., “Central hemodynamic responses during serial exercise tests in heart failure patients using implantable hemodynamic monitors,” Eur J Heart Fail. Jun. 2003;5(3):253-259. |
Ohlsson et al., “Continuous ambulatory monitoring of absolute right ventricular pressure and mixed venous oxygen saturation in patients with heart failure using an implantable haemodynamic monitor,” European Heart Journal 2001 22(11):942-954. |
Packer et al., “Utility of impedance cardiography for the identification of short-term risk of clinical decompensation in stable patients with chronic heart failure,” J Am Coll Cardiol, 2006; 47(11):2245-2252. |
Palatini et al., “Predictive value of clinic and ambulatory heart rate for mortality in elderly subjects with systolic hypertension” Arch Intern Med. 2002;162:2313-2321. |
Piiria et al., “Crackles in patients with fibrosing alveolitis bronchiectasis, COPD, and Heart Failure,” Chest May 1991; 99(5):1076-1083. |
Pocock et al., “Predictors of mortality in patients with chronic heart failure,” Eur Heart J 2006; (27): 65-75. |
Poole-Wilson, “Importance of control of fluid volumes in heart failure,” European Heart Journal 2000; 22(11):893-894. |
Raj et al., ‘Letter Regarding Article by Adamson et al, “Continuous Autonomic Assessment in Patients With Symptomatic Heart Failure: Prognostic Value of Heart Rate Variability Measured by an Implanted Cardiac Resynchronization Device”’, Circulation 2005;112:e37-e38. |
Ramirez et al., “Prognostic value of hemodynamic findings from impedance cardiography in hypertensive stroke,” AJH 2005; 18(20):65-72. |
Rich et al., “A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure,” New Engl. J. Med. 1995;333:1190-1195. |
Roglieri et al., “Disease management interventions to improve outcomes in congestive heart failure,” Am J Manag Care. Dec. 1997;3(12):1831-1839. |
Sahalos et al., “The Electrical impedance of the human thorax as a guide in evaluation of intrathoracic fluid volume,” Phys. Med. Biol. 1986; 31:425-439. |
Saxon et al., “Remote active monitoring in patients with heart failure (rapid-rf): design and rationale,” Journal of Cardiac Failure 2007; 13(4):241-246. |
Scharf et al., “Direct digital capture of pulse oximetry waveforms,” Proceedings of the Twelfth Southern Biomedical Engineering Conference, 1993., pp. 230-232. |
Shabetai, “Monitoring heart failure hemodynamics with an implanted device: its potential to improve outcome,” J Am Coll Cardiol, 2003; 41:572-573. |
Small, “Integrating monitoring into the Infrastructure and Workflow of Routine Practice: OptiVol,” Rev Cardiovasc Med. 2006 ;7 Supp 1: S47-S55. |
Smith et al., “Outcomes in heart failure patients with preserved ejection fraction: mortality, readmission, and functional decline ,” J Am Coll Cardiol, 2003; 41:1510-1518. |
Someren, “Actigraphic monitoring of movement and rest-activity rhythms inaging, Alzheimer's disease, and Parkinson's disease,” IEEE Transactions on Rehabilitation Engineering, Dec. 1997; 5(4):394-398. [Abstract Only]. |
Starling, “Improving care of chronic heart failure: advances from drugs to devices,” Cleveland Clinic Journal of Medicine Feb. 2003; 70(2):141-146. |
Steijaert et al., “The use of multi-frequency impedance to determine total body water and extracellular water in obese and lean female individuals,” International Journal of Obesity Oct. 1997; 21(10):930-934. |
Stewart et al., “Effects of a home-based intervention among patients with congestive heart failure discharged from acute hospital care,” Arch Intern Med. 1998;158:1067-1072. |
Stewart et al., “Effects of a multidisciplinary, home-based intervention on planned readmissions and survival among patients with chronic congestive heart failure: a randomised controlled study,” The Lancet Sep. 1999, 354(9184):1077-1083. |
Stewart et al., “Home-based intervention in congestive heart failure: long-term implications on readmission and survival,” Circulation. 2002;105:2861-2866. |
Stewart et al., “Prolonged beneficial effects of a home-based intervention on unplanned readmissions and mortality among patients with congestive heart failure,” Arch Intern Med. 1999;159:257-261. |
Stewart et al., “Trends in Hospitalization for Heart Failure in Scotland, 1990-1996. An Epidemic that has Reached Its Peak?,” European Heart Journal 2001 22(3):209-217. |
Swedberg et al., “Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology,” Eur Heart J. Jun. 2005; 26(11):1115-1140. |
Tang, “Case studies in advanced monitoring: OptiVol,” Rev Cardiovasc Med. 2006;7 Suppl 1:S62-S66. |
The ESCAPE Investigators and ESCAPE Study Coordinators, “Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness,” JAMA 2005;294:1625-1633. |
Tosi et al., “Seismic signal detection by fractal dimension analysis ,” Bulletin of the Seismological Society of America; Aug. 1999; 89(4):970-977. [Abstract Only]. |
Van De Water et al., “Monitoring the chest with impedance,” Chest. 1973;64:597-603. |
Vasan et al., “Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction,” J Am Coll Cardiol, 1999; 33:1948-1955. |
Verdecchia et al., “Adverse prognostic value of a blunted circadian rhythm of heart rate in essential hypertension,” Journal of Hypertension 1998; 16(9):1335-1343. |
Verdecchia et al., “Ambulatory pulse pressure: a potent predictor of total cardiovascular risk in hypertension,” Hypertension. 1998;32:983-988. |
Vollmann et al., “Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure,” Euorpean Heart Journal Advance Access published on Feb. 19, 2007, downloaded from the Internet:<<http://eurheartj.oxfordjournals.org/cgi/content/full/ehl506v1>>, 6 pages total. |
Vuksanovic et al., “Effect of posture on heart rate variability spectral measures in children and young adults with heart disease,” International Journal of Cardiology 2005;101(2): 273-278. |
Wang et al., “Feasibility of using an implantable system to measure thoracic congestion in an ambulatory chronic heart failure canine model,” PACE 2005;28(5):404-411. |
Wickemeyer et al., #197—“Association between atrial and ventricular tachyarrhythmias, intrathoracic impedance and heart failure decompensation in CRT-D Patients,” Journal of Cardiac Failure 2007; 13 (6) Suppl.; S131-132. |
Williams et al, “How do different indicators of cardiac pump function impact upon the long-term prognosis of patients with chronic heart failure,” American Heart Journal, 150(5):983.e1-983.e6. |
Wonisch et al., “Continuous haemodynamic monitoring during exercise in patients with pulmonary hypertension,” Int J Cardiol. Jun. 8, 2005;101(3):415-420. |
Wynne et al., “Impedance cardiography: a potential monitor for hemodialysis,” Journal of Surgical Research 2006, 133(1):55-60. |
Yancy “Current approaches to monitoring and management of heart failure,” Rev Cardiovasc Med 2006; 7 Suppl 1:S25-32. |
Ypenburg et al., “Intrathoracic Impedance Monitoring to Predict Decompensated Heart Failure,” Am J Cardiol 2007, 99(4):554-557. |
Yu et al., “Intrathoracic Impedance Monitoring in Patients With Heart Failure: Correlation With Fluid Status and Feasibility of Early Warning Preceding Hospitalization,” Circulation. 2005;112:841-848. |
Zannad et al., “Incidence, clinical and etiologic features, and outcomes of advanced chronic heart failure: The EPICAL Study,” J Am Coll Cardiol, 1999; 33(3):734-742. |
Zile, “Heart failure with preserved ejection fraction: is this diastolic heart failure?” J Am Coll Cardiol, 2003; 41(9):1519-1522. |
U.S. Appl. No. 60/006,600, filed Nov. 13, 1995; inventor: Terry E. Flach. |
U.S. Appl. No. 60/972,316, filed Sep. 12, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,329, filed Sep. 14, 2007; inventor: Yatheendhar Manicka et al. |
U.S. Appl. No. 60/972,333, filed Sep. 14, 2007; inventor: Mark Bly et al. |
U.S. Appl. No. 60/972,336, filed Sep. 14, 2007; inventor: James Kristofer et al. |
U.S. Appl. No. 60/972,340, filed Sep. 14, 2007; inventor: James Kristofer et al. |
U.S. Appl. No. 60/972,343, filed Sep. 14, 2007; inventor: James Kristofer et al. |
U.S. Appl. No. 60/972,354, filed Sep. 14, 2007; inventor: Scott Thomas Mazar et al. |
U.S. Appl. No. 60/972,359, filed Sep. 14, 2007; inventor: Badri Amurthur et al. |
U.S. Appl. No. 60/972,363, filed Sep. 14, 2007; inventor: Badri Amurthur et al. |
U.S. Appl. No. 60/972,512, filed Sep. 14, 2007; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,537, filed Sep. 14, 2007; inventor: Yatheendhar Manicka et al. |
U.S. Appl. No. 60/972,581, filed Sep. 14, 2007; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,616, filed Sep. 14, 2007; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,629, filed Sep. 14, 2007; inventor: Mark Bly et al. |
U.S. Appl. No. 61/035,970, filed Mar. 12, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/046,196, filed Apr. 18, 2008; inventor: Scott T. Mazar. |
U.S. Appl. No. 61/047,875, filed Apr. 25, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/055,645, filed May 23, 2008; inventor: Mark Bly et al. |
U.S. Appl. No. 61/055,656, filed May 23, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/055,662, filed May 23, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/055,666, filed May 23, 2008; inventor: Yatheendhar Manicka et al. |
U.S. Appl. No. 61/079,746, filed Jul. 10, 2008; inventor: Brett Landrum. |
U.S. Appl. No. 61/084,567, filed Jul. 29, 2008; inventor: Mark Bly. |
“Acute Decompensated Heart Failure”—Wikipedia Entry, downloaded from: <http://en.wikipedia.org/wiki/Acute—decompensated—heart—failure>, entry page created in 2008, 6 pages total. |
“Heart Failure”—Wikipedia Entry, downloaded from the Internet: <http://en.wikipedia.org/wiki/Heart—failure>, entry page created in 2003, 17 pages total. |
3M Corporation, “3M Surgical Tapes—Choose the Correct Tape” quicksheet (2004). |
Cooley, “The Parameters of Transthoracic Electical Conduction,” Annals of the New York Academy of Sciences, 1970; 170(2):702-713. |
EM Microelectronic -Marin SA, “Plastic Flexible LCD,” [product brochure]; retrieved from the Internet: <<http://www.emmicroelectronic.com/Line.asp?IdLine=48>>, copyright 2009, 2 pages total. |
HRV Enterprises, LLC, “Heart Rate Variability Seminars,” downloaded from the Internet: <<http://hrventerprise.com/>> on Apr. 24, 2008, 3 pages total. |
HRV Enterprises, LLC, “LoggerPro HRV Biosignal Analysis,” downloaded from the Internet: <<http://hrventerprise.com/products.html>> on Apr. 24, 2008, 3 pages total. |
Number | Date | Country | |
---|---|---|---|
20090073991 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
60972537 | Sep 2007 | US | |
60972340 | Sep 2007 | US | |
60972336 | Sep 2007 | US | |
61055666 | May 2008 | US | |
61079746 | Jul 2008 | US |