Dynamic partition of PCIe disk arrays based on software configuration / policy distribution

Information

  • Patent Grant
  • 10713203
  • Patent Number
    10,713,203
  • Date Filed
    Tuesday, February 28, 2017
    7 years ago
  • Date Issued
    Tuesday, July 14, 2020
    4 years ago
Abstract
This disclosure relates to methods and systems for dynamically partitioning of PCIe disk arrays based on software configuration/policy distribution. In one embodiment, at least one PCIe switch has an input port operatively connected to a respective CPU and at least one output port. A multiplexer is connected between the output port(s) of the at least one PCIe switch and a PCIe disk array, for example an NVMe SSD, and is configured to connect the PCIe disk array in a first configuration to a single PCIe switch in either one-x4 port or two x2 port mode, or in a second configuration to two PCIe switches in x2 port mode. The multiplexer can dynamically switch between the first configuration and the second configuration on the fly. Switching can occur, for example, in response to a hot-swap of an NVMe SSD or a policy change.
Description
TECHNICAL FIELD

This disclosure relates in general to the field of communications and, more particularly, to methods and systems for dynamically partitioning of Peripheral Component Interconnect Express (PCIe) disk arrays based on software configuration/policy distribution.


BACKGROUND

Increased use of Solid-State-Drives (SSD) in PCIe disk arrays in data center storage solutions has not only significantly reduced input/output (I/O) latency, but has also been able to alleviate I/O bottlenecks by providing a much higher I/O performance without the need for a large number of disk enclosures. However, given the extreme advances in performance, the performance of network controllers and other network devices has thus far lagged behind in handling the vastly increased I/O traffic.


To handle the controller bottleneck, an NVMe (Non-Volatile Memory Express) interface has been developed, which gains great advantages over the traditional SAS)/SATA interface (SAS=Serial Attached SCSI; SATA=Serial Advanced Technology Attachment) due to the direct PCIe connection between central processing unit CPU and the SSD, which leads to linearly scalable bandwidth and considerable reduction in latency. However, on the other hand, current NVMe implementations are too tightly coupled to CPUs such that failover of SSDs may cause problems. To loosen the prior art tight coupling between CPU and SSD, PCIe switches have been involved in the storage solution, which, not only natively extend the limited CPU PCIe bandwidth, but also isolate the SSD failure issue, at the cost of increased CPU to SSD latency.


To handle the network bottleneck for I/O performance, hyper convergence has become the new trend for data center infrastructure. Comparing to the traditional centralized storage, such as SAN (Storage Area Network), where the storage pool as a whole is accessed by hosts via a network, hyper convergence is basically a distributed storage platform, implemented by natively integrating the compute and storage components together as a node, and aggregating nodes into cluster. Hyper convergence fully utilizes the localized I/O operation within a node, which significantly offloads the network traffic. However, there remains heavy traffic on the node-to-node network due to the distributed storage requirement, such as data replica and synchronization.





BRIEF DESCRIPTION OF THE DRAWINGS

To provide a more complete understanding of the present disclosure and features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying figures, wherein like reference numerals represent like parts, in which:



FIGS. 1(a) through 1(e) show simplified schematic diagrams illustrating basic topologies for connecting CPU and NVMe SSDs by way of PCIe switches, according to some embodiments of the present disclosure;



FIG. 2 is a simplified schematic diagram illustrating another basic topologies for connecting multiple CPUs and NVMe SSDs by way of PCIe switches with CPU level and switch level redundancy, according to some embodiments of the present disclosure;



FIG. 3 illustrates a dynamically configurable NVMe SSD interface architecture according to some embodiments of the present disclosure;



FIG. 4 shows a simplified structure of the dynamically configurable NVMe SSD interface architecture of FIG. 3;



FIG. 5 illustrates schematically possible work state transitions for a NVMe SSD listed in Table 1;



FIG. 6 shows schematically a process flow for hot-adding a NVMe SSD;



FIG. 7 shows schematically a process flow for hot-remove of a NVMe SSD; and



FIG. 8 shows schematically a process flow for dynamic modification of a SSD configuration policy.





DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

Various embodiments of the present disclosure relate to dynamically partitioning of PCIe disk arrays based on software configuration/policy distribution. The basic idea is to provide redundant PCIe links in the form of multiplexers connected between the downstream ports of switches SW0, SW1 and the Non-Volatile Memory Express (NVMe) Solid-State Drives (SSD), which can be switched dynamically according to a detected switch or SSD failure status and/or application policy/requirement. As used herein, the term “on the fly” and “dynamically” in the context of this disclosure describes activities or events that develop or occur, for example, while the process that the switch-over affects is ongoing, rather than as the result of something that is statically predefined. More particularly, the terms “hot swapping”, “hot-add” and “hot-remove” refer to “on-the-fly” replacement of computer hardware, such as the described NVMe SSDs.


In one aspect of the present disclosure, an apparatus is proposed with at least one PCIe switch having an input port operatively connected to a respective CPU and at least one output port; and at least one multiplexer connected between the output port of the at least one PCIe switch and a PCIe disk array and configured connect the PCIe disk array in a first configuration to a single PCIe switch in either one-x4 port or two x2 port mode, or in a second configuration to two PCIe switches in x2 port mode, and to dynamically switch over between the first configuration and the second configuration on the fly. The designation “x2” indicates a 2-lane configuration (2 physical ports-x2 port mode), wherein “x4” indicates a 4-lane configuration (4 physical ports=x4 port mode). The ports may be implemented with optical fibers.


In an embodiment, the switch-over between the first configuration and the second configuration may take place responsive to a change in a configuration policy of the PCIe disk array.


In another embodiment, the switch-over between the first configuration and the second configuration may take place responsive to a surprise addition of a PCIe disk array (hot-add).


In yet another embodiment, the switch-over between the first configuration and the second configuration may take place responsive to a surprise remove of an NVMe SSD (hot-remove).


In another embodiment, the switch-over between the first configuration and the second configuration may take place sequentially based on predetermined timing requirements.


In yet another embodiment, when data traffic congestion is detected at a first PCIe switch, the at least one multiplexer is configured to redirect a portion of the data traffic from the first PCIe switch to a second PCIe switch for transmission to the PCIe disk array.


In yet another embodiment, when operating in x4 port mode, the at least one multiplexer is configured to migrate all data traffic from the first PCIe switch to a second PCIe switch upon detection of a failure of a first PCIe switch for transmission to the PCIe disk array.


In yet another embodiment, the PCIe disk array may be an NVMe SSD.


In yet another embodiment, the apparatus may include a control logic device operatively connected to at least one PCIe switch and the at least one multiplexer and configured to monitor PCIe disk array information and PCIe disk configuration policy execution.


In yet another embodiment, the control logic device may be connected for communication to a management platform, with the management platform managing policy for the control logic device.


In another aspect of the present disclosure, a method is proposed for dynamically switching over between configurations that connect a CPU to an NVMe SSD. The method includes connecting the PCIe disk array in a first configuration to an output port of a single PCIe switch in either one-x4 port or two x2 port mode, or in a second configuration to output ports of two PCIe switches in x2 port mode, and dynamically switching over between the first configuration and the second configuration on the fly.


In one embodiment, the PCIe disk array may be dynamically switched over by way of at least one multiplexer interposed between the PCIe disk array and the PCIe disk array.


In another embodiment, the PCIe disk array may be dynamically switched over responsive to a change in a configuration policy of the PCIe disk array, a surprise addition of a PCIe disk array (hot-add), a surprise remove of an NVMe SSD (hot-remove), or a combination thereof.


In yet another embodiment, when data traffic congestion is detected at a first PCIe switch, a portion of the data traffic may be redirected from the first PCIe switch to a second PCIe switch for transmission to the PCIe disk array


In yet another embodiment, when operating in x4 port mode, all data traffic may be migrated to a second PCIe switch upon detection of a failure of a first PCIe switch for transmission to the PCIe disk array.


In yet another embodiment, dynamically switching over may include managing, with a control logic device operatively connected to at least one PCIe switch and the at least one multiplexer configuration, information of the PCIe disk array and status information of the at least one multiplexer.


As will be appreciated by one skilled in the art, aspects of the present disclosure, in particular the functionality related to various aspects of dynamic partitioning of PCIe disk arrays, may be controlled by computer programs. Accordingly, other aspects of the present disclosure relate to systems, computer programs, mechanisms, and means for carrying out the methods according to various embodiments described herein. Such systems, computer programs, mechanisms, and means could be included within various network devices, such as e.g. the management platform and the hypervisor. A computer program may, for example, be downloaded (updated) to the existing network devices and systems (e.g. to the existing routers, switches, various control nodes, etc.) or be stored upon manufacturing of these devices and systems.


In yet another aspect, the present application relates to one or more non-transitory computer readable storage media encoded with software comprising computer executable instructions and, when executed by a processor of a computer, operable to carry out the method according to various embodiments described herein.


In yet another aspect, the present application relates to a system comprising a plurality of computers, each computer connected to a first switching means in one-to-one correspondence, second switching means having each inputs connected to outputs of each of the first switching means and outputs connected to storage means, wherein the second switching means are configured to dynamically connect the storage means to the outputs of the first switching means on the fly.


Additional features and advantages of the disclosure will be set forth in the description which follows, and in part will be obvious from the description, or can be learned by practice of the herein disclosed principles. The features and advantages of the disclosure can be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. These and other features of the disclosure will become more fully apparent from the following description and appended claims, or can be easily learned by the practice of the principles set forth herein.


Overview of the Peripheral Component Interconnect Express (PCIe) Architecture


One interconnect fabric architecture includes the Peripheral Component Interconnect Express (PCIe) architecture. A primary goal of PCIe is to enable components and devices from different vendors to inter-operate in an open architecture, spanning multiple market segments; Clients (Desktops and Mobile), Servers (Standard and Enterprise), and Embedded and Communication devices. PCIe is a high performance, general purpose I/O interconnects defined for a wide variety of future computing and communication platforms. Some PCIe attributes, such as its usage model, load-store architecture, and software interfaces, have been maintained through its revisions, whereas previous parallel bus implementations have been replaced by a highly scalable, fully serial interface. The more recent versions of PCIe take advantage of advances in point-to-point interconnects, Switch-based technology, and packetized protocol to deliver new levels of performance and features. Power Management, Quality of Service (QoS), Hot-Plug/Hot-Swap support, Data Integrity, and Error Handling are among some of the advanced features supported by PCI Express.


Disadvantageously, however, much of the conventional switch-based technology with single x4 NMVe SSD does not have switch level redundancy that is required in high reliable storage products. To overcome this, the dual x2 port NVMe SSDs are designed which could be connected to 2 switches to gain redundancy. The connections between switch and SSDs are fixed in all the conventional methodology, and do not allow switch-over between dual-port mode and single-port mode on-the fly based on policy. The design proposed and illustrated in various embodiments of the present disclosure attempts to alleviate these shortcomings.



FIGS. 1 (a) through 1(c) illustrate basic topologies for connecting a CPU and NVMe SSDs via interposed PCIe switches. FIG. 1(a) shows a topology with only a single CPU and a single switch SW0. For a larger number of SSDs, the topologies may be extended in either a parallel arrangement, as illustrated in FIG. 1(b), with two switches SW0, SW1 having their respective input connected to a single CPU, or in a cascaded arrangement with two levels of switches, wherein switch SW0 in an upper level has an input connected to a single CPU and lower level switches SW1, SW2, . . . SWn connected between switch SW0 and the NVMe SSDs, as illustrated in FIG. 1(c). In all these three topologies of FIGS. 1(a) through (c), the SSDs operate in x4 PCIe mode and the connections between the CPU and the SSDs are fixed or hard-wired, which deprives these topologies of flexibility and reduces the reliability of this type of storage solution.


Redundancy at the CPU level (CPU redundancy) could be achieved by combining MR-IOV (Multiple Root I/O Virtualization) feature of the exemplary switches SW0 and SW1 and the NVMe SSD's dual-port feature, wherein two CPUs would be connected to the upstream (US) ports of switch SW0 of the topology in FIG. 1(a), allowing each CPU to be switched to any of the NVMe SSDs. This topology is illustrated in FIG. 1(d). Meanwhile, switch level redundancy could be implemented as shown in FIG. 1(e), wherein the downstream (DS) ports of each switch SW0 and SW1 could be connected to any of the NVMe SSDs. This will be referred to as switch redundancy. The two switches SW0 and SW1 could work in either active/active or active/passive mode, depending on application and CPU's I/O bandwidth requirement. CPU redundancy and switch redundancy may advantageously be combined to provide double-redundancy, both at the CPU level and at the switch level, which is illustrated with CPU0 and CPU1, and switches SW0 and SW1 in FIG. 2.


As mentioned above, the aforementioned topologies having either CPU redundancy or switch redundancy, or both, without forcing NMVe SSDs to work in dual 2x port mode to facilitate the redundant connection. There are also circumstances where flexibility is required to swap NVMe SSDs between dual-port and single-port mode on-the fly. The proposed design attempts to achieve providing redundancy without limiting the SSDs type that could be used in the storage system.


Example Embodiments of a Switchable NVMe SSD Interface Architecture


The top level design of a proposed NVMe SSD interface architecture 300 is illustrated in FIG. 3. Considering the tradeoff between redundancy and switch port resources, a two-switch design may be an optimal choice. The basic idea is to provide redundant PCIe links between switches SW0, SW1 and the NVMe SSDs, which could be switched according to a detected switch or SSD failure status and/or application policy/requirement. The design has a total of four distinct components, namely switches; a hardware control logic device shown here exemplary as a FPGA (field-programmable gate array); NVMe SSDs connected at an 8639 drive backplane connector; and the upper level management platform, such as the Cisco UCSM (Unified Computing System Manager) in the present example.


The 8639 drive backplane connector is a 68-pin connector and designed to support PCI Express as well as hot-plug and hot-remove, both with and without prior system notification (surprise hot-remove).


The PCIe signal in the data plane (double arrows) and its reference clock in the clock plane (dashed lines), side band signals (includes Dual-Port Enable DUALPORTEN #/Interface Detect IFDET #/Hot-Plug Detect PRSNT #/PCIe device reset PERST #/Power Enable PWREN) in the control plane are necessary to facilitate all the SSD operation timing control and are assigned to specific pins on the 8639 connector. The control plane signals are connected, either directly or indirectly on the FPGA to the Expander_SW1 and Expander_SW2. The signal EN is an enable signal.


The present disclosure addresses only the traffic in the data plane between the downstream ports of switches SW0, SW1 and the NVMe SSDs. For the connection between the upstream ports of the switches SW0, SW1 and one or more CPUs, any of the topologies illustrated in FIG. 1 and the redundant topology illustrated in FIG. 2 could be used. In other words, the connectivity of the downstream ports to the NVMe SSDs is not affected by the topology of the upstream ports. It will be understood that the number of illustrated CPUs, switches and NVMe SSDs are merely examples and any number of such devices can be used that can be interconnected and addressed in the manner described.


The hardware control logic device, herein also referred to simply as FPGA, deals with all the control logic such as SSD information collection and reporting, policy execution and optional indicator light (LED) management. The management platform interfaces between hypervisor and FPGA and collects SSD information and delivers an application requirement in the form of policy.


The virtual channel connecting the FPGA to the management platform could be implemented via multiple ways, for example Ethernet. To support both single port and dual port mode for the NVMe, the system must be able to modify the bifurcation of the downstream ports of the switches SW0, SW1 on the fly. The term “on the fly” in the context of this disclosure describes activities or events that develop or occur dynamically, i.e. while the process that the switch-over affects is ongoing, rather than as the result of something that is statically predefined. More particularly, the term “hot swapping” refers to “on-the-fly” replacement of computer hardware, such as the described NVMe SSDs. This is accomplished by sending a reconfiguration command to switch the ASIC (application-specific integrated circuit) itself (MRPC=multicast remote procedure call command in PMC PCIe switch). The connection of the switches SW0, SW1 to a 2:1 PCIe multiplexer (PCIe MUX) is implemented downstream of PCIe port switching to gain redundancy regardless of whether single x4 SSD or dual x2 SSD are attached. This on the fly switching is based on policy or software configuration.


All valid SSD configurations for a two-switch redundant situation are summarized in Table 1.



















TABLE 1












IO
IO











Exp.
Exp.


Work






SW0
SW1


State
Dual_Porten_N
SW_SEL_0
SW_SEL_1
PE3
Ref_CLK_P0
Ref_CLK_P1
EN
EN
PE_RST_P0
PE_RST_P1

























W1
0
0
0
Two x2
SW0
SW0
1
0
SW0
SW0, not






ports both





used






from SW0


W2
0
1
1
Two x2
SW1
SW1
0
1
SW1
SW1, not






ports both





used






from SW1


W3
0
0
1
Port 1
SW0
SW1
1
1
SW0
SW1






from SW0,






port 2






from SW1


W4
0
1
0
Port 1
SW1
SW0
1
1
SW1
SW0






from SW1,






port 2






from SW0


W5
1
0
0
X4 from
SW0
SW0, not
1
0
SW0
SW0, not






SW0

used



used


W6
1
1
1
X4 from
SW1
SW1, not
0
1
SW1
SW1, not






SW1

used



used



1
0
1
For-
X
X
X
X
X
X






bidden



1
1
0
For-
X
X
X
X
X
X






bidden









In top design diagram of the NVMe SSD interface architecture 300 shown in FIG. 3, two CPUs CPU0 and CPU1 are each connected to respective upstream (US) ports of switches SW0, SW1. Note that there is no connection between CPU0 and SW1 and between CPU1 and SW0. Downstream (DS) ports of each switch are connected for data transfer to respective input ports of each of two 2:1 PCIe multiplexers (MUX) 310, 312, i.e. each CPU can transfer data to and receive data from each of the MUXs 310, 312. DUALPORTEN # is disabled (low=0) so that the NVMe SSD operates in x2 mode. In FIG. 3, the input ports of each of the MUXs 310, 312 are connected in x2 mode to a respective PCIe terminal, namely PCIe [1:0] and PCIe [3:2], on the 8639 connector and from there to unillustrated NVMe SSDs. The possible data links depend on the switch selections and the corresponding work states in x2 mode are listed in Table 1 as W1-W4.


Note that not all components of the FPGA are shown in FIG. 3, and reference is made to FIG. 4 for any component not shown in FIG. 3


For an easier understanding of the top design diagram of the NVMe SSD interface architecture 300 in FIG. 3, reference is now made to the exemplary system 400 illustrated in FIG. 4 which uses only a single multiplexer 410. It will be assumed that DUALPORTEN # is enabled (high=1) so that the unillustrated NVMe SSD connected to terminals PCIe[3:0] on the 8639 connector operates in x4 mode (x4 PCIe). The traffic in the data plane could then only be swapped between Work State W5 and Work State W6 in Table 1. Only one MUX 410 is used in this example. Both switch select signals SW_SEL_0 and SW_SEL_1 are selectively applied to MUX 410. The two LEDs (red LED; blue LED) shown in FIG. 4 are status indicators and have no bearing on the operation of the system 400.


The I2C GPIO Expanders shown in FIG. 4 are general-purpose input/output (GPIO) expanders that can be used via the I2C interface (I2C=Inter-Integrated Circuit) and allow more than one device to connect to a single port on a computer.


In a first Work State W5, the REF_CLK_P0 is enabled (=1) at the pinout of the 8639 connector, whereas the REF_CLK_P1 is disabled (not used). The I2C GPIO Expander SW0 on the FPGA is high=1, whereas the I2C GPIO Expander SW1 on the FPGA is low=0. With both the SW_SEL_0 and the SW_SEL_1 low (=0) in Work State W5, the 4-port (x4) PCIe [3:0] on the 8639 connector is connected to the NVMe SSD by way of switch SW0. PE_RST_P0 is signaling SW0, whereas PE_RST_P1 is not connected in FIG. 4 because the second 2:1 RST MUX is not used in this configuration. Likewise, the second 2:1 PCIe MUX 312 and the second 2:1 CLK MUX of FIG. 3 are also not used in FIG. 4 since SW1 is not addressed in Work State W5. The aforedescribed situation for the x4 Work State W5 is substantially equivalent to the Work State W1, where SW_SEL_0=SW_SEL_1=0 and DUALPORTEN # is disabled.


In a second Work State W6, the REF_CLK_P0 is enabled at the pinout of the 8639 connector, whereas the REF_CLK_P1 is disabled (not used). The I2C GPIO Expander SW0 on the FPGA is high=1, whereas the I2C GPIO Expander SW1 on the FPGA is low=0. With both the SW_SEL_0 and the SW_SEL_1 high (=1) in Work State W6, the 4-port (x4) PCIe [3:0] on the 8639 connector is connected to the NVMe SSD by way of switch SW1. PE_RST_P0 is signaling SW1, whereas PE_RST_P1 is not connected in FIG. 4 because as above, the second 2:1 RST Mux is not used in this configuration. Likewise, the second 2:1 PCIe Mux and the second 2:1 CLK Mux of FIG. 3 are also not used in FIG. 4 since SW0 is not addressed in Work State W6. The aforedescribed situation for the x4 Work State W5 is substantially equivalent to the Work State W1, where SW_SEL_0=SW_SEL_1=0 and DUALPORTEN # is disabled. To summarize, the x4 PCIe bus from SW0 and the x4 PCIe bus from SW1 are selectively, but never simultaneously, connected via the 2:1 PCI2 Mux to the x4 PCIe bus terminating at the connector 8639 at the PCIe[3:0] pin, and ultimately connected to a NVMe SSD (not shown).


As mentioned above with reference to FIG. 3, the other four valid Work States W1-W4 all employ two x2 ports instead of a single x4 port. The Work States W1 and W2 have been discussed above due to their similarity with the Work States W5 and W6. For the Work States W3 and W4, both Ref_CLK_P0 and Ref_CLK_P1 are high and either SW_SEL_0 or SW_SEL_1 is high, while the other is low. This selects port 1 from SW0 and port 2 from SW1 for Work State W5 and port 2 from SW0 and port 1 from SW1 for Work State W5. Switching between these Work States W1-W6 is schematically depicted in FIG. 5.


Exemplary Work State transitions


Among all the possible work state transitions illustrated in FIG. 5, the following three examples are intended to demonstrate some of the benefits of this design.


Example 1: Transition from Work State W5 to Work State W1

Take into consideration the variant application I/O operation styles from high-bandwidth single-stream to lower bandwidth multiple-stream, storage virtualization platform needs to provide the flexibility to swap between them, and the transition from Work State_W5 to Work State_W1 facilitates the virtualization stack to make the best use of SSD's high capability for parallel I/O operation.


Example 2: Transition from Work State W5 to Work State W3

This transition could be utilized to implement switch level traffic offload. In one scenario where the upstream port of SW0 is suffering a traffic jam, half of its downstream SSDs could then be re-directed to SW1 to thus significantly improve the overall I/O data flow speed. This transition provides the possibility for a balanced storage load.


Example 3: Transition from Work State W5 to Work State W6

The most common application scenario for this transition is a switch failover. Assume, for example, that SW0 has failed. Data loss could then be avoided by migrating all traffic to and from the downstream port of SW0 to SW1. Since this redundancy is implemented in x4 single-port mode, no I/O performance loss occurs due to dual-port operation.


Another application could apply to a switch arrangement where each switch in FIG. 2 is connected to a single CPU, i.e. connections between CPU0 and SW1 and between CPU1 and SW0 would not exist. In case that large amount of cold data, i.e. data that are rarely accessed, needs to be transported from CPU0 to CPU1, e.g. when a new node is added into the current distributed storage network, copies of user data need to be delivered from the current nodes to this new node. The traditional solution would involve a communication network between the two CPUs CPU0, CPU1, resulting in a heavy traffic load. With aforedescribed exemplary design illustrated for example in FIG. 3, CPU0 could first clone of all the required data onto one NVMe SSD and thereafter migrate this NVMe SSD to CPU1 as a whole. In other words, the inner-CPU bandwidth (making a clone SSD within one node) is utilized, thus saving inter-CPU network bandwidth cost.


The operation during hot-add of a NVMe SSD will now be described with reference to a process flow chart shown in FIG. 6.


FPGA and Switch Initialization


Before any hot-swap, the system must be powered on and the firmware loaded. The FPGA will disable all I2C GPIO expander interfaces between switches SW0, SW1 and the NVMe SSDs before the NVMe SSDs can be successfully detected and configured.


The switches SW0, SW1 need to enable the dynamic bifurcation and dynamic partition feature during initialization. A switch should also reserve a sufficient number of logic P2P (PCIe-to-PCIe) bridges for the physical downstream (DS) ports. For each stack, all the DS ports would then be configured in x2 granularity. A 2 x2 port could be combined to work as a 1 x4 port through a configuration command as the policy is distributed downwards. During enumeration, each logic P2P bridge will be assigned its own primary/secondary/subordinate bus number. This is task of the root complex which connects the processor and memory subsystem to the PCI Express switch fabric composed of one or more switch devices.


For a cascaded switch similar to the arrangement of Topology (c) in FIG. 1, the top level SW's execute enumeration. In the context of this disclosure, the disclosed process relates only to the bottom switches that directly interface with the NVMe SSDs.


Surprise SSD Hot-Add



FIG. 6 shows schematically a process 600 for hot adding an NVMe SSD. The process 600 starts at 610. The FPGA is first to sense the toggle of IFDET # indicating a new inserted NVMe SSD, at 612. Triggered by this toggle, the FPGA will then poll the SSD E2PROM content and report the content to the Management Platform.


Typically, users will assign one specific application policy for this SSD via the Management Platform, with the Management Platform delivering the latest policy to FPGA. This may be a default configuration policy or a configuration policy updated for example by a user in response to an application update.


The FPGA needs to configure all the MUX devices in FIGS. 3 and 4 according to the policy. The I2C GPIO expander interface will only be enabled after all the configurations have been successfully executed.


At 614, the switch reads the asserted IFDET # and the DUALPORTEN # of the SSD. The switch will then configure the bifurcation as x2, as in the example of FIG. 3, or as x4, as in the example of FIG. 4, commensurate with the DUALPORTEN # signal status, at step 616. Thereafter, at 618, the switch powers the SSD on, de-asserts PERST #, and initiates the PCIe link training procedure to enter the normal operating mode.


Surprise SSD Hot-Remove



FIG. 7 illustrates a process 800 for a surprise SSD hot remove. When SSD remove is initiated, at step 714, the loss of the de-asserted IFDET # signal is reported to the FPGA, at 716, which will automatically disable the I2C GPIO expander interface to the switch, at 718. Detection of the link loss, at 720, will clear the SSD configuration space, at 722, whereafter the complete hot-remove procedure specified by the vendor of the SSD can be performed, at 724. Hot remove may also be triggered by the loss of a PCIe link. When the hot-remove process is concluded, the switch sends a hot-remove-done flag to the FPGA, at 726.


Dynamic Modification of a SSD Configuration Policy


The SSD configuration policy may be modified on-the-fly according to a changed application requirement. The associated process 800 will now be described with reference to the flow diagram in FIG. 8.


At 812, the configuration policy for the SSD is updated based on an application update. Specifically, this is done by performing at least some of the steps of the hot-remove process described in FIG. 7 (see process 700 in FIG. 7), although the NVMe SSD will actually not have to be removed physically, meaning that the PCIe link may still be active. The switch then informs the FPGA when the hot remove process is finished, at 816, and sets a flag. In one example, the switch may activate a blinking light (not shown) during the hot-remove process and then stop blinking when the hot-remove process is terminated. Details of the hot-remove process are not part of this disclosure and are typically specified by the vendor of the switch. The FPGA will configure the updated DUALPORTEN # and the SW_SEL_0/1 signals according to the new policy (see Table 1) after receiving the hot-remove-done signal, at 818. When the reconfiguration is done, FPGA will assert a FPGA_CONFG_DONE signal. The switch can then re-bifurcate its downstream ports and re-train the PCIe link, at 820. The process 800 does not need to be performed when a SSD is hot-added (see process 600 in FIG. 6).


The disclosed embodiments represent a consolidated solution to flexibly and dynamically modify the connection between NVMe SSD and PCIe switch in x2-port granularity on-the-fly. According to some embodiments of the disclosure, one NVMe SSD may be connected to either a single switch in one x4-port mode/two x2-port mode, or to two switches in x2-port mode. These different connections scenarios may then be swapped dynamically without requiring administrator intervention.


This flexibility is implemented by swapping NVMe SSD work mode (between dual-port and single-port) and adapting the switches' downstream partition policy sequentially based on specific timing requirement.


With this flexibility, the virtualization stack now obtains one more degree of freedom to schedule its I/O traffic in a more balanced and efficient way. Besides that, the switch level redundancy is natively realized in single-port mode without the cost of I/O performance loss due to dual-port operation.


In summary, these exemplary embodiments may provide at least the following advantages:

    • a) Increased flexibility by supporting variant policy-based application-oriented storage I/O operations.
    • b) Improved performance by dynamically balancing I/O traffic between switches.
    • c) Improved reliability by providing switch level redundancy.
    • d) Reducing inter-CPU traffic load by cloning required data from one CPU onto one NVMe SSD and thereafter migrating these data from the NVMe SSD to another CPU.


The embodiments of methods, hardware, software, firmware or code set forth above may be implemented via instructions or code stored on a machine-accessible, machine readable, computer accessible, or computer readable medium which are executable by a processing element. A non-transitory machine-accessible/readable medium includes any mechanism that provides (i.e., stores and/or transmits) information in a form readable by a machine, such as a computer or electronic system. For example, a non-transitory machine-accessible medium includes random-access memory (RAM), such as static RAM (SRAM) or dynamic RAM (DRAM); ROM; magnetic or optical storage medium; flash memory devices; electrical storage devices; optical storage devices; acoustical storage devices; other form of storage devices for holding information received from transitory (propagated) signals (e.g., carrier waves, infrared signals, digital signals); etc., which are to be distinguished from the non-transitory mediums that may receive information there from.


Instructions used to program logic to perform embodiments of the invention may be stored within a memory in the system, such as DRAM, cache, flash memory, or other storage. Furthermore, the instructions can be distributed via a network or by way of other computer readable media. Thus a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer), but is not limited to, floppy diskettes, optical disks, Compact Disc, Read-Only Memory (CD-ROMs), and magneto-optical disks, Read-Only Memory (ROMs), Random Access Memory (RAM), Erasable Programmable Read-Only Memory (EPROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), magnetic or optical cards, flash memory, or a tangible, machine-readable storage used in the transmission of information over the Internet via electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.). Accordingly, the computer-readable medium includes any type of tangible machine-readable medium suitable for storing or transmitting electronic instructions or information in a form readable by a machine (e.g., a computer)


Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.


In the foregoing specification, a detailed description has been given with reference to specific exemplary embodiments. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense rather than a restrictive sense. Furthermore, the foregoing use of embodiment and other exemplarily language does not necessarily refer to the same embodiment or the same example, but may refer to different and distinct embodiments, as well as potentially the same embodiment.


It should also be emphasized that although certain features are listed individually in the appended dependent claims, the features may be combined with one another in a single embodiment, unless specifically excluded or logically impossible.

Claims
  • 1. An apparatus comprising: at least one Peripheral Component Interconnect Express (PCIe) switch having an input port operatively connected to a respective CPU and at least one output port; andat least one multiplexer connected between the at least one output port of the at least one PCIe switch and a PCIe disk array, the at least one multiplexer configured to alternate a connection of the PCIe disk array between a first configuration and a second configuration in response to a change in a configuration policy, a surprise addition without notification, or a surprise removal without notification, the first configuration being the at least one multiplexer connected to a single PCIe switch in one x4 port mode or two x2 port mode, the second configuration being the at least one multiplexer connected to two PCIe switches in x2 port mode, the at least one multiplexer configured to dynamically affect a switch-over between the first configuration and the second configuration.
  • 2. The apparatus of claim 1, wherein, the switch-over occurs in response to the change in the configuration policy,and the configuration policy is of the PCIe disk array.
  • 3. The apparatus of claim 1, wherein, the switch-over occurs in response to the surprise addition without the notification, andthe surprise addition is of a PCIe disk array (hot-add).
  • 4. The apparatus of claim 1, wherein, the switch-over occurs in response to the surprise removal without the notification, andthe surprise removal is of a PCIe disk array (hot-remove).
  • 5. The apparatus of claim 1, wherein when data traffic congestion is detected at a first PCIe switch, the at least one multiplexer is configured to redirect a portion of data traffic from the first PCIe switch to a second PCIe switch for transmission to/from the PCIe disk array.
  • 6. The apparatus of claim 1, wherein when operating in x4 port mode, the at least one multiplexer is configured to migrate all data traffic from a first PCIe switch to a second PCIe switch upon detection of a failure of the first PCIe switch for transmission to/from the PCIe disk array.
  • 7. The apparatus of claim 1, wherein the PCIe disk array comprises a Non-Volatile Memory Express Solid-State Drive (NVMe SSD).
  • 8. The apparatus of claim 1, further comprising: a control logic device operatively connected to at least one PCIe switch and the at least one multiplexer and configured to monitor PCIe disk array information and PCIe disk configuration policy execution.
  • 9. The apparatus of claim 8, wherein the control logic device is connected for communication to a management platform, with the management platform managing policy for the control logic device.
  • 10. A method for partitioning a Peripheral Component Interconnect Express (PCIe) disk array, the method comprising: connecting at least one multiplexer between the PCIe disk array and at least one output port of at least one PCIe switch, the at least one multiplexer configured to alternate a connection of the PCIe disk array between a first configuration and a second configuration in response to a change in a configuration policy or a surprise addition/removal without notification, the first configuration being the at least one multiplexer connected to a single PCIe switch in one x4 port mode or in two x2 port mode, the second configuration being the at least one multiplexer connected to two PCIe switches in x2 port mode, anddynamically switching with the at least one multiplexer between the first configuration and the second configuration in response to the change.
  • 11. The method of claim 10, wherein the PCIe disk array comprises a Non-Volatile Memory Express Solid-State Drive (NVMe SSD).
  • 12. The method of claim 10, wherein, the dynamically switching between the first configuration and the second configuration takes place responsive to the surprise addition without the notification and/or the surprise removal without the notification,the surprise addition is of a PCIe disk array (hot-add), andthe surprise removal is of a PCIe disk array (hot-remove).
  • 13. The method of claim 10, wherein, the dynamically switching between the first configuration and the second configuration takes place responsive to the change in the configuration policy, andthe change in the configuration policy is of the PCIe disk array.
  • 14. The method of claim 10, further comprising: when data traffic congestion is detected at a first PCIe switch, redirecting a portion of the data traffic from the first PCIe switch to a second PCIe switch for transmission to/from the PCIe disk array.
  • 15. The method of claim 10, further comprising: when operating in x4 port mode, migrating all data traffic to a second PCIe switch upon detection of a failure of a first PCIe switch for transmission to/from the PCIe disk array.
  • 16. The method of claim 10, wherein the dynamically switching includes managing, with a control logic device operatively connected to at least one PCIe switch and the at least one multiplexer, information of the PCIe disk array and status information of the at least one multiplexer.
  • 17. A computer program embodied in a non-transitory computer-readable medium and comprising program instructions which, when loaded into a computer memory and executed by a processor, causes the processor to: switch at least one multiplexer connected between a Peripheral Component Interconnect Express (PCIe) disk array and one or more output ports of one or more PCIe switches between a first configuration and a second configuration, the at least one multiplexer connecting the PCIe disk array in the first configuration to an output port of a single PCIe switch in one x4 port mode or in two x2 port mode, or in the second configuration to output ports of two PCIe switches in x2 port mode,wherein the at least one multiplexer is dynamically switched between the first configuration and the second configuration in response to a change in a configuration policy, a surprise addition without notification, or a surprise removal without notification.
  • 18. The computer program of claim 17, wherein, dynamically switching takes place responsive to the surprise addition without the notification or the surprise removal without the notification,the surprise addition being of a PCIe disk array (hot-add), andthe surprise removal being of a PCIe disk array (hot-remove).
  • 19. The computer program of claim 17, wherein the computer program causes a control logic device to communicate status information of the PCIe disk array and the at least one multiplexer.
US Referenced Citations (586)
Number Name Date Kind
4688695 Hirohata Aug 1987 A
5263003 Cowles et al. Nov 1993 A
5339445 Gasztonyi Aug 1994 A
5430859 Norman et al. Jul 1995 A
5457746 Dolphin Oct 1995 A
5535336 Smith et al. Jul 1996 A
5588012 Oizumi Dec 1996 A
5617421 Chin et al. Apr 1997 A
5680579 Young et al. Oct 1997 A
5690194 Parker et al. Nov 1997 A
5740171 Mazzola et al. Apr 1998 A
5742604 Edsall et al. Apr 1998 A
5764636 Edsall Jun 1998 A
5809285 Hilland Sep 1998 A
5812814 Sukegawa Sep 1998 A
5812950 Tom Sep 1998 A
5838970 Thomas Nov 1998 A
5999930 Wolff Dec 1999 A
6035105 McCloghrie et al. Mar 2000 A
6043777 Bergman et al. Mar 2000 A
6101497 Ofek Aug 2000 A
6148414 Brown et al. Nov 2000 A
6185203 Berman Feb 2001 B1
6188694 Fine et al. Feb 2001 B1
6202135 Kedem et al. Mar 2001 B1
6208649 Kloth Mar 2001 B1
6209059 Ofer et al. Mar 2001 B1
6219699 McCloghrie et al. Apr 2001 B1
6219753 Richardson Apr 2001 B1
6223250 Yokono Apr 2001 B1
6226771 Hilla et al. May 2001 B1
6260120 Blumenau et al. Jul 2001 B1
6266705 Ullum et al. Jul 2001 B1
6269381 St. Pierre et al. Jul 2001 B1
6269431 Dunham Jul 2001 B1
6295575 Blumenau et al. Sep 2001 B1
6400730 Latif et al. Jun 2002 B1
6408406 Parris Jun 2002 B1
6542909 Tamer et al. Apr 2003 B1
6542961 Matsunami et al. Apr 2003 B1
6553390 Gross et al. Apr 2003 B1
6564252 Hickman et al. May 2003 B1
6647474 Yanai et al. Nov 2003 B2
6675258 Bramhall et al. Jan 2004 B1
6683883 Czeiger et al. Jan 2004 B1
6694413 Mimatsu et al. Feb 2004 B1
6708227 Cabrera et al. Mar 2004 B1
6715007 Williams et al. Mar 2004 B1
6728791 Young Apr 2004 B1
6772231 Reuter et al. Aug 2004 B2
6820099 Huber et al. Nov 2004 B1
6847647 Wrenn Jan 2005 B1
6848759 Doornbos et al. Feb 2005 B2
6850955 Sonoda et al. Feb 2005 B2
6876656 Brewer et al. Apr 2005 B2
6880062 Ibrahim et al. Apr 2005 B1
6898670 Nahum May 2005 B2
6907419 Pesola et al. Jun 2005 B1
6912668 Brown et al. Jun 2005 B1
6952734 Gunlock et al. Oct 2005 B1
6976090 Ben-Shaul et al. Dec 2005 B2
6978300 Beukema et al. Dec 2005 B1
6983303 Pellegrino et al. Jan 2006 B2
6986015 Testardi Jan 2006 B2
6986069 Oehler et al. Jan 2006 B2
7051056 Rodriguez-Rivera et al. May 2006 B2
7069465 Chu et al. Jun 2006 B2
7073017 Yamamoto Jul 2006 B2
7108339 Berger Sep 2006 B2
7149858 Kiselev Dec 2006 B1
7171514 Coronado et al. Jan 2007 B2
7171668 Molloy et al. Jan 2007 B2
7174354 Andreasson Feb 2007 B2
7200144 Terrell et al. Apr 2007 B2
7222255 Claessens et al. May 2007 B1
7237045 Beckmann et al. Jun 2007 B2
7240188 Takata et al. Jul 2007 B2
7246260 Brown et al. Jul 2007 B2
7266718 Idei et al. Sep 2007 B2
7269168 Roy et al. Sep 2007 B2
7277431 Walter et al. Oct 2007 B2
7277948 Igarashi et al. Oct 2007 B2
7305658 Hamilton et al. Dec 2007 B1
7328434 Swanson et al. Feb 2008 B2
7340555 Ashmore et al. Mar 2008 B2
7346751 Prahlad et al. Mar 2008 B2
7352706 Klotz et al. Apr 2008 B2
7353305 Pangal et al. Apr 2008 B2
7359321 Sindhu et al. Apr 2008 B1
7363417 Ngai Apr 2008 B1
7383381 Faulkner et al. Jun 2008 B1
7403987 Marinelli et al. Jul 2008 B1
7433326 Desai et al. Oct 2008 B2
7433948 Edsall Oct 2008 B2
7434105 Rodriguez-Rivera et al. Oct 2008 B1
7441154 Klotz et al. Oct 2008 B2
7447839 Uppala Nov 2008 B2
7487321 Muthiah et al. Feb 2009 B2
7500053 Kavuri et al. Mar 2009 B1
7512744 Banga et al. Mar 2009 B2
7542681 Cornell et al. Jun 2009 B2
7558872 Senevirathne et al. Jul 2009 B1
7587570 Sarkar et al. Sep 2009 B2
7631023 Kaiser et al. Dec 2009 B1
7643505 Colloff Jan 2010 B1
7654625 Amann et al. Feb 2010 B2
7657796 Kaiser et al. Feb 2010 B1
7668981 Nagineni et al. Feb 2010 B1
7669071 Cochran et al. Feb 2010 B2
7689384 Becker Mar 2010 B1
7694092 Mizuno Apr 2010 B2
7697554 Ofer et al. Apr 2010 B1
7706303 Bose et al. Apr 2010 B2
7707481 Kirschner et al. Apr 2010 B2
7716648 Vaidyanathan et al. May 2010 B2
7752360 Galles Jul 2010 B2
7757059 Ofer et al. Jul 2010 B1
7774329 Peddy et al. Aug 2010 B1
7774839 Nazzal Aug 2010 B2
7793138 Rastogi et al. Sep 2010 B2
7840730 D'Amato et al. Nov 2010 B2
7843906 Chidambaram et al. Nov 2010 B1
7895428 Boland, IV et al. Feb 2011 B2
7904599 Bennett Mar 2011 B1
7930494 Goheer et al. Apr 2011 B1
7975175 Votta et al. Jul 2011 B2
7979670 Saliba et al. Jul 2011 B2
7984259 English Jul 2011 B1
8031703 Gottumukkula et al. Oct 2011 B2
8032621 Upalekar et al. Oct 2011 B1
8051197 Mullendore et al. Nov 2011 B2
8086755 Duffy, IV et al. Dec 2011 B2
8161134 Mishra et al. Apr 2012 B2
8196018 Forhan et al. Jun 2012 B2
8205951 Boks Jun 2012 B2
8218538 Chidambaram et al. Jul 2012 B1
8230066 Heil Jul 2012 B2
8234377 Cohn Jul 2012 B2
8266238 Zimmer et al. Sep 2012 B2
8272104 Chen et al. Sep 2012 B2
8274993 Sharma et al. Sep 2012 B2
8290919 Kelly et al. Oct 2012 B1
8297722 Chambers et al. Oct 2012 B2
8301746 Head et al. Oct 2012 B2
8335231 Kloth et al. Dec 2012 B2
8341121 Claudatos et al. Dec 2012 B1
8345692 Smith Jan 2013 B2
8352941 Protopopov et al. Jan 2013 B1
8392760 Kandula et al. Mar 2013 B2
8442059 de la Iglesia et al. May 2013 B1
8479211 Marshall et al. Jul 2013 B1
8495356 Ashok et al. Jul 2013 B2
8514868 Hill Aug 2013 B2
8532108 Li et al. Sep 2013 B2
8560663 Baucke et al. Oct 2013 B2
8619599 Even Dec 2013 B1
8626891 Guru et al. Jan 2014 B2
8630983 Sengupta et al. Jan 2014 B2
8660129 Brendel et al. Feb 2014 B1
8661299 Ip Feb 2014 B1
8677485 Sharma et al. Mar 2014 B2
8683296 Anderson et al. Mar 2014 B2
8706772 Hartig et al. Apr 2014 B2
8719804 Jain May 2014 B2
8725854 Edsall May 2014 B2
8768981 Milne et al. Jul 2014 B1
8775773 Acharya et al. Jul 2014 B2
8793372 Ashok et al. Jul 2014 B2
8805918 Chandrasekaran et al. Aug 2014 B1
8805951 Faibish et al. Aug 2014 B1
8832330 Lancaster Sep 2014 B1
8855116 Rosset et al. Oct 2014 B2
8856339 Mestery et al. Oct 2014 B2
8868474 Leung et al. Oct 2014 B2
8887286 Dupont et al. Nov 2014 B2
8898385 Jayaraman et al. Nov 2014 B2
8909928 Ahmad et al. Dec 2014 B2
8918510 Gmach et al. Dec 2014 B2
8918586 Todd et al. Dec 2014 B1
8924720 Raghuram et al. Dec 2014 B2
8930747 Levijarvi et al. Jan 2015 B2
8935500 Gulati et al. Jan 2015 B1
8949677 Brundage et al. Feb 2015 B1
8996837 Bono et al. Mar 2015 B1
9003086 Schuller et al. Apr 2015 B1
9007922 Mittal et al. Apr 2015 B1
9009427 Sharma et al. Apr 2015 B2
9009704 McGrath et al. Apr 2015 B2
9075638 Barnett et al. Jul 2015 B2
9141554 Candelaria Sep 2015 B1
9141785 Mukkara et al. Sep 2015 B2
9164795 Vincent Oct 2015 B1
9176677 Fradkin et al. Nov 2015 B1
9201704 Chang et al. Dec 2015 B2
9203784 Chang et al. Dec 2015 B2
9207882 Rosset et al. Dec 2015 B2
9207929 Katsura Dec 2015 B2
9213612 Candelaria Dec 2015 B2
9223564 Munireddy et al. Dec 2015 B2
9223634 Chang et al. Dec 2015 B2
9244761 Yekhanin et al. Jan 2016 B2
9250969 Lager-Cavilla et al. Feb 2016 B2
9264494 Factor et al. Feb 2016 B2
9270754 Iyengar et al. Feb 2016 B2
9280487 Candelaria Mar 2016 B2
9292460 Freking Mar 2016 B2
9292465 Trivedi Mar 2016 B2
9304815 Vasanth et al. Apr 2016 B1
9313048 Chang et al. Apr 2016 B2
9374270 Nakil et al. Jun 2016 B2
9378060 Jansson et al. Jun 2016 B2
9396251 Boudreau et al. Jul 2016 B1
9448877 Candelaria Sep 2016 B2
9471348 Zuo et al. Oct 2016 B2
9501473 Kong et al. Nov 2016 B1
9503523 Rosset et al. Nov 2016 B2
9565110 Mullendore et al. Feb 2017 B2
9575828 Agarwal et al. Feb 2017 B2
9582366 Arroyo Feb 2017 B2
9582377 Dhoolam et al. Feb 2017 B1
9614763 Dong et al. Apr 2017 B2
9658868 Hill May 2017 B2
9658876 Chang et al. May 2017 B2
9733868 Chandrasekaran et al. Aug 2017 B2
9763518 Charest et al. Sep 2017 B2
9830240 George et al. Nov 2017 B2
9842075 Davis Dec 2017 B1
9853873 Dasu et al. Dec 2017 B2
20020049980 Hoang Apr 2002 A1
20020053009 Selkirk et al. May 2002 A1
20020073276 Howard et al. Jun 2002 A1
20020083120 Soltis Jun 2002 A1
20020095547 Watanabe et al. Jul 2002 A1
20020103889 Markson et al. Aug 2002 A1
20020103943 Lo et al. Aug 2002 A1
20020112113 Karpoff et al. Aug 2002 A1
20020120741 Webb et al. Aug 2002 A1
20020138675 Mann Sep 2002 A1
20020156971 Jones et al. Oct 2002 A1
20030023885 Potter et al. Jan 2003 A1
20030026267 Oberman et al. Feb 2003 A1
20030055933 Ishizaki et al. Mar 2003 A1
20030056126 O'Connor et al. Mar 2003 A1
20030065986 Fraenkel et al. Apr 2003 A1
20030084359 Bresniker et al. May 2003 A1
20030118053 Edsall et al. Jun 2003 A1
20030131105 Czeiger et al. Jul 2003 A1
20030131165 Asano et al. Jul 2003 A1
20030131182 Kumar et al. Jul 2003 A1
20030140134 Swanson et al. Jul 2003 A1
20030140210 Testardi Jul 2003 A1
20030149763 Heitman et al. Aug 2003 A1
20030154271 Baldwin et al. Aug 2003 A1
20030159058 Eguchi et al. Aug 2003 A1
20030174725 Shankar Sep 2003 A1
20030189395 Doornbos et al. Oct 2003 A1
20030210686 Terrell et al. Nov 2003 A1
20040024961 Cochran et al. Feb 2004 A1
20040030857 Krakirian et al. Feb 2004 A1
20040039939 Cox et al. Feb 2004 A1
20040054776 Klotz et al. Mar 2004 A1
20040057389 Klotz et al. Mar 2004 A1
20040059807 Klotz et al. Mar 2004 A1
20040088574 Walter et al. May 2004 A1
20040117438 Considine et al. Jun 2004 A1
20040123029 Dalai et al. Jun 2004 A1
20040128470 Hetzler et al. Jul 2004 A1
20040128540 Roskind Jul 2004 A1
20040153863 Klotz et al. Aug 2004 A1
20040190901 Fang Sep 2004 A1
20040215749 Tsao Oct 2004 A1
20040230848 Mayo et al. Nov 2004 A1
20040250034 Yagawa et al. Dec 2004 A1
20050033936 Nakano et al. Feb 2005 A1
20050036499 Dutt et al. Feb 2005 A1
20050050211 Kaul et al. Mar 2005 A1
20050050270 Horn et al. Mar 2005 A1
20050053073 Kloth et al. Mar 2005 A1
20050055428 Terai et al. Mar 2005 A1
20050060574 Klotz et al. Mar 2005 A1
20050060598 Klotz et al. Mar 2005 A1
20050071851 Opheim Mar 2005 A1
20050076113 Klotz et al. Apr 2005 A1
20050091426 Horn et al. Apr 2005 A1
20050114611 Durham et al. May 2005 A1
20050114615 Ogasawara et al. May 2005 A1
20050117522 Basavaiah et al. Jun 2005 A1
20050117562 Wrenn Jun 2005 A1
20050138287 Ogasawara et al. Jun 2005 A1
20050169188 Cometto et al. Aug 2005 A1
20050185597 Le et al. Aug 2005 A1
20050188170 Yamamoto Aug 2005 A1
20050198523 Shanbhag et al. Sep 2005 A1
20050235072 Smith et al. Oct 2005 A1
20050283658 Clark et al. Dec 2005 A1
20060015861 Takata et al. Jan 2006 A1
20060015928 Setty et al. Jan 2006 A1
20060034302 Peterson Feb 2006 A1
20060045021 Deragon et al. Mar 2006 A1
20060075191 Lolayekar et al. Apr 2006 A1
20060098672 Schzukin et al. May 2006 A1
20060117099 Mogul Jun 2006 A1
20060136684 Le et al. Jun 2006 A1
20060184287 Belady et al. Aug 2006 A1
20060198319 Schondelmayer et al. Sep 2006 A1
20060215297 Kikuchi Sep 2006 A1
20060230227 Ogasawara et al. Oct 2006 A1
20060242332 Johnsen et al. Oct 2006 A1
20060251111 Kloth et al. Nov 2006 A1
20070005297 Beresniewicz et al. Jan 2007 A1
20070067593 Satoyama et al. Mar 2007 A1
20070079068 Draggon Apr 2007 A1
20070091903 Atkinson Apr 2007 A1
20070094465 Sharma et al. Apr 2007 A1
20070101202 Garbow May 2007 A1
20070121519 Cuni et al. May 2007 A1
20070136541 Herz et al. Jun 2007 A1
20070162969 Becker Jul 2007 A1
20070211640 Palacharla et al. Sep 2007 A1
20070214316 Kim Sep 2007 A1
20070250838 Belady et al. Oct 2007 A1
20070258380 Chamdani et al. Nov 2007 A1
20070263545 Foster et al. Nov 2007 A1
20070276884 Hara et al. Nov 2007 A1
20070283059 Ho et al. Dec 2007 A1
20080016412 White et al. Jan 2008 A1
20080034149 Sheen Feb 2008 A1
20080052459 Chang et al. Feb 2008 A1
20080059698 Kabir et al. Mar 2008 A1
20080114933 Ogasawara et al. May 2008 A1
20080126509 Subrannanian et al. May 2008 A1
20080126734 Murase May 2008 A1
20080168304 Flynn et al. Jul 2008 A1
20080201616 Ashmore Aug 2008 A1
20080244184 Lewis et al. Oct 2008 A1
20080256082 Davies et al. Oct 2008 A1
20080267217 Colville et al. Oct 2008 A1
20080288661 Galles Nov 2008 A1
20080294888 Ando et al. Nov 2008 A1
20090006708 Lim Jan 2009 A1
20090063766 Matsumura et al. Mar 2009 A1
20090083484 Basham et al. Mar 2009 A1
20090089567 Boland, IV et al. Apr 2009 A1
20090094380 Qiu et al. Apr 2009 A1
20090094664 Butler et al. Apr 2009 A1
20090125694 Innan et al. May 2009 A1
20090193223 Saliba et al. Jul 2009 A1
20090201926 Kagan et al. Aug 2009 A1
20090222733 Basham et al. Sep 2009 A1
20090240873 Yu et al. Sep 2009 A1
20090282471 Green et al. Nov 2009 A1
20090323706 Germain et al. Dec 2009 A1
20100011365 Gerovac et al. Jan 2010 A1
20100030995 Wang et al. Feb 2010 A1
20100046378 Knapp et al. Feb 2010 A1
20100083055 Ozonat Apr 2010 A1
20100174968 Charles et al. Jul 2010 A1
20100318609 Lahiri et al. Dec 2010 A1
20100318837 Murphy et al. Dec 2010 A1
20110010394 Carew et al. Jan 2011 A1
20110022691 Banerjee et al. Jan 2011 A1
20110029824 Schöler et al. Feb 2011 A1
20110035494 Pandey et al. Feb 2011 A1
20110075667 Li et al. Mar 2011 A1
20110087848 Trent Apr 2011 A1
20110119556 de Buen May 2011 A1
20110142053 Van Der Merwe et al. Jun 2011 A1
20110161496 Nicklin Jun 2011 A1
20110173303 Rider Jul 2011 A1
20110228679 Varma et al. Sep 2011 A1
20110231899 Pulier et al. Sep 2011 A1
20110239039 Dieffenbach et al. Sep 2011 A1
20110252274 Kawaguchi et al. Oct 2011 A1
20110255540 Mizrahi et al. Oct 2011 A1
20110276584 Cotner et al. Nov 2011 A1
20110276675 Singh et al. Nov 2011 A1
20110276951 Jain Nov 2011 A1
20110299539 Rajagopal et al. Dec 2011 A1
20110307450 Hahn et al. Dec 2011 A1
20110313973 Srivas et al. Dec 2011 A1
20120023319 Chin et al. Jan 2012 A1
20120030401 Cowan et al. Feb 2012 A1
20120054367 Ramakrishnan et al. Mar 2012 A1
20120072578 Alam Mar 2012 A1
20120072985 Davne et al. Mar 2012 A1
20120075999 Ko et al. Mar 2012 A1
20120084445 Brock et al. Apr 2012 A1
20120084782 Chou et al. Apr 2012 A1
20120096134 Suit Apr 2012 A1
20120130874 Mane et al. May 2012 A1
20120131174 Ferris et al. May 2012 A1
20120134672 Banerjee May 2012 A1
20120144014 Natham et al. Jun 2012 A1
20120159112 Tokusho et al. Jun 2012 A1
20120167094 Suit Jun 2012 A1
20120173581 Hartig et al. Jul 2012 A1
20120173589 Kwon et al. Jul 2012 A1
20120177039 Berman Jul 2012 A1
20120177041 Berman Jul 2012 A1
20120177042 Berman Jul 2012 A1
20120177043 Berman Jul 2012 A1
20120177044 Berman Jul 2012 A1
20120177045 Berman Jul 2012 A1
20120177370 Berman Jul 2012 A1
20120179909 Sagi et al. Jul 2012 A1
20120201138 Yu et al. Aug 2012 A1
20120210041 Flynn et al. Aug 2012 A1
20120254440 Wang Oct 2012 A1
20120257501 Kucharczyk Oct 2012 A1
20120265976 Spiers et al. Oct 2012 A1
20120281706 Agarwal et al. Nov 2012 A1
20120297088 Wang et al. Nov 2012 A1
20120303618 Dutta et al. Nov 2012 A1
20120311106 Morgan Dec 2012 A1
20120311568 Jansen Dec 2012 A1
20120320788 Venkataramanan et al. Dec 2012 A1
20120324114 Dutta et al. Dec 2012 A1
20120331119 Bose et al. Dec 2012 A1
20130003737 Sinicrope Jan 2013 A1
20130013664 Baird et al. Jan 2013 A1
20130028135 Berman Jan 2013 A1
20130036212 Jibbe et al. Feb 2013 A1
20130036213 Hasan et al. Feb 2013 A1
20130036449 Mukkara et al. Feb 2013 A1
20130054888 Bhat et al. Feb 2013 A1
20130061089 Valiyaparambil et al. Mar 2013 A1
20130067162 Jayaraman et al. Mar 2013 A1
20130080823 Roth et al. Mar 2013 A1
20130080825 Buckland Mar 2013 A1
20130086340 Fleming et al. Apr 2013 A1
20130100858 Kamath et al. Apr 2013 A1
20130111540 Sabin May 2013 A1
20130138816 Kuo et al. May 2013 A1
20130138836 Cohen et al. May 2013 A1
20130139138 Kakos May 2013 A1
20130144933 Hinni et al. Jun 2013 A1
20130152076 Patel Jun 2013 A1
20130152175 Hromoko et al. Jun 2013 A1
20130163426 Beliveau et al. Jun 2013 A1
20130163606 Bagepalli et al. Jun 2013 A1
20130179941 McGloin et al. Jul 2013 A1
20130182712 Aguayo et al. Jul 2013 A1
20130185433 Zhu et al. Jul 2013 A1
20130191106 Kephart et al. Jul 2013 A1
20130198730 Munireddy et al. Aug 2013 A1
20130208888 Agrawal et al. Aug 2013 A1
20130212130 Rahnama Aug 2013 A1
20130223236 Dickey Aug 2013 A1
20130238641 Mandelstein et al. Sep 2013 A1
20130266307 Garg et al. Oct 2013 A1
20130268922 Tiwari et al. Oct 2013 A1
20130275470 Cao et al. Oct 2013 A1
20130297655 Narasayya et al. Nov 2013 A1
20130297769 Chang et al. Nov 2013 A1
20130318134 Bolik et al. Nov 2013 A1
20130318288 Khan et al. Nov 2013 A1
20140006708 Huynh et al. Jan 2014 A1
20140016493 Johnsson et al. Jan 2014 A1
20140019684 Wei et al. Jan 2014 A1
20140025770 Warfield et al. Jan 2014 A1
20140029441 Nydell Jan 2014 A1
20140029442 Wallman Jan 2014 A1
20140039683 Zimmermann et al. Feb 2014 A1
20140040473 Ho Rcky et al. Feb 2014 A1
20140040883 Tompkins Feb 2014 A1
20140047201 Mehta Feb 2014 A1
20140053264 Dubrovsky et al. Feb 2014 A1
20140059187 Rosset et al. Feb 2014 A1
20140059266 Ben-Michael et al. Feb 2014 A1
20140086253 Yong Mar 2014 A1
20140089273 Borshack et al. Mar 2014 A1
20140095556 Lee et al. Apr 2014 A1
20140096249 Dupont et al. Apr 2014 A1
20140105009 Vos et al. Apr 2014 A1
20140108474 David et al. Apr 2014 A1
20140109071 Ding et al. Apr 2014 A1
20140112122 Kapadia et al. Apr 2014 A1
20140123207 Agarwal et al. May 2014 A1
20140156557 Zeng et al. Jun 2014 A1
20140164666 Yand Jun 2014 A1
20140164866 Bolotov et al. Jun 2014 A1
20140172371 Zhu et al. Jun 2014 A1
20140173060 Jubran et al. Jun 2014 A1
20140173195 Rosset et al. Jun 2014 A1
20140173579 McDonald et al. Jun 2014 A1
20140189278 Peng Jul 2014 A1
20140198794 Mehta et al. Jul 2014 A1
20140211661 Gorkemli et al. Jul 2014 A1
20140215265 Mohanta et al. Jul 2014 A1
20140215590 Brand Jul 2014 A1
20140219086 Cantu′ et al. Aug 2014 A1
20140222953 Karve et al. Aug 2014 A1
20140229790 Goss et al. Aug 2014 A1
20140244585 Sivasubramanian et al. Aug 2014 A1
20140244897 Goss et al. Aug 2014 A1
20140245435 Belenky Aug 2014 A1
20140269390 Ciodaru et al. Sep 2014 A1
20140281700 Nagesharao et al. Sep 2014 A1
20140297941 Rajani et al. Oct 2014 A1
20140307578 DeSanti Oct 2014 A1
20140317206 Lomelino et al. Oct 2014 A1
20140324862 Bingham et al. Oct 2014 A1
20140325208 Resch et al. Oct 2014 A1
20140331276 Frascadore et al. Nov 2014 A1
20140348166 Yang et al. Nov 2014 A1
20140351654 Zhang Nov 2014 A1
20140355450 Bhikkaji et al. Dec 2014 A1
20140366155 Chang et al. Dec 2014 A1
20140376550 Khan et al. Dec 2014 A1
20150003450 Salam et al. Jan 2015 A1
20150003458 Li et al. Jan 2015 A1
20150003463 Li et al. Jan 2015 A1
20150010001 Duda et al. Jan 2015 A1
20150016461 Qiang Jan 2015 A1
20150030024 Venkataswami et al. Jan 2015 A1
20150046123 Kato Feb 2015 A1
20150063353 Kapadia et al. Mar 2015 A1
20150067001 Koltsidas Mar 2015 A1
20150067226 Iskandar et al. Mar 2015 A1
20150082432 Eaton et al. Mar 2015 A1
20150092824 Wicker, Jr. et al. Apr 2015 A1
20150120907 Niestemski et al. Apr 2015 A1
20150121131 Kiselev et al. Apr 2015 A1
20150127979 Doppalapudi May 2015 A1
20150142840 Baldwin et al. May 2015 A1
20150169313 Katsura Jun 2015 A1
20150180672 Kuwata Jun 2015 A1
20150207763 Bertran Ortiz et al. Jun 2015 A1
20150205974 Talley et al. Jul 2015 A1
20150212755 Asnaashari Jul 2015 A1
20150222444 Sarkar Aug 2015 A1
20150229546 Somaiya et al. Aug 2015 A1
20150248366 Bergsten et al. Sep 2015 A1
20150248418 Bhardwaj et al. Sep 2015 A1
20150254003 Lee et al. Sep 2015 A1
20150254088 Chou et al. Sep 2015 A1
20150261446 Lee Sep 2015 A1
20150263993 Kuch et al. Sep 2015 A1
20150269048 Marr et al. Sep 2015 A1
20150277804 Arnold et al. Oct 2015 A1
20150278040 Sikkink Oct 2015 A1
20150281067 Wu Oct 2015 A1
20150303949 Jafarkhani et al. Oct 2015 A1
20150339246 Sakurai Nov 2015 A1
20150341237 Cuni et al. Nov 2015 A1
20150341239 Bertran Ortiz et al. Nov 2015 A1
20150358136 Medard Dec 2015 A1
20150379150 Duda Dec 2015 A1
20160004611 Lakshman et al. Jan 2016 A1
20160011936 Luby Jan 2016 A1
20160011942 Golbourn et al. Jan 2016 A1
20160054922 Awasthi et al. Feb 2016 A1
20160062820 Jones et al. Mar 2016 A1
20160070652 Sundararaman et al. Mar 2016 A1
20160087885 Tripathi et al. Mar 2016 A1
20160088083 Bharadwaj et al. Mar 2016 A1
20160119159 Zhao et al. Apr 2016 A1
20160119421 Semke et al. Apr 2016 A1
20160139820 Fluman et al. May 2016 A1
20160149639 Pham et al. May 2016 A1
20160205189 Mopur et al. Jul 2016 A1
20160210161 Rosset et al. Jul 2016 A1
20160231928 Lewis et al. Aug 2016 A1
20160274926 Narasimhamurthy et al. Sep 2016 A1
20160285760 Dong Sep 2016 A1
20160292359 Tellis et al. Oct 2016 A1
20160294983 Kliteynik et al. Oct 2016 A1
20160306768 Mataya Oct 2016 A1
20160334998 George et al. Nov 2016 A1
20160366094 Mason et al. Dec 2016 A1
20160378624 Jenkins, Jr. et al. Dec 2016 A1
20160380694 Guduru Dec 2016 A1
20170010874 Rosset Jan 2017 A1
20170010930 Dutta et al. Jan 2017 A1
20170019475 Metz et al. Jan 2017 A1
20170068630 Iskandar et al. Mar 2017 A1
20170168970 Sajeepa et al. Jun 2017 A1
20170177860 Suarez et al. Jun 2017 A1
20170212858 Chu et al. Jul 2017 A1
20170273019 Park et al. Sep 2017 A1
20170277655 Das et al. Sep 2017 A1
20170337097 Sipos et al. Nov 2017 A1
20170340113 Charest et al. Nov 2017 A1
20170371558 George et al. Dec 2017 A1
20180032462 Olarig Feb 2018 A1
20180097707 Wright et al. Apr 2018 A1
Foreign Referenced Citations (2)
Number Date Country
1566104 Jan 2017 TW
WO 2016003408 Jan 2016 WO
Non-Patent Literature Citations (3)
Entry
International Search Report and Written Opinion, from the International Searching Authority, dated Apr. 25, 2018, 13 pages, for the corresponding International Application PCT/US2018/017956.
Peterson, C., “Introducing Lighting: A flexible NVMe JBOF,” Open Compute, Mar. 9, 2016, 6 pages.
Stamey, John, et al., “Client-Side Dynamic Metadata in Web 2.0,” SIGDOC '07, Oct. 22-24, 2007, pp. 155-161.
Related Publications (1)
Number Date Country
20180246833 A1 Aug 2018 US